
Profiling Non-numeric OpenSHMEM

Applications with the TAU Performance System

John Linford2, Tyler A. Simon1,2, Sameer Shende2,3, and Allen D. Malony2,3

1 University of Maryland Baltimore County
2 ParaTools Inc.

3 University of Oregon

Abstract. The recent development of a unified SHMEM framework,
OpenSHMEM, has enabled further study in the porting and scaling of ap-
plications that can benefit from the SHMEM programming model. This
paper focuses on non-numerical graph algorithms, which typically have
a low FLOPS/byte ratio. An overview of the space and time complexity
of Kruskal’s and Prim’s algorithms for generating a minimum spanning
tree (MST) is presented, along with an implementation of Kruskal’s al-
gorithm that uses OpenSHEM to generate the MST in parallel without
intermediate communication. Additionally, a procedure for applying the
TAU Performance System to OpenSHMEM applications to produce in-
depth performance profiles showing time spent in code regions, memory
access patterns, and network load is presented. Performance evaluations
from the Cray XK7 “Titan” system at Oak Ridge National Laboratory
and a 48 core shared memory system at University of Maryland, Balti-
more County are provided.

1 Introduction

Non-numerical algorithms (NNA) are characterized by a low FLOPS/byte ratio
and can be defined as those which spend most of their computational time doing
either a search or sort. Memory locality, not computational load, is the primary
performance factor. This class of algorithms is particularly challenging for HPC
systems in the Top500 [11] as these systems are optimized for compute-intensive
codes. NNAs often involve searching or traversing graphs, which are defined by
a collection of vertices connected by edges. Graphs are used to model problems
defined in terms of relationships or connections between objects. The mathemat-
ical properties of graphs facilitate the modeling of many useful computational
problems, e.g. problems related to connectivity and routing optimization in
networks.

Many graph algorithms begin by finding a minimum spanning tree (MST).
Given a connected graph, a spanning tree is a subgraph that connects all the
vertices and is a tree. For weighted graphs, the sum of the edge weights in a
spanning tree is the weight of the spanning tree. A minimum spanning tree is a
spanning tree with weight less than or equal to the weight of every other span-
ning tree. MSTs have many practical applications in communication networks,

S. Poole, O. Hernandez, and P. Shamis (Eds.): OpenSHMEM 2014, LNCS 8356, pp. 105–119, 2014.
c© Springer International Publishing Switzerland 2014

106 J. Linford et al.

network design and layout of highway systems. They provide a reasonable way
to cluster points in space into natural groups and can be used to approximate
solutions to hard problems, like the Traveling Salesman Problem [13].

Two common algorithms for finding anMST are Kruskal’s [10] and Prim’s [15].
The primary difference between these algorithms is the order of graph traversal
(breadth first vs. depth first). We provide an overview of the space and time
complexity of these algorithms and present an OpenSHMEM [3,7] implementa-
tion of Kruskal’s algorithm. The implementation uses the symmetric hierarchical
memory to generate the MST in parallel without intermediate communication,
thereby minimizing network load. We use the TAU Performance System [16] to
quantify the performance of our OpenSHMEM MST algorithm.

2 Background

2.1 The TAU Performance System

The challenge of developing parallel scientific and engineering applications for
scalable, high-performance computer systems routinely involves the use of par-
allel performance tools to gain a deeper understanding of the code’s execution
characteristics and to guide optimizations. The evolving hardware technology of
parallel computing platforms and the sophistication of software technologies to
program them gives rise to complex performance interactions that requires care-
ful measurement and analysis to understand. TAU is a robust, powerful, state-of-
the-art toolset for performance investigation that has been applied across many
scalable parallel computing paradigms and environments. TAU works efficiently
on hundreds of thousands of threads and processes with codes written in Fortran,
C/C++, Python, UPC, and Chapel, utilizing MPI, SHMEM, and DMAPP for
communication, and pthreads and OpenMP for multi-threading.

Shown in Figure 1, TAU consists of three layers: instrumentation, measure-
ment, and analysis. Each layer uses multiple modules that may be configured in
a flexible manner under user control. TAU implements a multi-level instrumen-
tation framework that includes source, runtime, and compiler-based instrumen-
tation to expand the scope of performance instrumentation. This design makes it
possible for TAU to easily provide alternative instrumentation techniques that
target a common measurement API. The role of the instrumentation layer is
to insert code (a.k.a. probes) to make performance events visible to the mea-
surement layer. Performance events can be defined and instrumentation inserted
in a program at several levels of the program transformation process. A com-
plete performance view may require contribution of event information across
code levels. To support this, TAU’s instrumentation mechanisms are based on
the code type and transformation level: source (manual, preprocessor), object
(compiler-based instrumentation), library interposition (pre-wrapped libraries),
static linker (redirecting and substituting calls to an alternate routine), runtime
linker (runtime interposition of libraries), binary (pre-execution at runtime),
re-writing (dynamic instrumentation), interpreter (language runtime), virtual

Profiling Non-numeric OpenSHMEM Applications 107

Listing 1.1. OpenSHMEM Minimum Spanning Tree

1 s t a r t p e s (0) ;
2 i f (shmem my pe () == 0) {
3 // Read graph s i z e (number o f nodes) from f i l e
4 // Broadcast graph s i z e to a l l o ther PEs
5 }
6
7 // Al l PEs r e c e i v e graph s i z e
8 shmem bar r i e r a l l () ;
9

10 // Calcu la t e work d i v i s i o n
11 nNodes = graphSize / n pes ;
12
13 // A l l o c a t e shmem for graph
14 graph = (int ∗) shmal loc (graphSize ∗nNodes∗ s izeof (int)) ;
15 span = (int ∗) shmal loc (graphSize ∗nNodes∗ s izeof (int)) ;
16 memset(span , 0 , graphSize ∗nNodes∗ s izeof (int)) ;
17
18 int ∗ bu f f e r = NULL;
19 i f (my pe == 0) {
20 bu f f e r = mal loc (graphSize ∗nNodes∗ s izeof (int)) ;
21 for (i =0; i<n pes ; ++i) {
22 for (j =0; j<graphSize ∗nNodes ; ++j) {
23 // Read edge weight from f i l e in to b u f f e r [j]
24 }
25 shmem int put (graph , bu f f e r , nNodes∗ graphSize , i) ;
26 }
27 }
28
29 // Al l PEs r e c e i v e graph
30 shmem bar r i e r a l l () ;
31 f r e e (bu f f e r) ;
32
33 // Al l PEs pick t h e i r lowes t edges (Kruskal ’ s a l gor i t hm)
34 for (j =0; j<nNodes ; ++j) {
35 minWeight = INT MAX;
36 minNode = 0 ;
37 for (i =0; i<graphSize ; ++i) {
38 weight = graph [j ∗ graphSize+i] ;
39 i f (weight && (weight < minWeight)) {
40 minWeight = weight ;
41 minNode = i ;
42 }
43 }
44 span [j ∗ graphSize+minNode] = minWeight ;
45 }
46
47 shmem bar r i e r a l l () ;
48 // span now conta ins the minimum spanning t r e e

108 J. Linford et al.

Fig. 1. The TAU framework architecture

machine (byte-code instrumentation), and operating system (kernel-level instru-
mentation). This broad coverage across instrumentation levels provides flexibil-
ity in exploring performance artifacts at any level of program transformation.
TAU is open source and all instrumentation, measurement, and analysis tools
are distributed under a BSD-like license.

The core of TAU is its scalable measurement infrastructure which provides
rich parallel profiling and tracing support. Performance information containing
execution time and hardware counter data can be captured for instrumented
events for all threads of execution. Communication events additionally record
message-related data that track process interactions. TAU can also associate
metadata with performance experiments.

SHMEMapplicationanalysis is achievedwithTAUvia source code instrumenta-
tion, library interposition, compiler instrumentation, and sampling.TAUcan track
memory allocations – both in a PE’s local memory and in the symmetric heap –
and network I/O caused by transfers to and from symmetric memory. In statically
linkedbinaries (e.g. forCray systems),memory tracking is achievedbywrapping all
allocation and deallocation routines at link time. Dynamically linked applications
may use tau exec to preload a memory tracking runtime library.

To track OpenSHMEM API calls and monitor communication between PEs,
TAU provides a single wrapper library applicable to all OpenSHMEM implemen-
tations. In past, SHMEMwrapper library developmentwas determined by the spe-
cific SHMEM library used by the system. This necessitated the production and
maintenance of several library variants and complicated the goal of portable per-
formance observation for the SHMEM runtime layer. However, the portability of
theOpenSHMEMstandard enables TAU tomaintain only a single implementation
of a single OpenSHMEM wrapper library. This approach provides performance
measurements at the language and the runtime level to achieve complete coverage
of the OpenSHMEM application source and runtime libraries.

Profiling Non-numeric OpenSHMEM Applications 109

2.2 Minimum Spanning Tree Algorithm

We use the symmetric hierarchical memory defined by OpenSHMEM to calculate
the MST as shown in Listing 1.1. The basic idea is to divide the graph among
the OpenSHMEM processing elements (PEs) by writing the edge weights to
symmetric memory (the graph variable in Listing 1.1). Each PE examines the
nodes it has been sent and writes the minimum edge weight to another region of
symmetric memory (span in Listing 1.1). This effectively distributes Kruskal’s
greedy algorithm across all PEs. By selecting the minimum edge connected to
all nodes, we ensure the resultant graph will be the minimum spanning tree.

3 Related Work

OpenSHMEM [3,7] has emerged as an effort to join the disparate SHMEM imple-
mentations into a common, portable and high performance standard. Bader and
Cong have demonstrated fast data structures for distributed shared memory [1].
Pophale et. al defined the performance bounds of OpenSHMEM [14].

NNA benchmarks are emerging to evaluate HPC system at scale. The Graph
500 is one such benchmark [12]. The problem of finding a minimum spanning
tree (MST) can be formally stated as: given an undirected, weighted graph
G = (V,E), a minimum spanning tree is the set of edges T in E that con-
nect all vertices in V at a minimum cost. Figure 2 illustrates the MST for a
fully connected graph with random edge weights and eight vertices. Both Prim’s
and Kruskal’s algorithms are considered “greedy” since they make the locally
optimal choice at each iteration, i.e. they choose an edge with minimum weight
that does not create a cycle [15,10].

Fig. 2. Fully connected eight node graph with minimum spanning tree

110 J. Linford et al.

3.1 Performance Analysis

Both profiling and tracing are relevant to better understanding the performance
characteristics of an application. While profiling shows summary statistics, trac-
ing can reveal the temporal variation in application performance. Among tools
that use the direct measurement approach, the VampirTrace [9] package provides
a wrapper interposition library that can capture the traces of I/O operations us-
ing the library preloading scheme used in tau exec. Scalasca [4] is a portable
and scalable profiling and tracing system that can automate the detection of
performance bottlenecks in message passing and shared memory programs. Like
many other tools, it uses library wrapping for MPI. TAU may be configured to
use Scalasca or VampirTrace internally. TAU, VampirTrace, and Scalasca use
the PAPI [2] library to access hardware performance counters present on most
modern processors. However, only the tau exec scheme provides the level of in-
tegration of all sources of performance information – MPI, I/O, and memory – of
interest to us, with the rich context provided by TAU. With this support, we can
utilize the VampirServer [8] parallel trace visualization system to show the per-
formance data through scalable timeline displays. Profile performance data can
also be easily stored in the PerfDMF database [6]. TAU’s profile browser, Para-
Prof, and its cross-experiment analysis and data-mining tool PerfExplorer [5]
can interface with the performance database to help evaluate the scalability of
an application.

4 Analysis of Prim’s and Kruskal’s MST Algorithms

This section provides time and space complexity analysis for a serial implemen-
tation of two MST algorithms in preparation for the discussion of a Kruskal’s
algorithm implementation that uses OpenSHMEM.

4.1 Prim’s Algorithm

Prim’s algorithm works by picking any vertex X to be the root of the MST. While
the tree does not contain all vertices in the graph, find a minimally weighted
edge leaving the tree and add it to the tree.

1. Choose any vertex X . Let S(set of vertices)={X} and A(set of edges)=∅.
2. Find a minimally weighted edge such that one endpoint is in S and the other

endpoint is in (V − S). Add this edge to A and the other endpoint to S.
3. If (V − S) = ∅, then stop. {S,A} is the Minimum Spanning Tree.
4. Else go to Step 1.

We implemented Prim’s algorithm in C and generated a MST using random
edge weights for 1 to 1000 vertices. Figure 3(a) shows the runtime of the serial
Prim’s implementation using both directed and undirected graphs. Only the num-
ber of vertices vary by case. These were run on an eight processor Intel Nehalem
node that was not dedicated, thus others were using the system. We expect this is

Profiling Non-numeric OpenSHMEM Applications 111

the cause of the fluctuation in times between the directed and undirected curves.
The O(n2) time complexity of the algorithm is apparent, as shown by the blue
line which was fit to the undirected data. We see that the directed graphs had the
same O(n2) trend but ran slower overall by a constant.

The space complexity of Prim’s Algorithm is shown in Figure 3(b). The data
was fit to an O(n2) curve and we can see the actual space usage is between
linear and quadratic, but not quite as low as O(n × log2(n)). The results for
space usage for the directed and undirected graph experiments were identical so
only the directed results are presented here.

(a) Time (b) Space

Fig. 3. Complexity of Prim’s algorithm

4.2 Kruskal’s Algorithm

Kruskal’s algorithm is similar to Prim’s but with a different search order:

1. Place every vertex in its own set.

2. Select edges in order of increasing weight.

3. As each edge is selected, determine if the vertices connected by that edge
are in different sets. If so then insert the edge into the set that is the MST
and take the union of sets containing each vertex.

4. Repeat steps 1-3 until all edges have been explored.

Figure 4(a) shows the Kruskal’s algorithm runtime for an undirected graph
under experimental conditions similar to those in the Prim’s experiments. The
graph representation is an adjacency matrix, so edge weights can be compared in
constant time. At each iteration, the minimum edge can be located in O(log2(E))
time, which is O(log2(V)), since the graph is simple. The total running time
is O((V + E) × log2(V)), which is O(E × log2(V)) since the graph is simple
and connected. The data show a very tight O(n × log2(n)) fit, which was the
theoretical expectation. The space complexity of Kruskal’s algorithm is shown in
Figure 4(b). The data fits almost perfectly to the theoretical O(n2) expectation.

112 J. Linford et al.

(a) Time (b) Space

Fig. 4. Complexity of Kruskal’s algorithm

5 OpenSHMEM Performance Analysis

We executed our OpenSHMEM experiments on 256 nodes of the “Titan” Cray
XK7 supercomputer and on a 48 core shared memory system at University of
Maryland Baltimore County (UMBC), consisting of 8, 6 core AMD Opteron pro-
cessors with 530GB of globally accessible shared memory. The application code
was an OpenSHMEM implementation of Kruskal’s algorithm as in Listing 1.1. In
each experiment, we used TAU to gather data for time spent in code regions of in-
terest (e.g. broadcast graph and calc spanning tree), heap memory allocated
and deallocated by routines like malloc and free, total bytes of memory used in
all routines, network I/O events initiated by routines like shmem int put), and
time spent waiting in barrier routines. We also enabled callpath profiling in TAU
so that the full execution path to all events was recorded. We used source based
instrumentation and the TAU compiler wrapper scripts to automatically intro-
duce measurement hooks into the OpenSHMEM application code at compile
time.

TAU uses the PSHMEM interface to support measurement of OpenSHMEM
routines. For every routine in the OpenSHMEM standard, PSHMEM provides
an analogous routine with a slightly different name. This allows profiling tools
to intercept and measure OpenSHMEM calls made by a user’s application by
defining routines with the same function signatures as OpenSHMEM routines
– “wrapper” functions – which call the appropriate PSHMEM routines. TAU
provides an OpenSHMEM wrapper library which can be linked to any OpenSH-
MEM application to acquire runtime measurements of OpenSHMEM routines.
The library can be used statically- or dynamically-linked applications. In our ex-
periments the application was statically linked since statically linked executables
are preferred on Titan.

Our fully instrumented applicationwas approximately 4% slower than the unin-
strumented application. If only time in code regions of interest were measured (no
memory or I/O measurements are taken) then overhead was approximately 1.5%.
Regardless of which events are recorded, TAU’s overhead is approximately O(1) in

Profiling Non-numeric OpenSHMEM Applications 113

the number of application processes, i.e. as the number of PEs increases the over-
head incurred by TAU remains relatively constant. Large applications can benefit
from reducing instrumentation to only regions of interest by use of a TAU select
file. We used a TAU select file to insert timers at specific source lines in the Open-
SHMEM application rather than fully instrument every routine.

Figure 5 shows exclusive time spent by PE 0 in regions of the code. The vast
majority of the time (64.987 seconds) is spent in reading the graph from file and
broadcasting the edge weights to the other PEs. The time spent calculating the
minimum spanning tree is minimal, only 0.008 seconds. Figure 6 is the counter-
part to Figure 5. It shows exclusive time spent by PE 1 in regions of the code.
The profile on all PEs except for PE 0 is nearly identical. The majority of time
is spent receiving data from PE 0, followed by a brief calculation to construct
the MST.

If we exclude the file I/O data we see only those routines directly involved in
the MST calculation. Figure 7 shows inclusive mean time spent by all PEs in
routines that do not perform file I/O or wait for PE 0 to complete its file I/O
operations. This figure shows that the initial broadcast of the graph weights via
shmem int put is the most expensive step in the MST calculation.

Figures 5-7 show data taken from interval events, which have a defined start
and stop point. Interval events are used to measure time spent in a code region.
Events such as memory allocations are recorded as atomic events, which record
a quantity (e.g. bytes allocated) when they are triggered. Figure 8 shows the
mean of atomic events gathered during the 512 PE experiment on Titan. Memory
allocation events and network sends and receives are visible. For example, across
all 512 PEs there was an average of thirteen heap memory allocations in the
shmem int put call in the broadcast graph section of the application. TAU has
also flagged two potential memory leaks caused by not explicitly deallocating
memory before the program exists. These leaks are of no concern since the
operating system will deallocate all heap memory on program exit. However,
if this application were converted to a library then these leaks would need to be
addressed.

Communication atomic events record the number of bytes sent or received
between PEs. TAU can display this information as a communication heat map
as in Figure 9. The communications matrix of the Titan supercomputer and
the 48-node shared memory appliance are markedly different. In both cases,
there is virtually no communication between PEs after PE 0 has distributed
the graph data. On both systems, peak communication volume is visible in red
in the zeroth row of the array and we see that no nonzero PE communicates
with itself. However, each PE on the 48-core appliance sends eight bytes to
every other PE while on Titan only PE 0 communicates with other PEs. From
our callpath data we determined that these sends on the 48-core appliance were
initiated by the shmem barrier all routine. This demonstrates TAU’s ability to
highlight implementation differences between libraries and explain unexpected
communication patterns.

114 J. Linford et al.

Fig. 5. Exclusive time on PE 0 of 512 on Titan, showing time spent reading the graph
from file and broadcasting it to the other PEs

Fig. 6. Exclusive time on PE 1 of 512 on Titan, showing time spent waiting to receive
the graph data from PE 0 and then calculating the MST

Fig. 7. Exclusive mean time on all 512 PEs on Titan in routines called while calculating
the MST after the graph has been broadcast

Profiling Non-numeric OpenSHMEM Applications 115

Fig. 8. The mean of context events observed in the OpenSHMEM implementation of
Kruskal’s algorithm on 512 PEs on Titan

TAU can construct a complete application callgraph from the callpath data
as shown in Figure 10. Boxes are colored according to their exclusive time: more
time is spent in red boxes than blue boxes. We note that three different memory
allocation routines were used in this application, though heap memory allocation
was only explicitly performed via malloc and shmalloc.

TAU can also perform application scaling studies. To demonstrate this on
Titan, we varied the number of PEs as a power of two ranging from four to
512. Afer each run, we used TAU’s profile browser (ParaProf) to package the
application data as a packed profile file and then imported the packed profile
into a TAUdb database [6]. We then used TAU’s cross-experiment analysis and
data-mining tool PerfExplorer [5] to explore the application scalability.

Figure 11 shows the runtime breakdown for varying PE counts on Titan.
shmem barrier all is the most expensive routine, accounting for approximately
80% of the application runtime in all cases. The relative cost of broadcasting the
graph decreases as the number of cores increases. The cost of computing the
MST is small in all cases and is included in the “other” category accounting for
approximately 3% of the application runtime.

116 J. Linford et al.

(a) 48-core Shared Memory Appliance (b) Titan

Fig. 9. Communication heat maps showing differences in the OpenSHMEM implemen-
tations on the 48-core appliance and Titan

Fig. 10. Kruskal’s OpenSHMEM callgraph. Box color corresponds to exclusive time.
Blue boxes are close to minimum and red boxes are close to maximum.

Profiling Non-numeric OpenSHMEM Applications 117

Fig. 11. Kruskal’s OpenSHMEM callgraph. Box color corresponds to exclusive time.
Blue boxes are close to minimum and red boxes are close to maximum.

6 Conclusions and Future Work

We have provided a performance analysis of both serial and parallel implemen-
tations of the standard minimum spanning tree (MST) algorithms from Prim
and Kruskal. We have developed an efficient OpenSHMEM implementation of
Kruskal’s MST algorithm and provided a profile of that implementation on two
HPC systems. We have demonstrated the portability of applications that use
OpenSHMEM and the portability of the profiling features of the TAU Perfor-
mance System. Our results suggest that OpenSHMEM is a flexible and powerful
API for PGAS programming that can be applied effectively to non-numeric al-
gorithms with a low FLOPS/byte ratio.

Profiling tools like TAU would benefit from further standardization and sup-
port for the PSHMEM interface. Unlike the PMPI interface which is fairly
mature, complete, and widely available, the PSHMEM interface has not been
completely established and in some implementations of OpenSHMEM is only
partially implemented. This necessitates special checks when TAU compiles
its OpenSHMEM wrapper library. TAU’s maintainers will continue to improve
TAU’s resilience to variations in the PSHMEM interface until the interface is
finalized.

TAU could also benefit from an interface which exposes synchronization of the
symmetric heap. At present, TAU intercepts the underlying system allocation
and deallocation calls and OpenSHMEM library calls to mark operations on the
symmetric heap. However, it is difficult to observe in a trace when an update

118 J. Linford et al.

to the symmetric heap becomes visible to other PEs. TAU could make use of a
mechanism for notifying a performance measurement system of symmetric heap
updates when they occur to improve the quality of the application performance
data.

Acknowledgments. Authors would like to thank The University of Oregon
NeuroInformatics Center and the NSF Center for Hybrid Multicore Productivity
Research at UMBC. This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported
by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

References

1. Bader, D.A., Cong, G.: Fast shared-memory algorithms for computing the mini-
mum spanning forest of sparse graphs. J. Par. Distrib. Comp. 66(11), 1366–1378
(2006), http://dx.doi.org/10.1016/j.jpdc.2006.06.001

2. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming
interface for performance evaluation on modern processors. International Journal
of High Performance Computing Applications 3(14), 189–204 (2000)

3. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C.,
Smith, L.: Introducing OpenSHMEM: SHMEM for the PGAS community.
In: Proceedings of the Fourth Conference on Partitioned Global Address
Space Programming Model, PGAS 2010, pp. 2:1–2:3. ACM, New York (2010),
http://doi.acm.org/10.1145/2020373.2020375

4. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: Scalable parallel trace-based per-
formance analysis. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.)
PVM/MPI 2006. LNCS, vol. 4192, pp. 303–312. Springer, Heidelberg (2006)

5. Huck, K., Malony, A.: PerfExplorer: A performance data mining framework for
large-scale parallel computing. In: Proceedings of the ACM/IEEE Conference on
Supercomputing, SC 2005 (2005)

6. Huck, K., Malony, A., Bell, R., Li, L., Morris, A.: PerfDMF: Design and imple-
mentation of a parallel performance data management framework. In: Proceedings
of the International Conference on Parallel Processing. IEEE (2005)

7. Jose, J., Kandalla, K., Luo, M., Panda, D.: Supporting hybrid MPI and OpenSH-
MEM over InfiniBand: Design and performance evaluation. In: The 41st Interna-
tional Conference on Parallel Processing (ICPP), pp. 219–228 (2012)

8. Knüpfer, A., Brendel, R., Brunst, H., Mix, H., Nagel, W.E.: Introducing the open
trace format (OTF). In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Don-
garra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 526–533. Springer, Heidelberg
(2006)

9. Knupfer, A., Brunst, H., Nagel, W.: High performance event trace visualization.
In: Proceedings of Parallel and Distributed Processing (PDP). IEEE (2005)

10. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proceedings of the American Mathematical Society 7 (1956)

11. Meuer, H., Strohmaier, E., Dongara, J., Simon, H.: TOP 500 Supercomputer Sites
(2013), http://www.top500.org

http://dx.doi.org/10.1016/j.jpdc.2006.06.001
http://doi.acm.org/10.1145/2020373.2020375
http://www.top500.org

Profiling Non-numeric OpenSHMEM Applications 119

12. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the Graph
500 (May 2010)

13. Papadimitriou, C.H.: The Euclidean traveling salesman problem is NP-complete.
Theoretical Computer Science 4(3), 237–244 (1977)

14. Pophale, S., Nanjegowda, R., Curtis, T., Chapman, B., Jin, H., Poole, S., Kuehn,
J.: OpenSHMEM performance and potential: A NPB experimental study. In: The
6th Conference on Partitioned Global Address Space Programming Models, PGAS
2012 (2012)

15. Prim, R.C.: Shortest connection networks and some generalizations. Bell System
Technical Journal 36, 1389–1401 (1957)

16. Shende, S.S., Malony, A.D.: The TAU Parallel Performance System. Int. J. High
Perform. Comput. Appl. 20(2), 287–311 (2006),
http://dx.doi.org/10.1177/1094342006064482

http://dx.doi.org/10.1177/1094342006064482

	Profiling Non-numeric OpenSHMEM
Applications with the TAU Performance System
	1 Introduction
	2 Background
	2.1 The TAU Performance System
	2.2 Minimum Spanning Tree Algorithm

	3 Related Work
	3.1 Performance Analysis

	4 Analysis of Prim’s and Kruskal’s MST Algorithms
	4.1 Prim’s Algorithm
	4.2 Kruskal’s Algorithm

	5 OpenSHMEM Performance Analysis
	6 Conclusions and Future Work
	References

