Profiling Production OpenSHMEM Applications

John C. Linford!®™) Samuel Khuvis', Sameer Shende', Allen Malony?,
Neena Imam?, and Manjunath Gorentla Venkata?

! ParaTools, Inc., 2836 Kincaid St., Eugene, OR 97405, USA
{jlinford, skhuvis,sameer,malony}@paratools.com
http://www.paratools.com/
2 Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
{imamn,manjugv}@ornl.gov
http://ut-battelle.org/

Abstract. Developing high performance OpenSHMEM applications
routinely involves gaining a deeper understanding of software execu-
tion, yet there are numerous hurdles to gathering performance metrics
in a production environment. Most OpenSHMEM performance profil-
ers rely on the PSHMEM interface but PSHMEM is an optional and
often unavailable feature. We present a tool that generates direct mea-
surement performance profiles of OpenSHMEM applications even when
PSHMEM is unavailable. The tool operates on dynamically linked and
statically linked application binaries, does not require debugging sym-
bols, and functions regardless of compiler optimization level. Integrated
in the TAU Performance System, the tool uses automatically-generated
wrapper libraries that intercept OpenSHMEM API calls to gather perfor-
mance metrics with minimal overhead. Dynamically linked applications
may use the tool without modifying the application binary in any way.

Keywords: Profiling - Tracing - Performance analysis - The TAU
Performance System + Code generation - Library wrapping

1 Introduction

OpenSHMEM application performance can be characterized via profiling and
tracing tools built on the PSHMEM interface. For every routine in the OpenSH-
MEM standard, PSHMEM provides an analogous routine with a slightly different
name. This allows profiling tools to intercept and measure OpenSHMEM calls
made by a user’s application by defining routines with the same function signa-
tures as OpenSHMEM routines — wrapper functions — which call the appropriate
PSHMEM routines. For example, the TAU Performance System® [7] provides an
OpenSHMEM wrapper library which can be linked to any OpenSHMEM appli-
cation to acquire runtime measurements of OpenSHMEM routines. The library
can be used with statically or dynamically linked applications with runtime over-
head between 1.5% and 4% [4]. Regardless of which events are recorded, TAU’s
overhead is approximately O(1) in the number of application processes, i.e. as the

© Springer International Publishing AG 2016
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2016, LNCS 10007, pp. 219-224, 2016.
DOI: 10.1007/978-3-319-50995-2_15



220 J.C. Linford et al.

number of SHMEM processing elements (PEs) increases the overhead incurred
by TAU remains relatively constant. This makes TAU an appropriate choice for
profiling large-scale OpenSHMEM applications when PSHMEM is available.

For reasons of practicality, applications are typically developed on small-scale
representative systems before being deployed on large-scale production systems.
Yet it is often the case that performance bugs — software faults that affect the
application’s performance but not correctness — present themselves only at scale.
Metrics such as time spent in code regions, compute intensity, message size, and
communication volume are especially difficult to discern in production environ-
ments or at large scale. A production system may use highly optimized runtime
libraries where performance tool interfaces (i.e. PSHMEM) have been disabled,
rendering profiling and tracing tools like TAU ineffective. Tools that do not
rely on PSHMEM but instead periodically sample the application (e.g. HPC-
Toolkit [1,5]) cannot resolve this problem due to their inability to capture atomic
events (e.g. the size, sender, and receiver of a message or the size of a memory
allocation) and their reliance on debugging symbols, which are often stripped
from production binaries. In short, OpenSHMEM developers would like to char-
acterize the performance of production applications operating at large scales
without modifying the application or relying on debugging symbols or special
tools interfaces like PSHMEM.

This work-in-progress paper presents a tool that generates direct measure-
ment (i.e. not sampled) performance profiles and traces of OpenSHMEM appli-
cations when PSHMEM is unavailable. The tool extends the existing OpenSH-
MEM profiling capabilities in TAU and therefore has similar runtime overhead
(less than 4%). By building on TAU, we receive the full benefit of TAU’s mea-
surement layer so there are no restrictions to the types of performance data that
can be gathered, i.e. PAPI can be used to gather hardware performance coun-
ters without any caveats. As detailed in Sect.2, the tool parses the OpenSH-
MEM header files and automatically generates source code for wrapper libraries
that intercept OpenSHMEM API calls at link-time or at run-time so that both
dynamically and statically linked applications can be profiled. Since the tool uses
source code parsing and code generation, it does not require debugging symbols
and functions regardless of compiler optimization level.

2 Approach

Our goal is to provide performance data without relying on any special features
of a particular OpenSHMEM implementation, i.e. PSHMEM. At a high level
this involves two steps: constructing functionality similar to what is provided by
the PSHMEM interface and making it available to the application.

2.1 Symbol Wrapping

For every routine in the OpenSHMEM standard, PSHMEM provides an anal-
ogous routine with a slightly different name. We use symbol wrapping via the



Profiling Production OpenSHMEM Applications 221

program linker to do the same. Nearly all program linkers support a -wrap
foosym command line option to enable wrapping of the symbol foosym. Any
undefined reference to foosym will be resolved to __wrap_foosym and any unde-
fined reference to __real_foosym will be resolved to foosym. In this case, we use
symbol wrapping to provide a unique wrapper function for each API function
defined in an OpenSHMEM implementation’s header files. When the applica-
tion’s object files are linked to form the executable file, a —wrap flag for every
OpenSHMEM API call is passed to the linker via the special @argfile syntax
supported by most linkers.

static_osh_app.exe

libTau-shmem-wrap.a

libopenshmem.a

Fig. 1. Symbol wrapping via the program linker replacing a call to shmem_int_put with
a wrapper function at link time. The wrapper function uses TAU to record performance
data and invokes the original shmem_int_put.

Figure1l demonstrates symbol wrapping with an OpenSHMEM applica-
tion that is statically linked against the OpenSHMEM implementation library
libopenshmem.a. At link time, the call to shmem int_put in the application
is replaced with a call to __wrap_shmem_int_put, which is implemented in the
libTau-shmem-wrap.a wrapper library. The wrapper function uses TAU to
record performance data and invokes __real_shmem int_put, which the linker
replaces with a call to the original shmem_int_put as defined in 1ibopenshmem. a.

Symbol wrapping works equally well for statically linked applications
and dynamically linked applications that statically link against the OpenSH-
MEM implementation. However, applications that link dynamically against
libopenshmem.so should use library preloading instead of symbol wrapping
because symbol wrapping will only intercept SHMEM calls made from the appli-
cation itself.



222 J.C. Linford et al.

2.2 Library Preloading

Symbol wrapping is a powerful, low overhead way to wrap the OpenSHMEM
API, but it requires the user to re-link their application against a special library
of wrapper functions. This is not always possible in a production environment,
so we use library preloading to achieve dynamically what the linker does stati-
cally. The LD_PRELOAD environment variable specifies a list of additional shared
libraries to be loaded before all others, selectively overriding functions in other
shared libraries. We use the LD_PRELOAD environment variable to insert a dynamic
symbol wrapper at the front of the search list. The dynamic symbol wrapper
will resolve any undefined reference to foosym to __wrap_foosym and any unde-
fined reference to __real _foosym to foosym, just as the linker does statically
when passed the -wrap command line option. This requires the application to
be dynamically linked against the OpenSHMEM implementation library.

dynamic_osh_app.exe

libTauSH-shmem-wrap.so libTau-shmem-wrap.a

libopenshmem.so

Fig.2. Using a dynamic symbol wrapper to dynamically resolve undefined ref-
erences to shmem_int_put to __wrap_shmem_int_put and undefined references to
__real_shmem_int_put to shmem_int_put.

Figure2 shows how the dynamic symbol wrapper library achieves sym-
bol wrapping at runtime when libTauSH-shmem-wrap.so is prepended to
the LD_PRELOAD environment variable. Because the dynamic symbol wrap-
per is the first library on the search list, the call to shmem_int_put in
the application resolves to the definition of shmem_int_put provided by the
dynamic symbol wrapper. This implementation simply passes control to the
__wrap_shmem_int_put function defined in our wrapper library. When the wrap-
per library invokes __real_shmem_int_put, that symbol resolves dynamically
to the implementation provided in libTauSH-shmem-wrap.so. The dynamic
linker’s programing interface is then used to discover the address of the orig-
inal implementation of shmem_int_put as defined in libopenshmem. so.



Profiling Production OpenSHMEM Applications 223

2.3 Automatic Wrapper Library Generation

In order to construct a tools interface for an arbitrary SHMEM implementation,
we use the Program Database Toolkit (PDT) [3,6] to parse the implementation’s
header files (e.g. shmem.h and shmemx.h) and discover the available API. For
each API function parsed, a wrapper function is automatically generated that
tracks the performance characteristics of that routine, e.g. wall clock time. If the
routine also sends or receives data (e.g. shmem_int_put) then the wrapper also
tracks the message size, target PE, and source PE. The wrapper functions can
also measure hardware performance counters via PAPI [2] to track cache misses,
operation counts, etc. For example, the application profile will show if a call to
shmem_barrier used busy-wait.

3 Conclusions and Future Work

We present a tool that generates direct measurement performance profiles of
OpenSHMEM applications even when PSHMEM is unavailable. The tool oper-
ates on dynamically linked and statically linked application binaries, does not
require debugging symbols, and functions regardless of compiler optimization
level. This work completely removes the need for a PSHMEM interface with no
significant disadvantage to the user, however PSHMEM is still valuable to tools
other than TAU which cannot automatically generate wrapper libraries.

Many OpenSHMEM implementations — most notably OpenSHMEM refer-
ence implementation 1.2 — do not provide the implementation library in both
static and dynamic forms by default. Only the static library, 1ibopenshmen. a,
is built by default. Performance tools that use this approach would benefit from
having both the static and dynamic libraries available by default as it would
fully enable the library wrapping features we have described. Without a dynamic
library, only link-time wrapping is possible.

TAU could also benefit from an interface which exposes synchronization of
the symmetric heap. At present, TAU intercepts the underlying system allocation
and deallocation calls and OpenSHMEM library calls to mark operations on the
symmetric heap. However, it is difficult to observe in a trace when an update
to the symmetric heap becomes visible to other PEs. TAU could make use of a
mechanism for notifying a performance measurement system of symmetric heap
updates when they occur to improve the quality of the performance data.

Acknowledgments. This work was supported by the United States Department of
Defense (DoD) and used resources of the Computational Research and Development
Programs and the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge
National Laboratory.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J.,
Tallent, N.R.: HPCToolkit: tools for performance analysis of optimized parallel pro-
grams. Concurrency Comput. Pract. Exp. 22(6), 685-701 (2010)



224 J.C. Linford et al.

2. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming
interface for performance evaluation on modern processors. Int. J. High Perform.
Comput. Appl. 3(14), 189-204 (2000)

3. Lindlan, K., Cuny, J., Malony, A., Shende, S., Mohr, B., Rivenburgh, R.: A tool
framework for static and dynamic analysis of object oriented software with tem-
plates. In: SC 2000: High Performance Networking and Computing Conference
(2000). http://www.cs.uoregon.edu/research/pdt

4. Linford, J., Simon, T.A., Shende, S., Malony, A.D.: Profiling non-numeric OpenSH-
MEM applications with the TAU performance system. In: Poole, S., Hernandez, O.,
Shamis, P. (eds.) OpenSHMEM 2014. LNCS, vol. 8356, pp. 105-119. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-05215-1_8

5. Malony, A., Mellor-Crummey, J., Shende, S.: Methods and strategies for parallel
performance measurement and analysis: experiences with TAU and HPCToolkit. In:
Bailey, D., Lucas, R., Williams, S. (eds.) Performance Tuning of Scientific Applica-
tions. CRC Press, New York (2010)

6. Quinlan, D.: ROSE: compiler support for object-oriented frameworks. In: Proceed-
ings of Conference on Parallel Compilers (CPC 2000), Aussois, France, January
2000

7. Shende, S., Malony, A.: The TAU parallel performance system. Int. J. High Perform.
Comput. Appl. 20(2), 287-311 (2006)


http://www.cs.uoregon.edu/research/pdt
http://dx.doi.org/10.1007/978-3-319-05215-1_8

	Profiling Production OpenSHMEM Applications
	1 Introduction
	2 Approach
	2.1 Symbol Wrapping
	2.2 Library Preloading
	2.3 Automatic Wrapper Library Generation

	3 Conclusions and Future Work
	References


