
This work-in-progress paper was presented as part of the main technical program at IEEE ETFA'2011

978-1-4577-0018-7/11/$26.00 ©2011 IEEE

Development of Embedded Multicore Systems

Célio Estevan Morón

Federal University of São Carlos

Department of Computer Science, Brazil

celio@dc.ufscar.br

Allen D. Malony

University of Oregon

Department of Computer & Information

Science, USA

malony@cs.uoregon.edu

Abstract

The concepts involved in the programming process

of multicore systems have been quite well known for

decades. The problem is to produce it in a form as easy

as sequential programming. This new trend will

change the way we think about the whole development

process. We will show that it is possible to develop a

multicore embedded system application using existing

tools and the model-driven development process

proposed. To do this, two tools will be used:

VisualRTXC (available at www.quadrosbrasil.com.br)

for generating the multithread

communication/synchronization structures and a

performance tool called TAU (available at

http://www.cs.uoregon.edu/research/tau/home.php) for

the tuning of the final implementation.

1. Introduction

It has become evident for some time that it is not

economically wise to speed up further the processor

clock in order to get an increase in the computer

power. The result of this is an exponential increase in

the power consumption and power dissipation. This

recognition has forced manufacturers to look for

alternatives to increase performance. Among the

alternatives, the one that is proving to be very

successful is to use several cores within a single chip.

By using several cores, it is possible to improve the

performance while keeping the power consumption

unchanged. This trend has reached all areas of

computing, from mainstream computation throughout

embedded systems. All computers being sold

nowadays are multicore and this will change

completely the way we see the field of computing.

Be it in the form of specialized high-performance

systems, or dedicated embedded systems,

multiprocessor machines have been present among us

for decades. The concepts involved in the

programming process of multicore systems are quite

well known in the field of Operating Systems and

Parallel Programming. However, so far there seems to

be no tool available which could be able to make the

programming process of these systems as easy as it is

for sequential programming. In order to be able to

program multicore systems efficiently, we need

knowledge in: (1) Parallel Programming Concepts;

Mechanisms of Communication and Synchronization

of Processes/Threads; (2) Architectural details of the

processor (kind of caches, etc); (3) Tools to evaluate

the performance and tuning of the system.

At a certain degree, those requisites are already used

in the arena of parallel programming and real-time

systems. In the real-time field to fulfill the time

constraints, while in parallel programming in order to

try balancing the load and avoid bottlenecks.

The question that major manufacturers are trying to

answer is the effect of the multicore processor in the

software development process. This question is quite

complex and we will answer it for a subset of

computing; that is, embedded systems.

One typical use of multitasking/multithread is in the

development of embedded multicore systems. The term

embedded system [2] refers to any computer system

built within a device and working as part of it. Most of

the embedded systems have real-time features

associated to them. Embedded systems using

microcontrollers typically rely on a Real-Time

Operating System (RTOS) to provide multitasking

capabilities. RTOSs improve performance and enable

more sophisticated programs on less expensive

processors.

The development of a multitask/multithread system

is inherently complex, since it involves the need of

synchronization among tasks/threads and the analysis

of data dependences. Multitask/multithread systems are

composed by several processes, called tasks/threads,

which depend upon each other to execute in a proper

manner. To create these systems, the developer needs

to split the application modules into a group of

tasks/threads able to run simultaneously. Besides, it is

very important to apply efficient methods for

communication and synchronization to make sure that

the processes interact correctly.

This paper is organized as follows: Section 2

presents the Programming Models for multicore

systems. Section 3 presents our Model-Driven

Development Process. Section 4 is a Case Study that

shows how to apply our method. A conclusion is

presented in Section 5.

2. Programming Models

Basically, there are two techniques to program

multicore systems: multitasking and multithreading.

Multitasking is the ability to run multiple processes at

the same time. The processes can then be assigned to

different cores in order to extract the performance

benefits. For embedded applications, multitasking is a

key technique that can lead to substantial performance

improvements or reductions in cost.

Multithreading is one of the main techniques that

allow users to get the performance benefits of general

multicore processors. However, multithreading

requires that applications are designed in such a way

that the work can be completed by independent

workers, acting in the same process. The different

processes can be placed to run in different cores.

There have been several attempts to offer new

parallel programming models, languages, and libraries

for multicore systems, through which programmers can

provide additional information related to the

parallelism in their programs. Among these attempts

are Map-Reduce [3], Cilk [4], UPC [5], X10 [6] and

STAPL [7].

A considerable amount of research in the area of

visual environments have been carried out aimed at the

development of software able to reduce the difficulties

found in the development of parallel systems. This

effort resulted in user-friendly tools such as TEV [8],

PVMGraph [9], Millipede [10], TRAPPER [11] and

GRADE [12, 13]. Even though there are several

differences between these environments, they all focus

on making the program development easier, providing

graphical representations to map paradigms or libraries

designed for the development of parallel systems.

In despite of the benefits provided by the tools

described above, it is clear that they were not designed

to support the development of embedded multicore

systems. These environments were rather designed for

multitask systems based on workstations or

workstation clusters. In these architectures, the

processing nodes are distinct machines, interconnected

through a high-speed network and running general-

purpose operating systems.

3. Development of Multicore Embedded

Systems

We are proposing a development process that can be

carried out in a cyclic way generating more refined

versions of the application at each iteration. Within

each cycle the tasks are categorized into five

Disciplines: Modelling, Partial Code Generation,

Implementation, Testing/Debugging and Tuning. The

software engineer may use any analysis and design

method in conjunction with the proposed development

process, including object-oriented methods such as

UML [14], or even other approaches.

The Development Process will use two existing

tools, VisualRTXC [15] and TAU [16] to help in the

programming of the system by providing an intuitive

user interface and high-level design objects that are

tightly coupled to the underlying kernel architecture.

This development process allows the developer to

rapidly move between design concepts and generated C

code. In addition, it provides visual abstraction and

design help for each of the typical phases of the

development life cycle.

The representation of applications through graphs is

another advantage offered by a tool like VisualRTXC

[15], since this approach is familiar to most designers

and facilitates the use of the services provided by

commercial kernels. As a result, the productivity of the

development team is highly increased and as a

consequence, better results can be obtained in less time

at lower costs.

The possibility of quick experimentation makes the

proposed development process quite adequate for the

creation of prototypes of the multicore embedded

application during the initial stages of development.

Through the creation of prototypes, problems existing

in the design can be detected and fixed early,

minimizing the consequences of them.

In addition, the division of the graphical

representation into layers allows the application to be

structured as a hierarchy of subsystems. This modular

approach makes our approach ideal for the

development of large multicore embedded applications,

where it is impossible to represent the whole system

within a single diagram.

The combination between the proposed model-

driven development process and the tools VisualRTXC

[15] and TAU [16] also facilitates the integration of

different tools into a single programming environment,

allowing the same graphical notation to be used by the

environment tools throughout the different

development stages.

3.1. VisualRTXC Implementation Tool

A large number of research in the area of visual

environments have been carried out aimed at the

development of software able to reduce the difficulties

found in the development of parallel systems. Using

those tools, it is possible to specify the parallelism of

the program at a high level of abstraction and from

which the source code can be automatically generated.

In the case of embedded systems, tools for their

development have been aimed at maximizing the

performance of the hardware rather than to improve the

user productivity.

VisualRTXC is a graphical tool designed to help the

development, documentation and visualization of

embedded applications. It can be thought of as a layer

above the services offered by commercial kernels,

acting mainly over basic structures used by these

kernels such as tasks, semaphores, resources, timers

and others.

Differently from the traditional approach [17],

where the program implementation is carried out on the

source code, VisualRTXC offers a higher abstraction

layer, where it is possible to represent graphically [1]

most of the embedded application characteristics. As

VisualRTXC allows the user to divide the application

into several layers, it is possible to run each layer code

on a specific core.

3.2. TAU Performance Tool

The TAU (Tuning and Analysis Utilities) parallel

performance system is the product of fourteen years of

development to create a robust, flexible, portable, and

integrated framework and toolset for performance

instrumentation, measurement, analysis, and

visualization of large-scale parallel computer systems

and applications. The success of the TAU project

represents the combined efforts of researchers at the

University of Oregon and colleagues at the Research

Centre Juelich and Los Alamos National Laboratory.

TAU provides an API that allows programmers to

manually annotate the source code of the program.

Source level instrumentation can be placed at any point

in the program and it allows a direct association

between language and program-level semantics and

performance measurements. Using cross-language

bindings, TAU provides its API in C++, C, Fortran,

Java, and Python languages.

4. Case Study - Mandelbrot

Code that generates the Mandelbrot set is a

favourite target for evaluating performance in

embedded systems. Embedded systems generally

require a high amount of image processing to perform

and the Mandelbrot set can be adjusted to demand the

computer power necessary for evaluation. Beside this,

the Mandelbrot set is familiar to most users and the

code required to generate the images is quite simple.

Beginning with the application requirements, the

software engineer models the application with the help

of VisualRTXC. The modelling step is carried out at

two levels. First, the level of the system where the

software engineer represents the executing modules

(tasks, threads and exceptions) and their kernel

primitives, as well as all communications and

synchronizations. The second level refers to the

modelling of the executing modules, and is carried out

after it has been made explicit at the first level of

modelling.

Figure 1 shows the Layer Diagram and Figure 2 the

Code Diagram.

Figure 1 - Layer Diagram

Figure 2 shows the code that is generated

automatically together with the code that was inserted

by hand. The code was executed using the simulator of

the Real-Time Kernel RTXC™ (RTXC is a Trademark

of Quadros Systems Inc.) and VisualRTXC. A Core2

Duo processor was used to run the simulator of the

real-time kernel RTXC with Windows Vista.

Figure 2 - Code Diagram

The code was instrumented with commands of the

performance tool TAU. The output of TAU can be seen

in Figure 3.

Figure 3 – TAU ParaProf

The total execution time was 7.067 seconds.

Analyzing the times provided by the performance tool,

it is possible to see a delay in the manipulation of

queues (fourth and fifth line in Figure 3). The delay in

task PLOTTER makes sense, because it will take the

dots only after these have been calculated. However,

the delay in task MASTER is due to the size of the

queue which is quite short. Increasing the size of the

GINFOQ queue and running the application again,

results on the performance shown in Figure 4.

Figure 4 – TAU ParaProf

We can see that the delay imposed to the GINFOQ

queue now is only 0.002 seconds. The total execution

time of Mandelbrot after the tuning is 5.850 seconds.

5. Conclusion

The exclusive use of general purpose tools, such as

compilers and text editors, is not adequate for

managing the complexity of most multicore embedded

systems. Providing a development process with the

help of a programming environment with facilities

aimed at the development of these systems, represents

a significant step to reduce the drawbacks that make

the implementation one of the biggest bottlenecks

during the design of those kinds of systems.

We have shown that with two existing tools, it is

possible to develop multicore systems in an efficient

manner. Our approach for the process of development

is carried out by a combination of a graphical tool with

a performance tool. Using a graphical tool, it is

possible to better understand the

communication/synchronization of tasks/threads, while

the performance tool allows tuning the system.

The possibility of quick experimentation makes the

proposed development process quite adequate for the

creation of prototypes of the multicore embedded

application during the initial stages of development.

Through the creation of prototypes, problems existing

in the design can be detected and fixed early,

minimizing the consequences of them.

In addition, the division of the graphical

representation into layers allows the application to be

structured as a hierarchy of subsystems. This modular

approach makes our process ideal for the development

of large multicore embedded applications, where it is

possible to represent each part of the system within a

single diagram.

References

[1] Gross, J.L., Yellen, J. 2005. Graph Theory and its

Applications, Chapman & Hall/CRC.

[2] Berger, A.S. 2001. Embedded Systems Design: An

Introduction to Processes, Tools and Techniques, CMP

Books

[3]www.labs.google.com/papers/mapreduceosdi04.pdf.

[4] www.supertech.csail.mit.edu/cilk/.

[5] http://upc.gwu.edu/

[6] www.research.ibm.com/x10

[7] parasol.tamu.edu/groups/rwergergroup/research/stapl/

[8] Ribeiro, J.R.P., Silva, N.C., Moron, C.E. A Visual

Environment for the Development of Parallel Real-

Time Programs. Lecture Notes in Computer Science,

v. 1388, p. 994-1014, 1998.

[9] Justo, G. 1996. PVMGraph: A Graphical Editor for the

Design of PVM Programs, Technical Report,

University of Westminster.

[10] Itzkovitz, A., Schuster, A., Wolfovich, L. 1996.

Millipede: Towards Standard Interface for Virtual

Parallel Machines on Top of Distributed Environment,

Technical Report 9607, Technion liT.

[11] Heinze, F., Schäfers, L., Scheidler, C., Obelöer, W.

1997. Trapper: Eliminating Performance Bottlenecks in

a Parallel Embedded Application, In: IEEE Parallel &

Distributed Technology: Systems & Technology, 5,

Proceeding p. 28-37.

[12] Kacsuk, P., Dózsa, G., Fadgyas, T. 1996. Designing

Parallel Programs by the Graphical Language

GRAPNEL, Special Issue of the Euromicro Journal:

Parallel Systems Engineering.

[13] Kacsuk, P., Dózsa, G., Kovács, J., Lovas, R.,

Podhorszki, N., Balaton, Z., Gombás, G. 2003. P-

GRADE: a Grid Programming Environment, In:

Journal of Grid Computing, 1, Proceedings p. 171-197.

[14] Douglass, B.P. 1998, Real-Time UML: Developing

Efficient Objects for Embedded Systems, Addison

Wesley.

[15] VisualRTXC - http://www.quadrosbrasil.com.br

[16] TAU, University of Oregon, LANL, and RCJ ZAM,

http://www.cs.uoregon.edu/research/tau/home.php

[17] Eclipse 2008. Eclipse - an open development platform,

URL: http://www.eclipse.org.

