
A Type-Based Approach

to Separating Protocol from Application Logic

A Case Study in Hybrid Computer Programming

Geoffrey C. Hulette1, Matthew J. Sottile2, and Allen D. Malony1

1 University of Oregon, Eugene, OR
2 Galois, Inc., Portland, OR

Abstract. Numerous programming models have been introduced to al-
low programmers to utilize new accelerator-based architectures. While
OpenCL and CUDA provide low-level access to accelerator program-
ming, the task cries out for a higher-level abstraction. Of the higher-
level programming models which have emerged, few are intended to
co-exist with mainstream, general-purpose languages while supporting
tunability, composability, and transparency of implementation. In this
paper, we propose extensions to the type systems (implementable as syn-
tactically neutral annotations) of traditional, general-purpose languages
can be made which allow programmers to work at a higher level of ab-
straction with respect to memory, deferring much of the tedium of data
management and movement code to an automatic code generation tool.
Furthermore, our technique, based on formal term rewriting, allows for
user-defined reduction rules to optimize low-level operations and exploit
domain- and/or application-specific knowledge.

1 Introduction

Programming for hybrid architectures is a challenging task, in large part due
to the partitioned memory model they impose on programmers. Unlike a basic
SMP, devices must be set up and torn down, processing synchronized, and data
explicitly allocated on a particular device and moved around within the memory
hierarchy. Programming systems such as CUDA[1] and OpenCL[2] provide an
interface for these operations, but they are quite low-level. In particular, they
do not distinguish between the high-level computational and application logic
of a program, and the protocol logic related to managing heterogeneous devices.
As a result, the different types of program logic invariably become entangled,
leading to excessively complex software that is prohibitively difficult to develop,
maintain, and compose with other software. The problem we have described is
pervasive in programming for hybrid architectures; in this paper, we will focus
on the specific instance of this problem presented by GPU-based accelerators.

We present a high-level programming language called Twig, designed for ex-
pressing protocol logic and separating it from computational and application
logic. Twig also supports automated reasoning about composite programs that

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 40–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Type-Based Approach to Separating Protocol from Application Logic 41

can, in many cases, avoid problems such as redundant memory copying. This
allows Twig programs often to retain the high performance of a lower-level pro-
gramming approach.

Crucially, Twig’s role in the programming toolchain is to generate code in
a mainstream language, such as C. The generated code is easily incorporated
into the main program, which is then compiled as usual. This minimizes the
complexity that Twig adds to the build process, and allows Twig code to interact
easily with existing code and libraries.

Twig achieves these goals by using data types to direct the generation of code
in the target language. In particular, we augment existing data types in the
target language with a notion of location, e.g., an array of floats located on a
GPU, or an integer located in main memory. In the following sections, we first
present related work, and then describe Twig’s code generation strategy and core
semantics. Finally, we present an example demonstrating the use of located types
to generate code for a GPU. In the example, we also show how Twig programs
can be automatically rewritten in order to minimize data movement.

2 Related Work

Twig was inspired in part by Fig[3]. In that project, a similar formal approach
was used to express bindings between different programming languages. In our
experience, multi-language programming has much in common with program-
ming hybrid systems. The overlaps include memory ownership and management,
data marshaling, and managing the flow of program control across the language
or device boundary. Our work builds upon the approach in Fig, and in particu-
lar aims to provide a general-purpose tool not tied to the Moby[4] programming
language.

Numerous systems have been created in recent years that provide an abstrac-
tion above low-level interfaces such as OpenCL or CUDA. These include the PGI
Accelerate model[5], the HMPP programming system[6], and Offload[7]. Inter-
estingly, Offload, like Twig, uses locations encoded in the type system. While
these systems provide an effective high-level abstraction, they offer little room for
tuning the low-level interface to the accelerator. Twig provides a simple method
for user-definable rewriting of programs, which allows architecture-, domain-,
and even application-specific optimizations to be realized.

Furthermore, in large applications it is infeasible to assume that all devel-
opers of the various components will use the same high-level abstraction. This
makes program composition challenging, since it may be unclear how the objects
generated by independent programming systems interacts. Twig adopts a code
generation approach in which a single, low-level target (such as CUDA) is used.
This approach solves the composability problem, since all Twig code maps to a
single “lingua franca” for programming the hybrid system.

Sequoia[8] is a language and runtime system for programming hybrid com-
puters. It allows programmers to explicitly manage the memory hierarchy, while
retaining program portability across architectures. Although Sequoia is based

42 G.C. Hulette, M.J. Sottile, and A.D. Malony

on C++, it is intended as a complete programming environment, not as a way
to extend existing programs with hybrid computation.

Code generation approaches have had notable success in the computational
science field, an exemplar being the Tensor Contraction Engine (TCE)[9]. The
TCE allows computational chemists to write tensor contraction operations in a
high level language, and then generates the corresponding collections of loops
that implement the operations. Unlike Twig, the TCE is quite specialized, being
of use only to programmers working with tensor-based computations.

3 Method Overview

In Twig, we write rules which express some high-level operation, such as kernel
execution or copying data to a device, as a function on types. A Twig program is
evaluated with a type given as input. The output is another type, transformed
by the combined rules of the program. As a side-effect, C code is generated
which performs the transformation on values in C. This basic idea is formalized
in Sec. 5.

Types in Twig are based on the set provided by C, but may be augmented
with additional information. For GPU programming, we augment standard data
types with a location. The location information describes where the data is stored
in memory; in this case, either in the main system memory or on the GPU. For
example, we can represent an array of ints on the CPU with the Twig type
array(int). The same type located on the GPU is gpu(array(int)). Any
standard type may be wrapped inside the gpu type constructor.

Note that location information is only used by Twig during evaluation and
code generation. In particular, it may not be reflected in the types for the gener-
ated code. If we are generating CUDA code, for example, the generated type for
both gpu(array(int)) and array(int) is simply a C pointer to int (i.e., int
*). In this case, the location information is erased during the code generation
phase. For other target languages or APIs that have a notion of location, the
information could be preserved in the target data types.

By augmenting basic data types with location information, we ensure that
rules must be specific to the GPU in order to operate on GPU data. For example,
a rule

[gpu(array(float)) -> gpu(array(int))]

converts an “array of floats” data type to an “array of integers” type if and only
if the type describes data located on the GPU. If the type describes data located
elsewhere, its type must be “converted” (i.e., the data copied to the device) with
a rule such as

[array(float) -> gpu(array(float))]

This simple scheme enables Twig to reason about requirements for data motion.

A Type-Based Approach to Separating Protocol from Application Logic 43

It is important to understand that rules such as those given above describe
transformations on data types, not on the data themselves. It falls to the code
that is generated as a consequence of successful application of these rules to
perform the promised conversion on the actual data. Code generation is described
in Sec. 4.

Our scheme could be extended to support multiple GPU devices, with each
device corresponding to a unique located type. In fact, we think that located
types could be useful in a variety of situations; this is a topic of ongoing work.

4 Code Generation

To generate code, Twig uses an abstract, language-independent system with a
small number of basic operations. The relative simplicity of the model is mo-
tivated by Twig’s semantics, described in Sec. 5. It is helpful in clarifying the
precise operations which Twig supports, without getting bogged down in the
(potentially quite complicated) details of outputting code for a particular lan-
guage.

Twig generates code in units called blocks. A block of code represents any-
thing that performs some operation on a set of inputs in order to produce a
set of outputs. Blocks have zero or more inputs and/or outputs. Blocks can be
combined in two different ways: sequentially, or in parallel. These operations are
described below.

Our current implementation of this model generates C code, although the
model is general enough to generate other languages as well. Figures 1(a) and
1(b) each depict a different basic block that generates C.

4.1 Block Composition

As mentioned above, Twig provides two fundamental operations on blocks. The
first is sequential composition, which we represent formally as addition (+) on
blocks. Sequencing connects two blocks of code by “wiring” the outputs of the
first block into the inputs of the second (see Fig. 1(c)). In C, this is done by creat-
ing uniquely-named temporary variables which are substituted into the original
blocks.

The second operation is parallel composition, where two blocks are combined
so as to execute independently of one another, but to appear as one single block
(see Fig. 1(d)). We represent this operation as multiplication (×).

4.2 Identity Blocks

Twig’s formal semantics require the definition of a set of special identity blocks.
An identity block In has n inputs and n outputs (n > 0). Its function is, as
its name implies, to simply pass each of its inputs through, unchanged, to the
corresponding output. In Twig’s semantics we use In as a kind of “no-op.” We
also use I in place of In when the value of n is implied from the context.

44 G.C. Hulette, M.J. Sottile, and A.D. Malony

$out1 = $in1*2;

in1

out1

A

$out1 = $in1+1;

in1

out1

B

tmp = $in1*2;
$out1 = tmp+1;

in1

out1

A+B

$out1 = $in1*2;
$out2 = $in2+1;

in1

out1

A×B

in2

out2

(a) (b) (c) (d)

Fig. 1. Code generation using blocks. A (a) and B (b) are basic blocks. A+B (c) is the
sequential composition of A and B. A×B (d) is the parallel composition of A and B.

Identity blocks are subject to a few rules, which we describe here informally
and only briefly. First, In are left- and right-identity elements under sequential
composition, i.e., I + x = x + I = x for all blocks x. Second, we can define
parallel composition of identity blocks is defined by summing their size, i.e.,
In × Im = In+m.

5 Twig’s Semantics

Twig is based on a core semantics for term rewriting called System S[10], aug-
mented with code generation and specialized to operate on types instead of
general terms. Twig uses the operators in System S to combine primitive rules
into more complex transformations on types. These transformations are then
applied to a given type, resulting in a new type and potentially generating code
as a side effect. In this section we describe the Twig language.

We present an abbreviated and relatively informal description of Twig’s se-
mantics, focusing on the features used to support GPU programming. The full
semantics will be described in a forthcoming paper.

Twig does not currently provide any built-in constructs for expressing general
recursive expressions, including loops. We are working to address this limitation
in our current work. At the moment, Twig can generate loops contained within a
single generated block and, of course, Twig can also be used to generate a block
of code for inclusion within a loop body.

5.1 Values

Values in Twig can be any valid term representing a type in the target lan-
guage. Terms are tree structured data with labeled internal nodes. Examples of
terms include simple values like int and float, as well as compound types like
ptr(int), which might represent a pointer to an integer in C.

The mapping between terms in Twig and types in the target language is a
configuration option. Furthermore, the mapping need not be injective, i.e. users
are free to have multiple values in Twig map to the same type in C. For example,
you might use distinct Twig values string and ptr(char), but map both to a
pointer to char (char *) in C.

A Type-Based Approach to Separating Protocol from Application Logic 45

Twig also includes support for terms representing groups of values, i.e. tuples,
and operations on groups. We omit these semantics here for lack of space.

5.2 Rules

The fundamental components of a Twig program are called primitive rules. A
primitive rule describes a transformation from one term to another. For example,
in C it is easy to convert an integer value to floating point, and we can write
this rule in Twig as follows:

[int -> float]

The term to the left of the arrow is the input, and the term to the right is the
output. In this example, the rule says that if and only if the input to the rule is
the term int, then the output will be the term float. If the input is not int,
then the output will be the special value ⊥, which can be read as “undefined”
or “failure.”

Primitive rules will typically generate code as a side effect of successful ap-
plication. To associate a block of code with a rule, the programmer puts it
immediately after the rule definition and surrounds it with braces. The brace
symbols are configurable; here we use <| and |>. For example:

[int -> float] <| $out = (float)$in; |>

When the code is generated, Twig will create temporary variables for $in and
$out and ensure that the various bookkeeping details, such as variable decla-
rations, are handled. If there are multiple inputs or outputs, then the relevant
placeholders are enumerated; e.g., $in1, $in2, and so on.

Note that Twig does not check the generated code for correctness – the gener-
ation procedure is essentially syntactic. This approach is similar to the strategy
used tools such as SWIG[11].

5.3 Formal Semantics

In the following formal semantics, let t range over terms, m over code block
expressions, and s over rule expressions, i.e., a primitive rule or a sub-expression
built with operators.

Primitive Rules. A primitive rule s transforms a term t to another term t′

with generated code m:

t
s−→ (t′,m)

if the application of rule s to value t succeeds. If no code is given for the rule,
then m is the identity element, I (see Sec. 4). If the application of s to t fails,
e.g., if t does not match the pattern in s, then

t
s−→ ⊥

Note that a code block is not emitted in this case.

46 G.C. Hulette, M.J. Sottile, and A.D. Malony

Operators. Rules can be combined into more complex expressions using op-
erators. The most useful of these is the sequence operator (note the distinction
from the + operator for code blocks described in Sec. 4). A sequence chains the
application of two rules together, providing the output of the first to the input of
the second, and failing if either rule fails (see Fig. 2). With this operator, simple
rules can be composed into multi-step transformations.

t
s1−→ (t′,m1) t′

s2−→ (t′′,m2)

t
s1;s2−−−→ (t′′,m1 +m2)

t
s1−→ ⊥

t
s1;s2−−−→ ⊥

t
s1−→ (t′,m) t′

s2−→ ⊥
t

s1;s2−−−→ ⊥

Fig. 2. Semantics for sequence operator

Another important operator is left-biased choice. Choice expressions will try
the first rule expression, and if it succeeds then its output is the result (see
Fig. 3) of the expression. If the first rule fails (i.e., results in ⊥), then the second
rule is tried. This operator allows different paths to be taken, and different code
to be generated, depending on the input type.

t
s1−→ (t′,m)

t
s1|s2−−−→ (t′,m)

t
s1−→ ⊥ t

s2−→ (t′,m)

t
s1|s2−−−→ (t′,m)

t
s1−→ ⊥ t

s2−→ ⊥
t

s1|s2−−−→ ⊥

Fig. 3. Semantics for left-biased choice

Fig. 4 gives the formal semantics for some of Twig’s other basic operators.
These include constant operators and operators which discard their results.

t
id−→ (t, I) t

fail−−→ ⊥
t

s−→ (t′, m)

t
?s−→ (t, I)

t
s−→ ⊥

t
?s−→ ⊥

t
s−→ (t′,m)

t
¬s−−→ ⊥

t
s−→ ⊥

t
¬s−−→ (t, I)

Fig. 4. Semantics for basic operators

Twig also provides some special operators for tuples. These are not needed
for this paper, so we omit further discussion.

Named Expressions. Twig allows rules and rule expressions to be assigned to
names. The name can be used in place of the rule itself within expressions. For
example:

intToFloat = [int -> float] { ... }

A Twig program is a list of such name/expression assignments. There is a special
name, main, which designates the top-level expression for the program.

A Type-Based Approach to Separating Protocol from Application Logic 47

5.4 Reductions

Reductions are a mechanism provided within Twig as a way to automatically
simplify expressions. Reductions can be used to exploit application or domain
knowledge about primitive rules, and as such are usually developed alongside a
set of rules.

As an example, consider the following two rules:

intToFloat = [int -> float] {

$out = (float)$in;

}

floatToInt = [float -> int] {

$out = (int)$in;

}

and the expression

intToFloat;floatToInt

We would most likely consider this conversion to be redundant and we should
eliminate it wherever possible. We can tell Twig to do this with the following
reduction rule:

reduce intToFloat;floatToInt => id

This statement instructs Twig to replace any subexpression intToFloat;

floatToInt with the identity rule, id, anywhere it occurs within the program.
Recall that id is the identity rule; it simply passes the value through unchanged.

Twig comes equipped with some standard reductions by default. These re-
ductions rely on the meaning of Twig’s combinators to normalize expressions.
For example, we can replace subexpressions of the form id;X with X, where X

represents any subexpression.
Twig’s reductions are based on the theory of term rewriting; for a formal

discussion see [12]. In this case, Twig’s expressions constitute the terms. There
are some subtleties with reductions, e.g., they must be developed carefully to
avoid circular reductions.

6 Implementation

Our implementation of Twig is written in Haskell. Twig expects as input a .twig
file containing a list of named rule expressions along with a main rule expression,
as described in Sec. 5.3. It also expects an initial value (i.e. a term, representing
a C type), which will be used as the input to the main rule expression. Twig
must also be configured with a mapping from terms to C types. Currently, this
mapping is provided with a simple key/value text file.

Generated code may optionally be wrapped in a C function body, with pa-
rameters corresponding to the inputs, and return value corresponding to the
output. The generated code may be redirected to a separate file and included in
a C program using an #include directive.

48 G.C. Hulette, M.J. Sottile, and A.D. Malony

7 Example

Now we present an example program written in Twig. The code in Fig. 5 demon-
strates how Twig is used, and how reductions can eliminate redundant memory
copies.

copyToGPU=[array(float) -> gpu(array(float))] <|

cudaMalloc((void **)&$out,SIZE);

cudaMemcpy($out,$in,SIZE,cudaMemcpyHostToDevice);

|>

copyFromGPU=[gpu(array(float)) -> array(float)] <|

$out = malloc(SIZE * sizeof(float));

cudaMemcpy($out,$in,SIZE,cudaMemcpyDeviceToHost);

|>

kernel(k)=[gpu(array(float)) -> gpu(array(float))] <|

$k <<<N_BLOCKS,BLOCK_SIZE>>>($in, N);

$out = $in;

|>

runKernel(k)=copyToGPU;kernel(k);copyFromGPU

main=runKernel(<|foo|>);runKernel(<|bar|>)

reduce copyFromGPU;copyToGPU => id

Fig. 5. Twig code example

This example is quite simple, in the interest of brevity and clarity. We omit
setup and teardown logic, and assume that the array size, block size, and other
parameters are simple constants. A real application would probably pass these
values around using more complex rules.

The first three rules definitions are primitives for moving data to and from the
GPU (copyToGPU and copyFromGPU), and for invoking a kernel transformation
on the array in GPU memory (kernel). The rules kernel and runKernel are
parameterized by k, whose value is inserted directly into the generated code.

The runKernel rule will perform a single logical “function” on the GPU. Note
that this rule will be semantically valid in any context where it appears, since
it ensures that the data is first moved onto the GPU, the kernel is executed,
and then the data is copied back. To the programmer, runKernel appears to
perform a function on a local array – a considerably simpler than the abstraction
presented by OpenCL or CUDA.

The main rule is the top level of the program. This example executes two
kernels in sequence with two invocations of runKernel. As noted above, by
design each invocation would normally result in a copy to and from the GPU
– a conservative strategy. Since the data is not modified in between GPU calls,
on its own this expression would generate a redundant copy in between the calls
to foo and bar. To see why, we can trace the execution of the Twig program.
First, variable names are substituted with the expressions they denote, so main

goes from:

A Type-Based Approach to Separating Protocol from Application Logic 49

main = runKernel(foo);runKernel(bar)

to

main = copyToGPU;kernel{foo};copyFromGPU;

copyToGPU;kernel{bar};copyFromGPU

Evaluating this expression on the type array(float) will generate the following
code.

float *tmp01,*tmp02,*tmp03,*tmp04,*tmp05,*tmp06,*tmp07;

cudaMalloc((void **)&tmp02,SIZE);

cudaMemcpy(tmp02,tmp01,SIZE,cudaMemcpyHostToDevice);

foo <<<N_BLOCKS,BLOCK_SIZE>>> (tmp02, N);

tmp03 = tmp02;

tmp04 = malloc(SIZE * sizeof(float));

cudaMemcpy(tmp04,tmp03,SIZE,cudaMemcpyDeviceToHost);

cudaMalloc((void **)tmp05,SIZE);

cudaMemcpy(tmp05,tmp04,SIZE,cudaMemcpyHostToDevice);

bar <<<N_BLOCKS,BLOCK_SIZE>>> (tmp05,N);

tmp06 = tmp05;

tmp07 = malloc(SIZE * sizeof(float));

cudaMemcpy(tmp07,tmp06,SIZE,cudaMemcpyDeviceToHost);

Notice that this code, while correct, contains a redundant copy! The problem
arises because we sequenced the two kernel operations, which introduces the sub-
expression copyFromGPU;copyToGPU. This sub-expression will copy data from
the GPU to main memory, and then immediately back to the device. We solve
this problem using a reduction, as described in Sec. 5.4. The line

reduce copyFromGPU;copyToGPU => id

instructs Twig to search for the expression copyFromGPU;copyToGPU and replace
it with id, the identity transformation. After the reduction step, the expanded
version of main has the extra copies removed:

main = copyToGPU;kernel{foo};id;kernel{bar};copyFromGPU

In fact, Twig’s built-in reduction rules would remove the spurious id as well,
although this has no bearing on the meaning. Now Twig will generate this code:

float *tmp01,*tmp02,*tmp03,*tmp04,*tmp05;

cudaMalloc((void **)&tmp02,SIZE);

cudaMemcpy(tmp02,tmp01,SIZE,cudaMemcpyHostToDevice);

foo <<<N_BLOCKS,BLOCK_SIZE>>> (tmp02, N);

tmp03 = tmp02;

bar <<<N_BLOCKS,BLOCK_SIZE>>> (tmp03,N);

tmp04 = tmp03;

tmp05 = malloc(SIZE * sizeof(float));

cudaMemcpy(tmp05,tmp04,SIZE,cudaMemcpyDeviceToHost);

50 G.C. Hulette, M.J. Sottile, and A.D. Malony

This code does not contain the extraneous copying. Although this example is sim-
ple, it demonstrates the power of reductions. The reduction rule given here would
probably be paired with the copyToGPU and copyFromGPU rules in a module in-
tended for consumption by domain programmers, allowing them to perform GPU
operations without worrying about the design of the rules. Sophisticated users,
however, could add their own rules or even application-specific reductions, en-
abling very powerful and customizable code generation based on domain-specific
logic.

8 Future Work

We are working on expanding the Twig language with a notion of functors.
Functors cleanly capture most cases in which users might need to generate loop
constructs, allocate/free patterns, or other protocols that require a notion of
context.

We are also investigating a number of ways in which Twig might be more
closely integrated with mainstream coding practices. For example, we imagine
that it may be possible for Twig code to live in the background, and express
protocol logic through declarative annotations in the application code.

9 Conclusion

We have introduced the concept of separating the protocol logic inherent to hy-
brid systems from the computational and application logic of a program. We
have demonstrated that a type-based approach can enforce this separation by
making explicit in data types information related to both data location, and the
representation of the data itself. By doing so, we allow the protocol logic of a
program to be expressed via operations exclusively on located types. Many ex-
plicit programming chores become implicit features of the generated code, such
as declaring intermediate values or reducing redundant memory movement. Fi-
nally, by adopting a code generation approach, we show that users of these higher
level abstractions are not prohibited from both tuning the resultant code and
composing independently developed programs that utilize standardized hybrid
programming libraries like OpenCL or CUDA.

Acknowledgements. This work was supported in part by the Department of
Energy Office of Science, Advanced Scientific Computing Research.

References

1. Sanders, J., Kandrot, E.: CUDA By Example: An Introduction To General-Purpose
GPU Programming (July 2010)

2. Khronos OpenCL Working Group: The OpenCL Specification Version 1.0
3. Reppy, J., Song, C.: Application-specific foreign-interface generation. In: GPCE

2006, pp. 49–58 (October 2006)

A Type-Based Approach to Separating Protocol from Application Logic 51

4. Fisher, K., Reppy, J.: The design of a class mechanism for Moby. In: SIGPLAN
1999, pp. 37–49 (May 1999)

5. Wolfe, M.: Implementing the PGI accelerator model. In: GPGPU 2010 (2010)
6. Dolbeau, R., Bihan, S., Bodin, F.: HMPP: A hybrid multi-core parallel program-

ming environment. In: GPGPU 2007 (2007)
7. Cooper, P., Dolinsky, U., Donaldson, A.F., Richards, A., Riley, C., Russell, G.: Of-

fload – Automating Code Migration to Heterogeneous Multicore Systems. In: Patt,
Y.N., Foglia, P., Duesterwald, E., Faraboschi, P., Martorell, X. (eds.) HiPEAC
2010. LNCS, vol. 5952, pp. 337–352. Springer, Heidelberg (2010)

8. Fatahalian, K., Knight, T., Houston, M., Erez, M., Horn, D., Leem, L., Park, H.,
Ren, M., Aiken, A., Dally, W., Hanrahan, P.: Sequoia: Programming the memory
hierarchy. In: SC 2006 (November 2006)

9. Baumgartner, G., et al.: Synthesis of high-performance parallel programs for a class
of ab initio quantum chemistry models. Proceedings of the IEEE (2005)

10. Visser, E., el Abidine Benaissa, Z.: A core language for rewriting. Electronic Notes
in Theoretical Computer Science 15, 422–441 (1998)

11. Beazley, D.M.: Automated scientific software scripting with SWIG. Future Gener-
ation Computer Systems 19, 599–609 (2003)

12. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
New York (1998)

	A Type-Based Approach to Separating Protocol from Application Logic
	Introduction
	Related Work
	Method Overview
	Code Generation
	Block Composition
	Identity Blocks

	Twig's Semantics
	Values
	Rules
	Formal Semantics
	Reductions

	Implementation
	Example
	Future Work
	Conclusion
	References

