
Composing Typemaps in Twig

Geoffrey C. Hulette
University of Oregon

Eugene, OR
ghulette@cs.uoregon.edu

Matthew Sottile
Galois, Inc.

Portland, OR
mjsottile@computer.org

Allen D. Malony
University of Oregon

Eugene, OR
malony@cs.uoregon.edu

ABSTRACT
Twig is a language for writing typemaps, programs which
transform the type of a value while preserving its underlying
meaning. Typemaps are typically used by tools that gener-
ate code, such as multi-language wrapper generators, to au-
tomatically convert types as needed. Twig builds on existing
typemap tools in a few key ways. Twig’s typemaps are com-
posable so that complex transformations may be built from
simpler ones. In addition, Twig incorporates an abstract,
formal model of code generation, allowing it to output code
for different target languages. We describe Twig’s formal
semantics and show how the language allows us to concisely
express typemaps. Then, we demonstrate Twig’s utility by
building an example typemap.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming; D.2.12 [Software Engineering]: Interoperability

General Terms
Languages

Keywords
Type mapping, Foreign function interface

1. INTRODUCTION
Twig is a language for writing typemaps – programs that

transform data from one type to another while preserving,
as much as possible, the underlying meaning of the data.
Typemaps have proven useful in many kinds of program-
ming and especially automated code generation. The best-
known application of typemaps has been for multi-language
programming. In this domain, for example, a programmer
may wish to pass an integer from a Python program across
a foreign function interface to a C function, where a C int

is expected. A typemap can be used to describe the generic
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transformation from Python integers to C integers, enabling
a tool such as SWIG to generate the conversion code au-
tomatically. The C function is exposed to Python via the
generated wrapper.

There are a number of existing languages for typemaps
and tools which generate code from them. Twig builds on
existing typemap tools in several ways.

First, Twig’s typemaps are composable, i.e., complex
typemap transformations may be constructed by combining
simpler ones. Our typemap semantics are based on those
found in Fig[9] and System S[10], but we extend and refine
those systems.

Second, Twig incorporates a robust, formal model of code
generation in its semantics. This allows Twig to generate
code based on typemaps for different target languages.

Finally, Twig includes a facility for reducing typemaps
by exploiting identity relationships among typemap expres-
sions. Some reductions are based on a formal algebra of
typemaps, while others are domain-specific and provided by
the user. In forthcoming work we show how user-supplied
typemap reductions can be used to optimize certain trans-
formations. We will not cover reductions further in this
paper.

In this paper, we will describe Twig’s formal language
structure, and then show how this structure allows us to
concisely express complex typemaps. First, we review exist-
ing approaches to typemaps and related problems. Second,
we will present Twig’s semantics. Third, we walk through
a typemap example in SWIG, and show how the typemaps
can be expressed more concisely in Twig. We conclude with
ideas for future work.

2. RELATED WORK
There are many tools which incorporate a notion of

typemaps. The idea originated in SWIG [3], a tool used for
generating foreign function interfaces from C header files.
Typemaps in Swig are robust, and support user customiza-
tion. However, the semantics of Swig’s typemaps are ad-hoc,
inflexible, and specialized to generate C code.

FIG [9] introduced the notion of application-specific
typemaps, and is similar in spirit to our own work. Un-
like Twig, FIG is specialized to generate code for Moby [7].
Moby is a convenient target language – its declarative struc-
ture and semantics are amenable to generation via System
S [5]. Indeed, FIG takes advantage of this fact by providing
rules specific to Moby. Moby is not nearly as ubiquitous as
C, however, and therefore not a very practical target lan-
guage for many people.
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There are other tools that utilize typemaps, particularly
foreign-function interface generators such as Charon [6] or
NLFFIGen [4]. Twig might complement these systems well,
providing a foundational semantics for their typemaps along
with the ability to generate code for a variety of target lan-
guages.

Our abstract code generation model is based in part on
our own previous work on the Wool [8] language for workflow
programming.

3. TWIG
Twig is based on System S [10], originally designed as a

core language for term rewriting systems [2]. We use the
operators of System S to combine primitive rules into com-
plex expressions. An expression is applied to an input term,
which represents some type in the target language. The ex-
pression may transform the given type, generating code as a
side effect, or the transformation may fail. In this way, dif-
ferent code can be generated depending on the input term.
Twig’s semantics are inspired by Fig [9], but extended to
incorporate our code generation model.

3.1 Values
Values in Twig are tree structured data with labeled in-

ternal nodes, called ground terms. We define ground terms
t:

t := c | f(t1, . . . , tn)

where c is a constant, and f is a constructor that builds
terms from other terms. Constants and constructors can
be any string of characters (except the special constructor
tuple, see below). The meaning of particular terms is left
abstract – they are defined by their use in the program’s
rules, described below. We denote the set of all terms T .

In Twig, terms represent types in a target language. For
example, we use constant terms, such int and float to rep-
resent primitive types in C. Terms with constructors can
represent types with some structure, e.g., the term ptr(int)

represents a C pointer to an integer. More complicated
terms may involve multiple children, and may be nested to
any depth. For example, the term

struct(int, float, struct(ptr(char)))

can represent a structure with three fields: an int, a
float, and a second structure with a single string (pointer
to char) field.

The mapping between terms and types in the target lan-
guage is a configuration option, customizable for a particular
domain. The mapping need not be injective, that is, multi-
ple terms in Twig may represent a single type in the target
language. For example, you might have the distinct terms
string and ptr(char) both map to a char pointer in C.

3.1.1 Tuples
Twig recognizes a special kind of term: tuples. The tuple

elements are represented as the sub-terms of a term with
a special constructor: tuple. Tuples may have any length.
Twig’s syntax equates the absence of any constructor with
the presence of the tuple constructor. For example, the syn-
tax (string,int) is interpreted as the tuple(string,int).
This term represents a tuple of length two, whose first ele-
ment is string and whose second element is int.

The size of a tuple is simply the cardinality of its children.
We will sometimes write tuplen(. . .) to indicate a tuple of
length n, where the length is not otherwise clear from the
context.

One small complication arises because we permit tuples
to be nested to arbitrary depth. For example the term

tuple(tuple(int, float), tuple(double))

is a nested tuple. In our semantics, we occasionally require
the width of a tuple, defined as

width(t) =

{ ∑i=1
n width(ti) if t = tuple(t1, . . . , tn)

1 otherwise

Intuitively, the width of a tuple corresponds to its size
after being “flattened,” where the elements of nested tuples
are pushed up, recursively, to the top level. If we flattened
the tuple in the example above, we would get

tuple(int, float, double)

and its width would be three.

3.2 Expressions
Twig expressions can be either primitive rules (Sec-

tion 3.3) or else built from other expressions using operators
(Section 3.4). An expression s maps terms T to elements of
the set (T ×M)∪{⊥}, i.e., either a pair (t′,m) where t′ ∈ T
and m is a block of generated code in the set M (see Sec-
tion 4), or else the special, distinguished value ⊥. Formally,
s is a function:

s : T → ((T ×M) ∪ {⊥})

Following Fig’s notation, we use ⊥ to denote “failure.”
In particular, ⊥ is used in the semantics for the operators
described in Section 3.4.

As with System S and Fig, Twig allows expressions to be
named. An expression’s name may be used in place of itself
within other expressions. The syntax is

v=e

where v is a valid expression name and e is an expres-
sion, as described below. A Twig program is a list of such
name/expression assignments. There is a special expression
name, main, which designates the top-level expression for
the program.

3.3 Primitive Rules
The simplest Twig expressions are primitive rules, which

describe a single transformation step. Since Twig terms rep-
resent types in a target language, a primitive rule in Twig
describes how to transform an instance of one type into an
instance of another in that language.

The syntax for primitive rules is

[p1− >p2]<<<m>>>

where p1 is the input pattern, p2 the output pattern, and
m is a block of code (code blocks are explained in Section 4).
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Input and output patterns are terms that can also contain
variables.

Informally, the primitive rule above transforms t to t′ with
an associated block of code m if and only if

1. t successfully matches the input pattern p1, binding
terms to variables in an environment ε and

2. t′ is successfully built, by substituting the bound values
in ε into the variables of p2;

and otherwise transforms it to ⊥.
When a term is matched, we mean that Twig attempts

to match it with the input pattern [2]. Twig’s matching
algorithm is similar to, but simpler than, term unification.
Twig does not need full unification since there is no equa-
tional theory and the input term may not contain variables
(i.e., must be a ground term). If the match is successful,
variables are bound to their corresponding terms in an en-
vironment. The environment is then used to construct the
output term by substitution over the output pattern. See
[2, 10] for a formal discussion of the algorithm.

Consider the following example of a primitive rule. In C it
is easy to convert an integer value to floating point. Twig’s
syntax for writing this rule is as follows:

[int -> float] <<< $out = (float)$in; >>>

In this example, if the input term matches the input pat-
tern int, then the output will be the term float along with
the code block. If the input term does not match int then
the output will be ⊥.

As mentioned, input and output patterns can have vari-
ables in place of terms or sub-terms. For example the rule

[ptr(X) -> X] <<< $out = &$in; >>>

describes a transformation of any C pointer type to its
referent. The variable X is bound to the corresponding value
of the matched input on the right, and that value is substi-
tuted for the variable where it appears on the left. Variables
may stand in place of a single term only, not constructors;
e.g., patterns such as [X(int) -> X] are not allowed.

3.4 Operators
Expressions can be combined using Twig’s operators. In

the following semantics, let t range over terms, m range over
blocks, and s range over expressions, i.e., either a primitive
rule, or else another expression built with operators.

The sequence operator, written as an infix semi-colon (;),
chains the application of two rules together by sending the
output of the first to the input of the second. The combined
expression fails if either sub- expression fails (see Figure 1).
With this operator, simple rules can be composed into multi-
step transformations. Upon success, the result blocks are
combined sequentially using the block sequence operation
(see Section 4.1.1).
Left-biased choice, written as a vertical bar (|), will at-

tempt to apply the first rule expression to the input, and if
it succeeds then its output is the result (see Figure 2). If
it fails, it attempts to apply the second rule instead. This
operator allows different code to be generated depending on
the input type.

Figure 3 and Figure 4 give the semantics for Twig’s other
basic operators. Identity (T) will always succeed, returning

t
s1−→ (t′,m1) t′

s2−→ (t′′,m2)

t
s1;s2−−−→ (t′′,m1 +m2)

t
s1−→ ⊥

t
s1;s2−−−→ ⊥

t
s1−→ (t′,m) t′

s2−→ ⊥

t
s1;s2−−−→ ⊥

Figure 1: Semantics for sequence operator

t
s1−→ (t′,m1)

t
s1|s2−−−→ (t′,m1)

t
s1−→ ⊥ t

s2−→ (t′,m2)

t
s1|s2−−−→ (t′,m2)

t
s1−→ ⊥ t

s2−→ ⊥

t
s1|s2−−−→ ⊥

Figure 2: Semantics for left-biased choice

its input and an identity block, failure (F) will always return
⊥. Test (?) takes a single expression as a parameter and
succeeds only if its argument succeeds, returning the original
term. Negation (¬) also takes a single expression argument,
and succeeds only if its argument fails, returning the original
term.

t
T−→ (t, I) t

F−→ ⊥

Figure 3: Semantics for Success (T) and Failure (F)

Twig also provides some operators especially for tuples.
For each of the following tuple operators there are a few
additional rules that we have elided. Informally, these rules
state that any tuple operator will fail (i.e., return ⊥) if the
input is not a tuple, or if the expression references an element
that is outside the tuple bounds.

The congruence operator applies a tuple of expressions to
the elements of a tuple term, pairwise, and returns a tuple of
results. It fails in case any of the individual rule applications
fail. Upon success, the result block is the parallel composi-
tion (see Section 4.1.2) of the individual result blocks. The
semantics for congruence are shown in Figure 5.

The family of unary branch operators apply a single ex-
pression to one, all, or some of a tuple’s elements, depending
on the variant.

The branch operator #one attempts to apply its parameter
s to a single element: the first element, from left to right, for
which s does not fail. The other elements of the tuple are
unchanged. The expression fails if s fails for each element.
The formal semantics for #one are given in Figure 6.

The branch operator #all applies its parameter s to each
element of a tuple. The expression fails if s fails for any ele-
ment. The formal semantics for #all are given in Figure 7.

The branch operator #some applies its parameter s to at
least one element of a tuple, and fails in case s fails for all
the elements. It will apply s to any element for which it
succeeds, and leave the remaining elements unchanged.
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t
s−→ (t′,m)

t
?s−→ (t, I)

t
s−→ ⊥

t
?s−→ ⊥

t
s−→ (t′,m)

t
¬s−−→ ⊥

t
s−→ ⊥

t
¬s−−→ (t, I)

Figure 4: Semantics for Test (?) and Negation (¬)

The projection operator extracts a single indexed element
from a tuple (see Figure 9). Similarly, the path operator
applies a rule to a single indexed tuple element, leaving the
other elements unchanged (see Figure 10).

Finally, the permutation operator allows arbitrary permu-
tation of a tuple’s elements, including duplicating or drop-
ping elements. The semantics are given in Figure 11. We
treat permute1, where the permutation expects a single in-
put, specially – in this case, we treat non- tuple input terms
as tuples of length one. This allows the permutation opera-
tor to be used to replicate single terms. The semantics for
this special case are given in Figure 12.

As a convenience, we also provide a “fan out” operator
which is defined as a permute1 followed by a congruence.
The definition is given in Figure 13.

The fixed-point operator, #fix, allows Twig to express
rules for handling recursively defined data types like lists and
trees. An application of x within the expression #fixx(s),
that is, x appearing within s, is essentially a recursive call
to the expression #fixx(s).

4. CODE GENERATION
Twig is able to generate code in different target languages

by relying on an abstract, language-independent model with
a small number of basic operations. To implement a new
target language, it suffices to implement these operations
only. In particular, there is no need to modify the core Twig
interpreter, which assumes only the language-independent
model.

We use the code generation model in describing Twig’s
semantics (see Section 3). It is also helpful in clarifying
the precise operations which Twig supports, without getting
bogged down in the rather complicated details of rendering
code for a particular target language.

In Section 4.1, we describe the code generation model ab-
stractly, and apart from any specific target language. Then,
in Section 4.2, we show how the model can be specialized to
generate C code.

4.1 Abstract Code Generation
We call a single unit of generated code a block. A block is

an abstract representation of some code in a target language,
which accepts inputs and produces outputs. We denote the
set of all blocks M , and provide functions

in : M → N
out : M → N

which map a block to the number of its inputs and out-
puts, respectively.

4.1.1 Sequential Composition
The first binary operation on blocks is sequential compo-

sition, which we represent as “addition” on the elements of
M , i.e.

+ : M ×M →M

Sequencing represents connecting two blocks “vertically,”
feeding the outputs of the first block to the inputs of the
second. The block x + y ∈ M is defined if and only if
out(x) = in(y). The outputs of the first element must be
equal in number to the inputs of the second element be-
cause they are “fused” pairwise in the sequence operation.
We define

in(x+ y) = in(x)

since the inputs of the first block will become the inputs
of the combined block. Similarly,

out(x+ y) = out(y)

for the outputs.

4.1.2 Parallel Composition
The second block operator is parallel composition. We

represent this operation as “multiplication” on the elements
of M , i.e.,

× : M ×M →M

Parallel composition attaches two blocks “horizontally,”
i.e., each block executes independently of the other, but they
appear as a single block with combined inputs and outputs.
For the block x× y ∈M , we define

in(x× y) = in(x) + in(y)

and

out(x× y) = out(x) + out(y)

4.1.3 Permutation and Identity Blocks
We define a set of special blocks in M called permutation

blocks. These blocks represent the primitive operation of
“wiring” m inputs to n outputs in arbitrary order, without
altering the values. Permutations may also “drop” an ele-
ment by not wiring its input to any output, and “duplicate”
elements by wiring an input to more than one output. The
exact meaning of dropping or duplicating values depends on
the implementation.

We call the block permuting m inputs to n outputs
Πm(i1, . . . , in), where i1, . . . , in ∈ {i | 1 ≤ i ≤ m}.

Identity blocks are a subset of the permutation blocks.
The simplest of these is Π1(1), which acts as an identity
transformation with one input and one output. That is, the
block Π1(1) takes its single input and passes it unchanged
to its single output. We refer to this block as I1. In ad-
dition, for any natural number n, there exists an identity
transformation taking n inputs to n outputs without re-
ordering. We refer to these blocks as In, where 1 ≤ n, and
In = Πn(1, 2, . . . , n). By definition, in(In) = out(In) = n.
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t1
s1−→ (t′1,m1) . . . tn

sn−→ (t′n,mn)

tuple(t1, . . . , tn)
(s1,...,sn)−−−−−−→ (tuple(t′1, . . . , t

′
n),m1 × . . .×mn)

ti
si−→ ⊥

tuple(. . . , ti, . . .)
(...,si,...)−−−−−−→ ⊥

Figure 5: Semantics for congruence operator

ti
s−→ (t′i,mi)

tuple(. . . , ti, . . .)
#one(s)−−−−−→ (tuple(. . . , t′i, . . .), (I × . . .×mi × . . .× I))

t1
s−→ ⊥ . . . tn

s−→ ⊥

tuple(t1, . . . , tn)
#one(s)−−−−−→ ⊥

Figure 6: Semantics for branch #one operator

When n is implied from the context, we will sometimes
write I for In. For example, when we write x+ I, we mean
x+ In where it is understood that n = out(x).

Since the blocks I represent identity operations, we assign
them a special meaning in the semantics. Namely, I acts as
both a left- and right-identity under the sequence operator.
So, for all x ∈M , x+ I = x and I + x = x. We usually use
I as a “no-op” block.

It is worth noting one further identity, namely that In is
equivalent to the n-way parallel composition of I1, that is

In = I1 × . . .× I1︸ ︷︷ ︸
n

Another important special block is the fanout block,
which takes a single input and “copies” it to n outputs. We
denote this block Fn. This turns out to be another special
case of the permutation block, and we can define

Fn = Π1(1, . . . , n)

to be the fanout block with n outputs.
Note that any object that provides and conforms to the

operations above can be “generated” by Twig. Because
the system is so general, this could include trivial or non-
sensical implementations. The code generation implementa-
tion should conform to the intuitive interpretation of blocks
and their composition.

4.2 Generating C
Now we show how we have adapted the model described

above to generate C code. Our implementation must pro-
vide a way to construct a primitive block from an arbitrary
chunk of C code since the abstract model, by design, does
not provide this facility. In our implementation for C, a
primitive block is a string of C code with some specially-
named variables indicating inputs and outputs. In fact, our
implementation makes no attempt to parse the C language
per se – it treats code as plain text with the aforementioned
special variables.

To use the block’s inputs, the code references escaped vari-
ables named $in1, $in2, and so on. Similarly, the variables
$out1, $out2, and so on represent the outputs. We allow $in

as a synonym for $in1, and $out for $out1, for the common
case where a block has just one input and/or output. When
the code is rendered, these variables will be replaced with
unique, generated variable names. For example, the code

$out = foo($in);

represents a primitive C block with one input and one out-
put. Figure 15 shows a visual representation of two primitive
blocks of C code.

To implement block sequencing in C, Twig generates vari-
able names such that the output(s) of the first block in the
sequence are the same as the inputs(s) of the second, and
the text is concatenated. See Figure 16 for an example.

Parallel composition for C is implemented similarly; Twig
generates uniquely-named variables for the inputs and out-
puts of the two blocks, and then concatenates the text. An
example is shown in Figure 17.

Implementing the permutation and identity blocks is a
matter of performing the appropriate bookkeeping and re-
naming on the variable names. Note that this implementa-
tion does not perform resource management, such as allocat-
ing or free memory, as part of the permutation operations.
The generated code will follow C’s semantics for passing data
by value.

5. IMPLEMENTATION
We wrote our implementation of Twig, called twigc, in

Haskell. The twigc tool expects two input files. The first
file must contain a list of named expressions, including a
main expression, as described in Section 3.2. The second
file contains a ground term (representing a C type), used as
input to the main expression.

Our version of twigc must be configured with a mapping
from terms to C types. The user provides this mapping with
a simple key/value text file.

If the input value can be successfully rewritten using the
main rule expression provided, then Twig will output the
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t1
s−→ (t′1,m1) · · · tn

s−→ (t′n,mn)

tuple(. . . , ti, . . .)
#all(s)−−−−−→ (tuple(. . . , t′i, . . .), (m1 × . . .×mn))

ti
s−→ ⊥

tuple(. . . , ti, . . .)
#all(s)−−−−−→ ⊥

Figure 7: Semantics for branch #all operator

P (t) =

{
t′ if t

s−→ (t′,m)

t if t
s−→ ⊥

Q(t) =

{
m if t

s−→ (t′,m)

I if t
s−→ ⊥

∃i : i ∈ {1..n} ∧ ti
s−→ (t′i,m)

tuple(t1, . . . , tn)
#some(s)−−−−−→ (tuple(P (t1), . . . , P (tn)), Q(t1)× . . .×Q(tn))

t1
s−→ ⊥ · · · tn

s−→ ⊥

tuple(t1, . . . , tn)
#some(s)−−−−−→ ⊥

Figure 8: Semantics for branch #some operator

tuple(. . . , ti, . . .)
#i−−→ (ti,Π(i))

Figure 9: Semantics for projection operator

rewritten term along with the generated block of C code.
This code block may be redirected to a separate file and
included in a C program using the #include directive.

5.1 Code Generation
Our implementation supports the generation of C code,

and adds some extra features to support that language.
These features includes mundane details such as managing
type declarations, support for parameterized blocks, and for
“closing” blocks, which are generated as variables go out of
scope and are intended to be used to free resources. We are
working on incorporating these features into the abstract
model.

6. EVALUATION
Twig has several advantages over typemap facilities such

as those found in SWIG.

1. Sequencing: simple typemaps can be composed in se-
quence to produce more complex transformations.

2. Choice: With the choice combinator, a single typemap
expression may be used to generate multiple variations
of a transformation, depending on the input type.

3. Tuples: Twig allows sets of types to be mapped to-
gether using tuples. This is a common problem – con-
sider function argument lists, or a pointer paired with
a length to form an array.

4. Type variables: Twig allows for rules that abstract
over types, e.g., [ptr(A) -> A].

5. Target language flexibility: Twig can be extended to
generate target languages other than C.

We now walk through the construction of a simple
typemap in Twig. In this example, our goal is to convert
a set of C structures representing polar coordinates to a
suitable representation in Python. The C structure comes
in both a float and double variety. The Python code ex-
pects a Cartesian coordinate system, not polar, so we must
perform this conversion as well. The C structures we will
convert are defined in a header file, like so:

struct PolarD {

double r;

double theta;

};

struct PolarF {

float r;

float theta;

};

The first step is to unpack each polar structure into a
Twig tuple. We define two rules to do exactly this:

unpackd = [polard -> (double,double)] <<<

$out1 = $in.r;

$out2 = $in.theta;

>>>

unpackf = [polarf -> (float,float)] <<<

$out1 = $in.r;

$out2 = $in.theta;

>>>
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ti
s−→ (t′i,mi)

tuple(. . . , ti, . . .)
#i(s)−−−→ (tuple(. . . , t′i, . . .), I × . . .×mi × . . .× I)

ti
s−→ ⊥

tuple(. . . , ti, . . .)
#i(s)−−−→ ⊥

Figure 10: Semantics for path operator

tuple(t1, . . . , tn)
#permuten(x1,...,xm)
−−−−−−−−−−−−−→ (tuple(tx1 , . . . , txm),Πw(yx1 , . . . , yxm))

w =

n∑
j=1

width(ti)

bi =

{
0 if i = 1∑i−1

j=1 width(ti) if i > 1

yi = bi + 1, . . . , bi + width(ti)

Figure 11: Semantics for permutation operator

t
#permute1(1,

n...,1)
−−−−−−−−−−−→ (tuple(t, n. . ., t),Π1(y, n. . ., y))

y = 1, . . . ,width(t)

Figure 12: Semantics for #permute1 operator

#fan(n) ≡ #permute1(1, . . . , 1︸ ︷︷ ︸
n

)

Figure 13: Semantics for #fan operator

Here, a polard is a term representing the PolarD struct
defined above. Next, we define a rule for casting floats
to doubles, and use the congruence operator to lift it to a
conversion on tuples. This cast is sequenced after unpackf

so that that rule will produce doubles instead of floats.
We combine that conversion with unpackd using the choice
operator, and name the new rule unpack. This new rule will
accept either a polarf or a polard, and produce a 2-tuple
of doubles.

f2d = [float -> double] <<<

$out = (double)$in;

>>>

unpack = (unpackf;{f2d,f2d}) | unpackd

Next, we define the conversion from polar to Cartesian
coordinates.

polarToX = [(double,double) -> double] <<<

$out = $in1 * cos($in2);

>>>

t
s[x7→#fixx(s)]−−−−−−−−−→ (t′,m)

t
#fixx(s)−−−−−−→ (t′,m)

t
s[x7→#fixx(s)]−−−−−−−−−→ ⊥

t
#fixx(s)−−−−−−→ ⊥

Figure 14: Semantics for #fix operator

$out1 = $in1*2;

in1

out1

$out1 = $in1+1;

in1

out1

A B

Figure 15: Two basic blocks, A and B. Inputs are
on top, outputs on the bottom.

polarToY = [(double,double) -> double] <<<

$out = $in1 * sin($in2);

>>>

These two rules take a pair of doubles, which represent
a polar radius and angle, and convert the pair to the x (re-
spectively, y) component of the equivalent Cartesian repre-
sentation. But, we need both the x and y components, and
we only have one polar pair. We use the fanout operator to
duplicate the pair, and then sequence it with a congruence
of the x and y rules, like so:

polarToCart = #fan(2);{polarToX,polarToY}
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tmp = $in1*2;
$out1 = tmp+1;

in1

out1

A+B

Figure 16: Two blocks from Figure 15 composed
sequentially. The variable “tmp” is created, and re-
naming performed, so that the output of block A
would flow to the input of block B.

$out1 = $in1*2;
$out2 = $in2+1;

in1

out1

A×B in2

out2

Figure 17: Two blocks from Figure 15 composed
in parallel. Renaming is performed such that the
composed block has two inputs and two outputs.

The rule polarToCart will convert a polar coordinate pair
of doubles to a Cartesian pair of doubles.

Next, we define rules to convert from C types to Python.
We use Python’s C interface API [1], which allows us to
work with Python values in C.

d2pyf = [double -> pyfloat] <<<

$out = PyFloat_FromDouble($in);

>>>

mkpytuple = [(pyfloat,pyfloat) ->

pytuple(pyfloat,pyfloat)]

<<<

$out = PyTuple_Pack(2,$in1,$in2);

>>>

pack = {d2pyf,d2pyf};mkpytuple

The first rule, d2py converts a C double to Python’s
floating- point type, which we call pyfloat. 1 The next
rule, mkpytuple will combine a pair of pyfloats into a single
Python tuple object (not a Twig tuple). The pack rule com-
bines these in the usual way to convert a pair of C doubles

to a Python tuple.
Finally, by placing these parts in sequence, we achieve

our goal: a single rule which will convert either a PolarD or

1In the API, a pyfloat is actually mapped to a more general
PyObject *; one interesting benefit of Twig is that it can
potentially track more detailed type information than would
be available from API itself.

PolarF struct in C into a Cartesian coordinate in Python.
We call the final rule convert, and define it like so:

convert = unpack;polarToCart;pack

We can invoke Twig with the convert typemap as its
program. To generate the C code to perform the transfor-
mation, we apply convert to one of the terms polarf or
polard. If we choose polarf, Twig will generate the code
to convert a PolarF struct, like so:

PyObject *convert(struct PolarF gen1) {

float gen2,gen3;

double gen4,gen5,gen6,gen7;

PyObject *gen8,*gen9,*gen10;

gen2 = gen1.r;

gen3 = gen1.theta;

gen4 = (double)gen2;

gen5 = (double)gen3;

gen6 = gen4 * cos(gen5);

gen7 = gen4 * sin(gen5);

gen8 = PyFloat_FromDouble(gen6);

gen9 = PyFloat_FromDouble(gen7);

gen10 = PyTuple_Pack(2,gen8,gen9);

return gen10;

}

6.1 Twig versus SWIG
It is interesting to contrast Twig’s implementation of this

typemap with the equivalent typemaps in SWIG. In that
system, programmers are required to construct two separate
typemaps by hand, like so:

%typemap(out) struct PolarD %{

double r = $1.r;

double theta = $1.theta;

double x = r * cos(theta);

double y = r * sin(theta);

PyObject *px = PyFloat_FromDouble(x);

PyObject *py = PyFloat_FromDouble(y);

$result = PyTuple_Pack(2,px,py);

%}

%typemap(out) struct PolarF %{

float fr = $1.r;

float ftheta = $1.theta;

double r = (double)fr;

double theta = (double)ftheta;

double x = r * cos(theta);

double y = r * sin(theta);

PyObject *px = PyFloat_FromDouble(x);

PyObject *py = PyFloat_FromDouble(y);

$result = PyTuple_Pack(2,px,py);

}

%}

Even in this simple example, there is a considerable
amount of duplicated code across the two typemaps. This
duplication is unnecessary in Twig since simple typemaps,
such as those to convert polar to Cartesian coordinates or
convert C doubles to Python, can be recombined and reused.
In addition, the choice operator helps to reduce the overall
number of typemaps needed, since one typemap can be used
to generate different code depending on the input.
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6.2 Twig versus Fig
Twig also improves on Fig in a number of ways. Fig is inti-

mately tied to its target language, Moby, whereas Twig can
be extended to generate a variety of mainstream languages.
Notably, Twig is able to generate C, which is currently the
de facto language for interoperability. In addition, Twig
supports type variables, allowing Twig programs to express
polymorphic primitive rules.

7. FUTURE WORK
Twig is limited in its handling of container types, such as

arrays, lists, or trees. In order to properly handle this kind of
data, Twig needs to be extended with higher-order primitive
rules, i.e., rules which take expressions as parameters. We
are currently working on a syntax and formal semantics for
rules such as:

[array(X) -> array(Y) | X -> Y] <<< ... >>>

This should be read as a rule which transforms an array
of any type X to an array of another type Y , given a rule
to transform a single element of type X to type Y .

Other improvements to Twig may include extending
twigc to support other target languages, such as Java or
Python. This would take advantage of our abstract code
generation model.

8. CONCLUSION
We have presented Twig, a language for typemaps that

may serve as a more flexible alternative to the languages
found in tools such as SWIG. We have demonstrated how
Twig typemaps are created and composed, and shown how
our language incorporates useful features such as tuples,
polymorphic rules with variables, and runtime choice based
on the input type.

Twig includes a flexible model for code generation. While
our current implementation is focused on generating C, other
languages, such as Java or Python, could be generated in-
stead.
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