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Abstract—Advances in human brain neuroimaging to achieve
high-temporal and high-spatial resolution will depend on com-
putational approaches to localize EEG signals to their sources in
the cortex. The source localization inverse problem is inherently
ill-posed and depends critically on the modeling of human
head electromagnetics. In this paper we present a systematic
methodology to analyze the main factors and parameters that
affect the accuracy of the EEG source-mapping solutions. We
argue that these factors are not independent and their effect
must be evaluated in a unified way. To do so requires significant
computational capabilities to explore the landscape of the prob-
lem, to quantify uncertainty effects, and to evaluate alternative
algorithms. We demonstrate that bringing HPC to this domain
will enable such investigation and will allow new avenues for neu-
roinformatics research. Two algorithms to the electromagnetics
forward problem (the heart of the source localization inverse),
incorporating tissue inhomogeneity and impedance anisotropy,
are presented and their parallel implementations described. The
head model forward solvers are evaluated and their performance
analyzed.

I. INTRODUCTION

Advances in human brain science have been closely linked
with new developments in neuroimaging technology. Indeed,
the integration of psychological behavior with neural evidence
in cognitive neuroscience research has led to fundamental
insights of how the brain functions and manifests our physical
and mental reality. However, in any empirical science, it is
the resolution and precision of measurement instruments that
inexorably define the leading edge of scientific discovery.
Human neuroscience is no exception. Brain activity takes place
at millisecond temporal and millimeter spatial scales through
the reentrant, bidirectional interactions of functional neural
networks distributed throughout the cortex and interconnected
by a complex network of white matter fibers. Unfortunately,
current non-invasive neuroimaging instruments are unable to
observe dynamic brain operation at these milliscales. Hemo-
dynamic measures (functional magnetic resonance imaging
(fMRI), positron emission tomography (PET)) have good 3D
spatial resolution (1mm3), but poor temporal resolution (≥ 0.5
seconds). Electromagnetic measures (electroencephalography
(EEG), magnetoencephalography (MEG)) provide high tem-
poral resolution in the order of neural activities (≤ 1 msec),
but their spatial resolution lacks localization accuracy. The
reason behind the limited spatial accuracy is the ambiguous
nature of the electrostatic inverse problem. A given EEG
signal can be explained by many sources of cortex source
activity. In principle, it is impossible to solve this problem

relying only on theoretical formulations alone and empirical
methods are inherently underdetermined [1]. It is only by
incorporating a priori knowledge and assumptions about the
sources in the form of constraints that the problem can
begin to be addressed. However, different assumptions and
constraints give rise to different source analysis algorithms.
All these algorithms are based on a head electromagnetics
forward calculation that maps the cortex dipole sources in the
brain to the scalp potential. Certainly, there are several factors
related to modeling the human head as a volume conductor
that introduce uncertainties in the forward solution [2]–[4].
Further, several factors related to EEG spatial sampling and
noise level introduce other sources of error [5]. All of these
factors will affect the inverse algorithms and they are likely
to be highly correlated. Quantifying and ranking their effect
on the source localization in a systematic way will provide
insight and directions to where the research and effort should
be focused.

The challenges of model space exploration, sensitivity
analysis, and uncertainty quantification are found across sci-
ence and engineering domains. The ability to formulate the
algorithms and methodology for high-performance computing
(HPC) involves the obvious tension between model complexity
and computational resource availability that so often defines
what is possible to achieve in practice. This paper describes
our work to apply high-performance parallel computing to the
domain of human brain neuroimaging. Section II describes
the problem of source localization, the general methods in-
volved, and the factors that affect source inverse solutions.
Section III discusses general electromagnetic modeling of the
human head. Section IV presents two algorithms we have
developed, along with their verification, parallel performance,
and reliability. Results and conclusions are given in Sections V
and VI, respectively.

II. SOURCE LOCALIZATION

Modern dense-array EEG (dEEG) technology, such as the
Geodesic Sensor Net [6] from Electrical Geodesics, Inc. (EGI)
shown in Figure 1, can measure micro-volt potentials on the
human scalp at up to 256 sensors every 1 msec or less.

EEG signals are the consequence of postsynaptic activities
of neuronal cells. As seen in Figure 1(right), cortical neurons
are arranged parallel to each other and point perpendicular
to the cortical surface. It is this structural arrangement that
allows currents from groups of thousands of neurons to accu-
mulate and generate an equivalent current dipole. Therefore,
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Fig. 1. EGI 256-channel Geodesic Sensor Net for dEEG recording (left). Topographical potential maps showing epileptic spike wave progression between
110-310 msec with 10 msec samples (center). Cortical neuron arrangement (right).

scalp potentials measured by dEEG can be modeled by the
combined electrical potentials (called lead fields) produced
by up to 10,000 or more cortex patches. Unfortunately, the
scalp potentials are a linear superposition of all the distributed
source lead fields and the individual EEG contributors (i.e.,
the distribute source dipoles), and must be disentangled to
determine the dynamics of each brain region by solving source
localization inverse problem. Two general approaches are used
to solve the problem: the parametric approach and the imaging
approach [7]–[10].

A. The Parametric Approach

The parametric approach is based on the assumption that
the scalp EEG signal ΦEEG is generated by one or few
current dipoles (less than 10) whose locations rqi and moments
dqi (six parameters for each dipole) are unknown. These
parameters are estimated by minimizing the residual energy
E(rqi,dqi),

E(rqi,dqi) = ||ΦEEG(r)−Φmodel(r, rqi,dqi)||2,

using a nonlinear search algorithm [11]–e.g., simplex or sim-
ulated annealing. Here, Φmodel(r, rqi,dqi) is the lead field at
sensor location r corresponding to a current dipole dqi located
at rqi. The search starts with a specified set of parameters and
proceeds iteratively. This involves solving the forward problem
at each step. Various strategies can be applied based on the
number of dipoles, which parameters are fixed, and whether
to consider the time-series of the EEG data [12]–[16].

The major concern about this approach is the required
specification of the number of dipoles. Underestimating them
causes biased results by the missing dipoles. Overestimating
them causes the dipoles to fit any data and incur performance
penalties due to increasing the dimensionality. Except in few
cases (e.g. epileptic event), the accuracy of predicting the
number of dipoles is questionable.

B. The Imaging Approach

To address the issue of identifying the optimal number of
dipoles in the parametric approach, distributed source models
are developed. In this approach, the primary current sources
are assumed to be current dipoles distributed inside the brain.
Since the position of each dipole is a potential location of

a current source associated with a brain activity, the number
of dipoles must be large enough to cover the cortex with
an optimal resolution. The relationship between the current
dipoles J and the potentials Φ is defined by the linear forward
equation,

Φ = KJ + ε, (1)

where Φ ∈ R(N×1) is a column vector gathering the potentials
at N scalp electrodes, J ∈ RM×3 is a M -vector of the
magnitudes of the cortical dipoles, ε is a perturbation noise
vector, and K ∈ RN×M is the lead field matrix (LFM). Every
row in K is a lead field corresponding to a current dipole
obtained by solving the forward problem. Given N -vector
scalp EEG measurements ΦEEG at N electrodes and the LFM
K, the goal of the inverse problem is to invert Equation 1 to
find a linear inverse operator W such that:

Ĵ = WΦEEG, (2)

where Ĵ is an estimate of the current densities and W is the
inverse linear operator. Since J, and Φ are linearly related,
the inverse problem is reduced to finding a solution of a linear
inverse problem for unknown magnitudes (vector J). This is
a well-known formulation for numerous image reconstruction
problems. The problem is 1) under-determined which results
in the existence of infinitely many solutions, and 2) ill-
conditioned which results in unstable solutions in the presence
of noise. To overcome the first issue, methods impose a priori
constraints on the solution to select the most likely one.
To overcome the second issue, methods take regularization
schemes into account. Mathematically, the distributed method
obtains the inverse solution by minimizing the data fitting term
with an added regularization term in least-square sense,

Fα(J) = ||ΦEEG −KJ||2 + α||ΓJ||2

where α||ΓJ||2 is the constraints and regularization term, and
||ΦEEG −KJ||2 is the data fitting term. The difference be-
tween different distributed inverse methods is in the choice and
application of the constraints and the regularization scheme.
From this formulation solving the inverse problem is achieved
in four steps:

1) Defining the solution space by deciding a priori the
number and locations of the distributed dipoles inside the
brain.
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2) Specifying the number and locations of electrodes where
EEG signals are sampled.

3) Computing the lead field of the distributed dipoles at the
electrode locations; mapping the solution space to the
scalp space.

4) Applying an inverse algorithm to find estimates of the
dipole moments that best describe a given EEG signal.

Based on these steps, we can identify and classify the factors
that influence the source localization solution and require
further research and exploration. The aim is to find optimal
choices and direct the research to improve the most influential
factors for each inverse algorithm. In the following three
sections we discuss these choices in more detail, then outline
our approach in studying their influence.

III. ELECTROMAGNETICS FORWARD MODEL

Modeling the human head as a volume conductor defines
the relationship between current source generators in the brain
and the measured electrical potentials on the scalp. Given a
volume conductor Ω with boundary ΓΩ, current sources within
the volume induce electric and magnetic fields which can be
calculated on the surface. If the conductivities σ and the current
sources S are known, the electric and magnetic fields inside the
volume are fully described by the quasi-static approximation
of Maxwell’s equations–Poisson equation,

∇ · σ(x, y, z)∇φ(x, y, z) = S, (3)

in Ω with no-flux Neumann boundary conditions on the scalp:

σ(∇φ) · n = 0. (4)

Here, n is normal to ΓΩ and σ = σij(x, y, z) is the conduc-
tivity tensor. The solution of Eq. 3 depends on the volume
conduction properties, geometry and conductivity. A complete
realistic volume conductor model that captures the fine details
is not expected. However, specification of its configuration is
a key factor in improving the source localization accuracy.
The aim is to identify and rank the most influential factors on
source localization.

A. The geometry factor

The simplest head model consists of a single homogeneous
sphere [17]. It is far from reality given the significant difference
between bone and fluid tissues. As a first improvement, three-
shell models representing brain, skull and scalp are introduced
[18]. They show good qualitative agreement with general
EEG observations [19]. For further improvement, models that
include Cerebrospinal fluid (CSF) and gray matter in four
and five-shell models [20], [21] and analytic solutions that
handle radial-to-tangential anisotropy are available [22], [23].
These models capture the major tissue layers, and their simple
geometry allows for analytic solutions [24]. However, they
have obvious limitations. The head tissues do not have uniform
thickness and conductivities [25] [26], and the skull contains
characteristics which are difficult to represent, such as sutures.

Structural imaging such as magnetic resonance imaging
(MRI) and computational tomography (CT) provide images
of anatomical details with resolution better than 1mm3. These
images can be segmented to a number of tissues where each is
assumed to have uniform electrical properties. The quality and

accuracy of the geometric model is directly related to the imag-
ing modality and the quality of segmentation. MRI is sensitive
to soft tissue, while CT is sensitive to bones. Forward models
obtained from these images have better accuracy compared
to spherical models [27], [28]. However, their computational
complexity is significantly higher.

Several questions require answers and more exploration.
How many tissues should be considered and which tissues?
How do different geometric models affect source localization?
How important is it to model geometric variations such as
fissures and different types of bones? What is the required
level of detail? The answers to these questions should be
in the context of source localization. The influence of these
factors impacts various algorithms differently. The importance
of one factor can not be understood in isolation of the others.
Therefore, answering these and similar questions must be done
via simulations that leverage HPC.

B. The conductivity factor

Once the tissues are identified from the imaging modal-
ities, their conductivity model and values must be assigned.
Unfortunately, the conductivities of the head tissues are poorly
known, especially for the skull. In general, the conductivity of
a biological tissue is related to its concentration of fluid [29].
Tissues with higher fluid concentration are more conductive.
Cell-free fluids such as CSF have a uniform and high conduc-
tivity [19], [30], [31], while compact bones have the lowest.

The brain consists of gray matter and white matter. Gray
matter contains neurons’ cell bodies and is accepted to be
homogeneous and isotropic. White matter contains nerves that
connect different parts of the cortex. The conductivity along
the nerve is 9 times greater than in the perpendicular direction
(anisotropic).

The skull conductivity has been poorly known, and the
published data are not consistent. Skull bones can be classified
according to the fluid concentration in their material into:
compact bones having low fluid concentration and spongy
bones having higher fluid concentration. Sutures are composed
of materials that are highly rich with fluids. Therefore, and
experiment confirmed, sutures are highly conductive, and
spongy bones are more conductive than compact bones [32]–
[35]. The cortical part has a layered structure consisting of a
spongy middle layer sandwiched between two compact bones.
Measurements show that the lower layer is more conductive
than the upper layer and the middle layer is much more
conductive than the outer layers [33]. In addition to variations
in the bone types, structural variations within the skull such as
openings and thin regions have a large impact on the effective
conductivity of the skull. These holes and openings are filled
with nerves and body fluids, which provide electrical current
paths to pass through the skull and consequently increase the
effective conductivity. The structural variations effect becomes
significantly important in infants and young children, where
the skull is not completely developed [36], [37].

The electrical properties of different head tissues are inho-
mogeneous and anisotropic. The skull as well as the scalp have
a multilayer structure with each layer having different electrical
properties. This structure can be either modeled as a multilayer
structure with isotropic layers or it can be modeled as a single
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anisotropic tissue. How important is it to include these fine
details in the model, and which features are most important?
This question requires further analysis and investigations, so
an efficient anisotropic solver is needed to enable thorough
analysis. Section IV describes a new algorithm which accounts
for anisotropic tissues.

C. Numerical methods

Realistic head models become standard for their im-
provement over spherical models. Boundary Element Method
(BEM) solves the surface integral equations instead of the
volume partial equation. This approach reduces the dimen-
sionality to 2D which improves performance. However, it is
restricted to handle only homogeneous, isotropic and closed
tissue compartments. In contrast, Finite Difference Method
(FDM) and Finite Element Method (FEM) are based on
digitizing the whole volume into small volumetric elements.
Consequently, various modeling properties such as inhomo-
geneity and anisotropy can be handled. The price for this
flexibility is performance. The stiffness matrix becomes large
and only iterative methods can be used [38], [39]. Iterative
methods are relatively inefficient since they require repeated
application for each source configuration; however, using the
reciprocity theorem overcomes this [40], [41].

FEM is computationally more effecient than FDM due
to the freedom in the choice of the computational points
compared to the FDM’s regularly fixed points. However,
constructing a FEM mesh from MRI image is difficult and can
be inaccurate due to the complex head geometry. With FDM,
the regular cubed images map directly to the computational
grid without any effort. The FDM is also accurate, reliable,
able to handle non-uniform conduction characteristics and
computationally efficient.

IV. METHODS AND MATERIALS

In this section we describe our general approach to solving
the source localization problem, the two primary computational
hurdles that necessitate large-scale HPC solutions, and the two
FDM solvers that enable new scientific study in head modeling
and simulation.

Our approach towards source localization is based on the
idea of providing generic LFMs (gLFM) that serve as genera-
tors of LFMs. A gLFM maps the amplitudes of generic dipolar
sources to generic electrodes potentials. The generic distributed
dipoles are placed at every voxel in the gray matter and the
generic electrodes are placed at 1mm3 inter-spacings on the
scalp. Different gLFMs are constructed for different volume
conduction characteristics. Once gLFMs are computed, many
different LFMs can be sampled based on different constraints
or resolution imposed on the sources (e.g. constraint dipoles
on the cortex), the number and locations of the electrodes, and
the volume conduction characteristics. This can be achieved
efficiently by sampling from the rows and columns of the
gLFM appropriately. The idea is to factor out the common and
computationally intensive part of the analysis from the appli-
cation of different inverse algorithms. Since different gLFMs
captures different volume conduction parameters, the influence
of these factors, number and distribution of electrodes, and
different constraints on dipoles can be analyzed in a unified
way using, for example, sensitivity analysis procedures.

Fig. 2. Generic LFM generation using HPC, each gLFM maps a generic
dipoles location to a generic electrodes locations for a given volume conduc-
tion characteristics. Once computed, different distributed dipoles algorithms
or equivalent dipole parametric search can be applied and reapplied under
different conditions and constraints in the evaluation.

In the application of the inverse algorithm, a gLFM is
selected based on volume conduction characteristics shown
in Figure 2. Then LFMs are sampled from the gLFM by
choosing the appropriate rows corresponding to the electrodes
map. In the case of distributed dipole models, the appri-
opriate columns corresponding to imposing constraints on
the sources are sampled as well. Then different distributed
dipoles algorithms can be applied. In case of the parameteric
approach, the non-linear search proceeds on the columns of
the LFM corresponding to the location of the dipoles and
different orientations are considered by the linear superposition
of lead fields corresponding to the three orthogonal directions
weighted by the dipole orientation.

A. Generic lead field matrix generation.

Computing a gLFM at the highest resolution is computa-
tionally intensive. Assuming 5K electrodes and 500K dipole
locations with 3 orthogonal orientations for each dipole. Each
gLFM requires 1.5 million forward calculations which is not
practical. However, using the reciprocity principle, the number
of forward calculations is reduced significantly to the number
of scalp electrodes which is 5K per gLFM. To perform global
sensitivity analysis, at least 1000 gLFMs are required. This
means 5 million forward calculations are required. Fortunately,
all these calculations are independent and can be computed
concurrently. In principle, assuming the availability of infinite
resources, the time required to compute all these gLFMs is
equal to the time required for a single forward solution. In
practice the available resources are limited and consequently
the performance of the forward solver becomes the limiting
factor. Figure 2 shows the gLFM computation factored out
from the evaluation analysis.

B. Conductivity inverse model.

The other crucial problem in the individualized head mod-
eling is the determination of a subjects’ unique internal head-
tissue conductivities. One approach to find these values is the
bounded Electrical Impedance Tomography (bEIT) method.
In bEIT, low-frequency alternating currents are injected into
the head through pairs of electrodes attached to the scalp.
Then the response is measured on the other electrodes. Once
an appropriate objective function describing the difference
between the measured scalp potentials, V , and the predicted
potentials φp, is defined (e.g., least square norm), a search for
the global minimum is undertaken using nonlinear optimiza-
tion algorithms (e.g., simulated annealing [42], [43] or simplex
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search). Using either optimization method, the search for the
optimal conductivities requires a large number of forward
calculations, in the order of 3K for a single current injection
pair. Typically, we consider 60 pairs, which require 200K
forward calculations. Since Poisson’s equation is non-linear
regarding the conductivities, the reciprocity principle cannot be
applied in this case. Three levels of parallelism are applied in
these calculations. At the highest level, current injection pairs
are processed via a cluster job scheduler. Each injection pair
performs a simulated annealing optimization in parallel using
an MPI application. Finally, the independent forward solvers
run on GPUs using CUDA or shared memory using OpenMP.

In both gLFM generation and conductivity optimization,
a large number of forward solutions is required. Therefore,
any forward solver must efficient, robust and accurate. In the
following we present two FDM algorithms to solve Poisson’s
equation (Eq. 3). The first is limited to isotropic conductivity
of the tissues and based on the alternating direction implicit
(ADI) method. The second can handle anisotropic properties
of tissues. A parallel implementation of both algorithms in
shared memory and GPU architecture is described.

C. ADI algorithm

The ADI method finds the solution of Eq. 3 as the steady
state of the appropriate evolution problem,

∂φ

∂t
+∇ · σ(x, y, z)∇φ(x, y, z) = S. (5)

At steady state, the time derivative is zero and the solution
corresponds to the original problem. At every iteration step
the spatial operator is split into the sum of three 1D operators,
which are evaluated alternatively at each substep. For example,
the difference equations in x direction is given as [44],

φn+1
i − 1

3 (φni + φnj + φnk )

τ
+δxφ

n+1
i +δyφ

n
j +δzφ

n
k = S, (6)

where τ is a time step and δx,y,z is the appropriate 1D second
order spatial difference operator. The finite-difference scheme
is used over the solution domain by using a rectangular grid
with spatial spacings of hx, hy , hz in the x, y, z directions, and
τ in time. Using the notation xi = ihx, yj = jhy , zk = khz
and tn = nτ for integer values of i, j, k, and n, the electrical
potential at a grid point, (i, j, k), at time, tn, is written as
φnijk = φ(xi, yj , zk; tn). The notation φnq means the solution
along the direction q in the time step n. Such a scheme is
accurate to O(τ2 + ∆x2 + ∆y2 + ∆z2). In contrast with
the classic ADI method, the multi-component ADI does not
require the operators to be commutative. In addition, it uses
the regularization (averaging) for evaluation of the variable at
the previous instant of time.

The ADI algorithm consists of a time iteration loop in
which each time step is split into three substeps. In each
sub-step, a tridiagonal system of equations is solved along
x, y and z directions. For instance, in the first sub-step the
spatial operator acts only on the x direction. So, all NyNz
equations along the x−direction are independent and can
be solved concurrently. Similarly, in the second sub-step, all
NxNy equations along the y−direction and, in the third sub-
step, all NxNy along the z−directions are independent and
can be solved concurrently. At the end of each sub-step all

equations must be solved before proceeding to the next sub-
step. The parallel algorithm pseudo-code is shown below:

Algorithm 1: ADI parallel algorithm
while not terminate do

Solve NyNz tridiagonal systems concurrently;
Barrier
Solve NxNz tridiagonal systems concurrently;
Barrier
Solve NxNy tridiagonal systems concurrently;
Barrier
Update(terminate)

Implementation of the parallel algorithm in shared memory
architecture is straight forward, where the time loop runs
sequentially and then in each sub-step all OpenMP threads
cooperate in solving the independent tridiagonal system of
equations concurrently. Similarly, within a GPU architecture,
the time loop runs sequentially on the host, and a grid of
blocks of threads is executed to solve the tridiagonal systems
of equations on the device in each sub-step. Each thread solves
a tridiagonal system of equations. The performance of the GPU
code is mainly limited by the global memory access. Threads
are coalesced in accessing global memory when solving in the
y and z-directions. However, they are not coalesced when solv-
ing in x-direction. We used shared memory and intermediate
computations which improved performance when computing
in the x direction.

D. VAI algorithm

In the 3D anisotropic case, we use the Vector Additive
Implicit (VAI) algorithm as introduced in [45]. In this algo-
rithm, a 13-point stencil is used to approximate the differential
operator and order the variables. It includes two diagonally-
adjusted cells with one common symmetry point as shown in
Figure 3.

Fig. 3. The 13-point VAI stencil

For ordering variables, the calculation domain is split into
a set of rectangular cells ordered akin to a 3D checkerboard.
A subset of uniformly colored cells is considered each time.
Each cell has eight corners (grid points). Each corner belongs
to two adjusted cells. Eight components of the approximate
solution correspond to the eight points of each cell. Two
components of an approximate solution are related to each
grid point. The stencil and ordering of variables are adapted
for a two-component vector-additive method for solving the
linear system, Ay = f , with A = A1 +A2, with the form,
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Fig. 4. ADI and VAI-isotropic are compared to the analytical solution for a 4-shell isotropic spherical model (left). VAI in anisotropic setting with tangential
to radial conductivity of 10 compared with anisotropic sphere [46].

yn+1
1 − ỹ1

τ
+A1y

n+1
1 +P21A2y

n
2 = f,

yn+1
2 − ỹ2

τ
+P12A1y

n
1 +A2ỹ2

n+1 = f,

ỹ1 = (yn1 + P12y
n
2 )/2,

ỹ2 = (P12y
n
2 + yn2 )/2,

where τ is iterative parameter, P12 and P21 are permutation
matrices. The matrices A1 and A2 are in block-diagonal form
with 8 × 8 diagonal blocks. These matrices are composed
from coefficients of finite-difference scheme and they are
complemented parts of the finite-difference operator cells of
the stencil.

The structure of the VAI method is similar to the implicit
block Jacobi method with a preconditioner in the form of a
block-diagonal matrix with 8 × 8 diagonal blocks. Because
each block can be processed independently, this approach is
highly parallelizable. In a shared memory architecture, the
iterative loop runs sequentially and then at each iteration step
the OpenMP threads cooperate in computing the 8× 8 blocks
until the termination condition is satisfied. Similarly, in our
GPU implementation, the iterative loop runs on the host and
at each iteration step, a grid of blocks of threads is executed on
the GPU, where each thread performs the computation of one
8× 8 block. At the end of each iteration step, the host checks
the convergence criteria. Since all blocks are homogenous and
have the same size of a multiple of four, accessing the global
memory is efficient when using float4 and int4 CUDA data
types.

E. Reciprocity

The idea of the reciprocity theorem is that the electric field
throughout a volume conductor caused by injecting a unit
current between two electrodes on the scalp can be used to
determine the potential difference between these two electrodes
caused by current dipole sources in the volume. This theorem
reduces the calculation of the potential difference between two
electrodes on the scalp caused by any dipole at any location
and with any orientation to one forward calculation. This will
reduce the required number of forward calculations to equal

the number of scalp sensors. Mathematically, the potential
difference between a recording electrode A and the reference
electrode R on the scalp due to a dipole source at location r
can be written as,

ΦA − ΦR =
EAR(r) · d

IAR
,

where d is the dipole moment, EAR(r) = −∇Φ(r) is the
electric field at location r caused by IAR, and IAR is the
current flowing between the source and sink electrodes.

V. RESULTS

Evaluating the influence of the main factors that affect
the accuracy of source localization and the extraction of
conductivities of the head tissues through the bEIT technique
requires a forward solver that meets three main requirements:
1) accuracy, in that it solves the Poisson equation accurately
with complex geometries, 2) efficiency, in that it allows
conducting these studies in a practical amount of time, and
3) reliability, in the sense that it can handle several volume
conduction characteristics, such as anisotropy and fine details
of anatomical structure. In this section we evaluate these
aspects of the ADI and VAI forward solvers and demonstrate
that they meet these requirements.

A. Verification

The ADI and VAI method implementations should first
be verified with respect to a known solution. The source
localization field has long used concentric k-shell spherical
models (k = 3, 4) as a theoretical standard of reference (each
shell represents a head tissue), because analytical solutions are
known for the isotropic and anisotropic case [22], [47]. Using a
4-sphere testcase with 200 x 200 x 200 voxels, Figure 4 shows
the perfect correspondence between the theoretical isotropic,
ADI and VAI-isotropic results for a set of shell conductivities.
The plot compares potentials for each of the 132 electrodes. We
obtained the same correspondence by experimenting with tis-
sue conductivities, different radii and different current source-
sink locations.

Analytical solutions for anisotropic spherical models [47]
are also available for VAI verification. These results are shown
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Fig. 5. Cross verification of ADI and VAI-isotropic results of generic LFM computation. The figure shows a random column from ADI LFM compared to the
corresponding column from VAI-isotropic LFM. Reciprocity principle is used in the computation of both matrices(left). The potentials for one column of the
LFMs generated using ADI (isotropic) and VAI (anisotropic) are shown(right). Differences between values are plotted in green.

in Figure 4 (right). The accuracy with respect to the spherical
model in both cases is very good, lending strong confirmation
that the algorithm is working properly.

Of course, nobody’s head is shaped like a 4-shell sphere.
However, verifying the algorithms with real human heads is
more challenging. The colin27 MRI dataset was segmented at
2mm3 and 1mm3 resolutions into five tissue: scalp, skull, CSF,
gray matter, and white matter. We used cross verification of
ADI and VAI in isotropic setting to compute a LFM for each
resolution case for known conductivities and current source.
Although the numerical methods are different, we expect
agreement for the isotropic case, as is verified in Figure 5.

Using the computed LFMs, we compared isotropic versus
anisotropic methods by taking one column of each LFM and
plotting the two projections of the same activated dipole.
Figure 5 (right) shows the potential differences at the sensor
locations. Our future work will answer the question of how the
potential differences affect source localization accuracy when
considering the number of scalp electrodes, the solution space
configuration, and the conductivities of the tissues.

B. Computational Performance

The previous section shows that the ADI and VAI solvers
produce accurate results, but computational performance is
also important to enable our large-scale computational require-
ments. A Matlab version of both the ADI and VAI forward
solvers takes several hours to compute a single solution for a
1mm3 head model, which prohibits the computation of even
a single LFM. Figure 6 gives performance results for our
OpenMP and CUDA versions of the ADI and VAI for colin27
at 1mm3 in terms of average iteration time.

Both ADI and VAI are iterative solvers and will run at
a minimum 400 iterations before convergence with a 1mm3

head model. Averages of 500 iterations for ADI and 1000
for VAI are common in our experience. Increasing the cores
for OpenMP up to eight continues to deliver performance
improvement on the compute nodes we tested. It is clear that
the GPUs deliver the best performance returns. While this is
true, many nodes don’t have GPUs. Thus, both OpenMP and

CUDA implementations are important. The memory footprint
for each solver is about 800MB for the colin27 1mm3, making
both of them appropriate for most available GPUs.

Forward solvers are the core computational components for
the conductivity inverse and LFM calculations. The conduc-
tivity inverse problem will need to process the bEIT measure-
ments for up to 64 current injection pairs in the general case.
Depending on the number of conductivity unknowns, each con-
ductivity search for a single pair will require many thousands
of forward solutions to be generated. Simulated annealing
is currently used as the optimization strategy [43] and our
parallel implementation will support up to twelve simultaneous
forward solves. Clearly, conductivity results for each pair can
also be done in parallel. The results from all pairs are then
analyzed to determine final tissue conductivity estimates. The
total computational requirements are prodigious, requiring over
180,000 forward solutions.

Computing gLFMs for all current dipoles is computa-
tionally intensive. Because a gLFM requires capturing scalp
potentials corresponding to dipoles at any position in the gray
matter and in any orientation, it is necessary to calculate
the potentials corresponding to the three orthogonal x-, y-,
and z-orientations for each dipole location. Then the potential
corresponding to any orientation can be constructed by super-
position of the potentials corresponding to the three basis
vectors. However, by using the reciprocity principle, we only
need Ne forward solutions to construct such a gLFM, where
Ne is the number of electrodes. Each forward solution provides
the potentials at an electrode corresponding to all dipoles in the
gray matter. We created an isotropic gLFM and an anisotropic
gLFM for colin27 based on 1,925 generic recording electrodes.
This required 1,925 forward solutions to be computed for
each gLFM, by placing a current source at each electrode
and the sink at a common reference electrode and calculating
the potentials at that electrode corresponding to every dipole
location. Thus, each LFM is 2.1e6 x 1,925 in size.

From a computational viewpoint, the LFM generation
is fully parallelized since the computation of every dipole
forward solution (or when using reciprocity, the computation
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Fig. 6. Single-node performance for 1 iteration of the ADI (left) and VAI (right) solvers on ACISS and Mist clusters(see Fig. 7). VAI completes a single
iteration in ∼20% the time of an ADI iteration for OpenMP and ∼60% for CUDA. Multi-node MPI performance is not shown, but forward solutions are
independent of each other, so scaling is good for both gLFM and conductivity inverse problems when using either OpenMP or GPUs.

of the potentials corresponding to all dipoles at every elec-
trodes) is independent, so the application is quite scalable. For
instance, a run on the ACISS machine at the University of
Oregon which utilized 98 GPUs in an ADI LFM calculation
was calculated in approximately 11 minutes.

C. Reliability

Both ADI and VAI solvers are reliable in the sense that
anatomical structure of the geometric model of the human
head can easily be captured without any pre-processing or
mesh generation of the structural MRI and/or CT images. Both
solvers handle accurately any fine details of geometric features
such as skull holes at the available image resolution (currently
at 1mm3). Once higher resolution images become available,
no pre-processing or modification is required on these solvers.
This flexibility is important, as it allows for studying the influ-
ence of structural details on the source localization solution.
Further, in both solvers the conductivity values can be assigned
at the voxel level which allows differentiating the electrical
properties at 1mm3 scale. This is important if we wanted to
consider the influence of fine-detail characteristics, such as
sutures. Also, placing dipoles anywhere inside the brain is a
matter of placing a current source and sink separated by a
voxel. In addition to this flexibility, the VAI algorithm allows
for assignment of the anisotropic conductivity tensor at the
voxel level. Of course, the price of all this flexibility is the
computational performance. However, with access to sufficient
computational resources this scientific workflow could poten-
tially scale to a level that would enable source localization for
a large number of individualized head models.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper presents four main contributions to the neu-
roscience domain: 1) We identified and classified the main
factors influencing accuracy of source localization solutions
and which of these factors require further research and investi-
gations, 2) We provided an approach to study the effect of these
factors in a unified manner using different inverse approaches
or algorithms; our approach is based on factoring out the
common and computationally intensive part from the analysis,

Mist (University of Oregon - UO): 24 Dell 1950 (2x 2.33 GHz
quadcore Intel Xeon w/ 16GB), 192 total cores; 2 NVIDIA Tesla
S1070 (4x Tesla GPU), 8 total GPUs
Aciss-fatnodes (UO): 16 compute nodes (4x 2.27GHz 8-core Intel
X7560 CPUs w/ 384GB DDR3 RAM), 512 total cores
Aciss-generic (UO): 128 compute nodes (2x 2.67GHz 6-core Intel
X5650 w/ 72GB DDR3 memory), 1536 total cores
Aciss-gpunodes (UO): 52 compute nodes (2x 2.67GHz 6-core Intel
X5650 w/ 72GB DDR3 memory), 624 total cores; 3 NVIDIA Telsa
M2070 GPU, 156 GPUs total

Fig. 7. Parallel computer platforms used for experiments.

which allows for the application of different inverse algorithms
and different constraints, 3) We demonstrated that HPC enables
the creation of such constructs (gLFM) at high resolution and
detail, and 4) We provided two accurate, efficient, and reliable
FDM-based forward solvers parallelized using OpenMP in
shared memory and CUDA on GPUs.
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