
Scaling Spark on HPC Systems

Nicholas Chaimov Allen Malony
University of Oregon

{nchaimov,malony}@cs.uoregon.edu

Shane Canon Costin Iancu
Khaled Z. Ibrahim Jay Srinivasan

Lawrence Berkeley National Laboratory
{scanon,cciancu,kzibrahim,jsrinivasan}@lbl.gov

ABSTRACT
We report our experiences porting Spark to large production
HPC systems. While Spark performance in a data center
installation (with local disks) is dominated by the network,
our results show that file system metadata access latency
can dominate in a HPC installation using Lustre: it de-
termines single node performance up to 4⇥ slower than a
typical workstation. We evaluate a combination of software
techniques and hardware configurations designed to address
this problem. For example, on the software side we develop
a file pooling layer able to improve per node performance
up to 2.8⇥. On the hardware side we evaluate a system
with a large NVRAM bu↵er between compute nodes and the
backend Lustre file system: this improves scaling at the ex-
pense of per-node performance. Overall, our results indi-
cate that scalability is currently limited to O(102) cores in a
HPC installation with Lustre and default Spark. After care-
ful configuration combined with our pooling we can scale up
to O(104). As our analysis indicates, it is feasible to observe
much higher scalability in the near future.

CCS Concepts
•Software and its engineering!Ultra-large-scale sys-
tems; Cloud computing;

Keywords
Spark, HPC, Data Analytics

1. INTRODUCTION
Frameworks such as Hadoop [30] and Spark [32] provide a

productive high level programming interface for large scale
data processing and analytics. Through specialized runtimes
they attain good performance and resilience on data cen-
ter systems for a robust ecosystem of application specific li-
braries [14, 22, 5]. This combination resulted in widespread
adoption that continues to open new problem domains.

This paper is authored by an employee(s) of the United States Government and is in the
public domain. Non-exclusive copying or redistribution is allowed, provided that the
article citation is given and the authors and agency are clearly identified as its source.

HPDC’16, May 31-June 04, 2016, Kyoto, Japan

ACM ISBN 978-1-4503-4314-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2907294.2907310

As multiple science fields have started to use analytics
for filtering results between coupled simulations (e.g. ma-
terials science or climate) or extracting interesting features
from high throughput observations (e.g. telescopes, particle
accelerators), there exists plenty incentive for the deploy-
ment of the existing large scale data analytics tools on High
Performance Computing systems. Yet, most solutions are
ad-hoc and data center frameworks have not gained trac-
tion in our community. In this paper we report our expe-
riences porting and scaling Spark on two current very large
scale Cray XC systems (Edison and Cori), deployed in pro-
duction at National Energy Research Scientific Computing
Center (NERSC) [2].

In a distributed data center environment disk I/O is op-
timized for latency by using local disks and the network
between nodes nodes is optimized primarily for bandwidth.
In contrast, HPC systems use a global parallel file system,
with no local storage: disk I/O is optimized primarily for
bandwidth, while the network is optimized for latency. Our
initial expectation, was that after porting Spark to Cray, we
can then couple large scale simulations using O(104) cores,
benchmark and start optimizing it to exploit the strengths of
HPC hardware: low latency networking and tightly coupled
global name spaces on disk and in memory.

We ported Spark to run on the Cray XC family in Ex-
treme Scalability Mode (ESM) and started by calibrating
single node performance when using the Lustre [7] global
file system against that of an workstation with local SSDs:
in this configuration a Cray node performed up to 4⇥ slower
than the workstation. Unlike clouds, where due to the pres-
ence of local disks Spark shu✏e performance is dominated by
the network [25], file system metadata performance initially
dominates on HPC systems. Perhaps expected by paral-
lel I/O experts [21], the determining performance factor is
the file system metadata latency (e.g. occurring in fopen),
rather than the latency or bandwidth of read or write oper-
ations. We found the magnitude of this problem surprising,
even at small scale. Scalability of Spark when using the
back-end Lustre file system is limited to O(102) cores.

After instrumenting Spark and the domain libraries eval-
uated (Spark SQL, GraphX), the conclusion was that a solu-
tion has to handle both high level domain libraries (e.g. Par-
quet data readers or application input stage) and the Spark
internals. We calibrated single node performance, then we
performed strong and weak scaling studies on both systems.
We evaluate software techniques to alleviate the single node
performance gap in the presence of a parallel file system:

97

• First and most obvious configuration is to use a local
file system, in main memory or mounted to a single
Lustre file, to handle the intermediate results gener-
ated during the computation. While this configuration
does not handle the application level I/O, it improves
performance during the Map and Reduce phases and
a single Cray node can match the workstation perfor-
mance. This configuration enables scaling up to 10,000
cores and beyond, for more details see Section 5.3.
We have extended and released the Shifter [18] con-
tainer framework for Cray XC with this functionality.
Deploying Spark on Shifter has unexpected benefits
for the JVM performance and we observe 16% perfor-
mance improvements when running in memory on ⇡
10,000 cores.

• As the execution during both application initialization
and inside Spark opens the same file multiple times, we
explore “caching” solutions to eliminate file metadata
operations. In Spark, the number of files used grows
linearly with the number of cores, while the number of
file opens grows quadratically with cores. We devel-
oped a layer to intercept and cache file metadata oper-
ations at both levels. A single Cray node with pooling
also matches workstation performance and overall we
see scalability up to 10,000 cores. Combining pooling
with local file systems also improves performance (up
to 17%) by eliminating system calls during execution.

On Cori we also evaluate a layer of non-volatile storage
(BurstBuffer) that sits between the processors’ memory
and the parallel file system, specifically designed to accel-
erate I/O performance. Performance when using it is better
than Lustre (by 3.5⇥ on 16 nodes), but slower than RAM-
backed file systems (by 1.2⇥), for GroupBy, a metadata-
heavy benchmark. With BurstBuffer we can scale Spark
only up to 1,200 cores. The improvements come from better
fopen scalability, rather than read/write latency and illus-
trate the principle that optimizing for the tail is important at
scale: the BurstBuffer median open latency is higher than
Lustre’s, but its variance is much smaller than on Lustre.
Besides metadata latency, file system access latency in

read and write operations may limit scalability. In our
study, this became apparent when examining iterative algo-
rithms. As described in Section 6, the Spark implementa-
tion of PageRank did not scale when solving problems that
did not fit inside the node’s main memory. The problem was
the interplay between resilience mechanisms and block man-
agement inside the shu✏e stage in Spark, that generated a
number of I/O requests that increased exponentially with it-
erations. This overwhelmed the centralized storage system.
We fixed this particular case at the algorithmic level, but
a more generic approach is desirable to cover the space of
iterative methods.
Overall, our study indicates that scaling data analytics

frameworks on HPC systems is likely to become feasible
in the near future: a single HPC style architecture can
serve both scientific and data intensive workloads. The so-
lution requires a combination of hardware support, systems
software configuration and (simple) engineering changes to
Spark and application libraries. Metadata performance is
already a concern for scientific workloads and HPC center
operators are happily throwing more hardware at the prob-
lem. Hardware to increase the node local storage with large

NVRAM will decrease both metadata and file access over-
head through better caching close to the processors. Or-
thogonal software techniques, such the ones evaluated in
this paper, can further reduce metadata impact. In fact, at
the time of the publication, our colleagues at NERSC have
demonstrated Spark runs at ⇡ 50, 000 cores using Shifter
with our Lustre mounted local file system configuration. An
engineering audit of the application libraries and the Spark
internals will also eliminate many root causes of performance
bottlenecks.

2. SPARK ARCHITECTURE
Apache Spark [32] and Hadoop [30] are open-source data

analytics frameworks, designed to operate on datasets larger
than can be processed on a single node while automatically
providing for scheduling and load-balancing. They imple-
ment the Map-Reduce model [12] using an abstraction in
which programs are expressed as data flow graphs. The
nodes in the graph are of two types: map operations, which
are purely local, and reduce operations, which can involve
communication between nodes.

The traditional MapReduce framework [12] is limited to
acyclic graphs, preventing e�cient representation of itera-
tive methods, and it uses data redundancy to provide re-
siliency. Spark can handle cyclic and acyclic graphs, and
provides resiliency through resilient distributed datasets [31]
(RDD), which carry su�cient information (lineage) to re-
compute their contents. In particular, the ability to express
iterative algorithms accelerated Spark’s adoption.

Programs are expressed in terms of RDDs derived from
transformations of other RDDs (e.g. Map) and actions (e.g.
Reduce). The application developer can choose to request
that certain RDDs be cached in memory or saved to disk.
The developer therefore has to make decisions based on
tradeo↵s between the costs of storage (in memory and time)
and recomputation (in time). RDDs are lazily evaluated,
which creates challenges [6] in attributing performance to
particular lines or regions of code, as they do not execute
until they are needed.

In Spark, the Master node executes a driver program,
which creates the data flow graph by applying transfor-
mations and actions to RDDs, and partitions ownership of
data to worker nodes within the cluster. When the result
of an uncomputed RDD partition is needed, a job is cre-
ated, consisting of multiple stages. Within a stage, only
intra-partition communication can occur. All inter-partition
communication happens at stage boundaries, through a pro-
cess called shu✏ing, as shown in Figure 1. By deferring
any computation until a result is needed, the scheduler can
schedule work to compute only what is necessary to produce
the result. In the event of the loss of a partition, only that
partition needs to be recomputed.

2.1 Data Movement in Spark
Data movement is one of the performance determining

factors in any large scale system. In Spark, data is logi-
cally split into partitions, which have an associated worker
task. A partition is subdivided into blocks: a block is the
unit of data movement and execution. Figure 2 shows the
interaction of the Spark compute engine with the block and
shu✏e managers, which control data movement. The Block-
Manager handles application level input and output data, as
well as intermediate data within the Map stages. The Shuf-

98

p1

p2

p3

textFile

p1

p2

p3

flatMap

p1

p2

p3

map

p1

p2

p3

reduceByKey
(local)

STAGE 0

p1

p2

p3

reduceByKey
(global)

STAGE 1

JOB 0

Figure 1: Decomposition of a job into stages and
tasks on partitions, with inter-partition communica-
tion limited to stage boundaries.

Shuffle Manager Shuffle Manager

In
te

rc
on

ne
ct

io
n

 N
et

w
or

k

Block Manager

Core

Memory

Core

Core

Core
 Task Task Task

Persistent
Storage

S

L

Block Manager

 Task Task Task
Core

Memory

Core

Core

Core

Persistent
StorageR

L

Temporary
Storage

Temporary
Storage

Figure 2: Data movement in Spark and the interaction with the
memory hierarchy.

fleManager handles runtime intermediate results during the
shu✏e stage.

Data Objects and Naming: Spark manipulates data with
global scope, as well as local scope. Application level data
(RDDs) are using a global naming space, intermediate data
blocks generated throughout execution have a local scope
and naming scheme. Objects may exceed the capacity of the
physical memory and need to be e�ciently moved through
the storage hierarchy; the typical challenge when manag-
ing naming schemes is mismatch with underlying system
architecture. For instance, when global object is distributed
(partitioned) across multiple storage spaces a long latency
naming service may be needed to locate its physical location.
Conversely, any locally named object stored in a physically
shared storage may experience undue contention while ser-
vicing requests. A current research direction in the Spark
community is providing an e�cient global naming service,
which can reduce network tra�c. Note that the global file
system in HPC installations provides global naming.

Vertical Data Movement: Vertical data movement refers
to the movement through the entire memory hierarchy, in-
cluding persistent storage. It is needed to move input data
blocks into the memory for processing and for storing output
data to the persistent storage. To minimize vertical move-
ment for RDDs, Spark allows persisting data in the fast
level of memory. As fast memory is capacity constrained,
the Spark runtime assigns the task of moving objects across
the memory hierarchy to a block manager. Whenever the
working set size (input data or intermediate results) exceeds
memory capacity, the block manager may trigger vertical
data movement. The block manager may also decide to
drop a block, in which case its later access may trigger addi-
tional vertical data movement for recomputation. Research
e↵orts such as Tachyon [19] aim to reduce expensive (to stor-
age) vertical data movement by replacing it with horizontal
(inter-node) data movement. In network-based storage sys-
tems, a critical [4, 8] component to the performance of ver-
tical data movement is the file setup stage (communication
with the metadata servers).

Horizontal Data Movement - Block Shu✏ing: The
horizontal data movement refers to the shu✏e communica-
tion phase between compute nodes. Spark assigns the hori-
zontal data movement to the shu✏e manager and the block
manager. A horizontal data movement request of a block
could trigger a vertical data movement because a block may

not be resident in memory. Optimizing the performance of
horizontal data movement has been the subject of multi-
ple studies [29, 17, 20], in which hardware acceleration such
as RDMA is used to reduce the communication cost. The
benefit of these techniques is less profound on HPC systems
with network-based storage [26] because the performance is
dominated by vertical data movement.

2.2 System Architecture and Data Movement
Data centers have local storage attached to compute nodes.

This enables fast vertical data movement and the number
of storage disks scales linearly with the number nodes in-
volved in the computation. Their bandwidth also scale with
the number of compute nodes. The archetypal file system
for data analytics is the Hadoop Distributed File System
(HDFS) which aims to provide both fault tolerance and
high throughput access to data. HDFS implements a simple
coherency for write-once-read-many file access, which fits
well the Spark and Hadoop processing models. In Spark
with HDFS, global naming services are implemented in a
client-server paradigm. A request is generated for the object
owner, subject to the network latency. The owner services
it, maybe subject to disk latency (or bandwidth) and the
reply is subject to network latency (or bandwidth). Ver-
tical data transfers access the local disk. Horizontal data
are subject to network latency/bandwidth, as well as disk
latency/bandwidth.

HPC systems use dedicated I/O subsystems, where stor-
age is attached to a“centralized”file system controller. Each
and all nodes can see the same amount of storage, and band-
width to storage is carefully provisioned for the system as a
whole. Given that these network file servers are shared be-
tween many concurrently scheduled applications, the servers
typically optimize for overall system throughput. As such
individual applications may observe increase in latency and
higher variability. The Lustre [7] architecture, presented
in Figure 3 is carefully optimized for throughput and im-
plements a generic many-write-many-read coherency proto-
col. The installation consists of clients, a Metadata service
(MDS) and Object Storage service. The Metadata service
contains Metadata Servers, which handle global naming and
persistence and the Metadata Targets which provide the ac-
tual metadata storage (HDD/SSD). In Spark with Lustre,
global naming services access the metadata servers and are
subject to network latency and MDS latency. Most existing
Lustre installations in production (prior to Lustre 2.6) use a
single MDS, only very recent installations [1, 10] use multi-

99

Figure 3: Lustre ar-
chitecture. (Courtesy
of Intel Wiki.)

Figure 4: BurstBuffer node architec-
ture.(Courtesy of NERSC.)

Figure 5: BurstBuffer topology. (Courtesy
of NERSC.)

ple MDSes for improved scalability. Vertical data transfers
are served by the Object Storage service, which contains the
object Storage Server (OSS) and the Object Storage Target
(OST), the HDD/SSD that stores the data. Bandwidth is
provisioned in large scale installations by adding additional
OSSes.

In our quest to introduce Spark into the HPC community
there are two main questions to answer.

1. How does the di↵erences in architecture between data
centers and HPC influence performance? Previous per-
formance studies of Spark in data center environments [25]
indicate that its performance is dominated by the network,
through careful optimizations to minimize vertical data move-
ment and maximize the memory resident working set. Ouster-
hout et al. [23] analyzed the performance of the Big Data
Benchmark [28] on 5 Amazon EC2 nodes, for a total of 40
cores, and the TPC-DS benchmark [24] on 20 nodes (160
cores) on EC2. These benchmarks both use Spark SQL [5],
which allows SQL queries to be performed over RDDs. By
instrumenting the Spark runtime, they were able to attribute
time spent in tasks to several factors, including network and
disk I/O and computation. They found that, contrary to
popular wisdom about data analytics workflow, that disk
I/O is not particularly important: when all work is done on
disk, the median speedup from eliminating disk I/O entirely
was only 19%, and, more importantly, when all RDDs are
persisted to memory, only a 2-5% improvement was achieved
from eliminating disk I/O. Upon introduction to HPC sys-
tems, we similarly need to understand whether access to
storage or network performance dominates within Spark.

2. What HPC specific features can we exploit to boost
Spark performance? Previous work optimizing data analyt-
ics frameworks on HPC systems [20, 17] proposes moving
away from the client-server distributed paradigm and ex-
ploiting the global file name space already available or Re-
mote Direct Memory Access (RDMA) functionality. Upon
introduction to HPC systems, we are interesting in evalu-
ating the potential for performance improvement of adopt-
ing such techniques into Spark. Besides providing an initial
guide to system researchers, we are also interested in provid-
ing configuration guidelines to users and system operators.

We explore these questions using three benchmarks se-
lected to cover the performance space: 1) BigData Bench-
mark uses SparkSQL [5] and stresses vertical data move-
ment; 2) GroupBy is a core Spark benchmark designed to
capture the worst case scenario for shu✏e performance, it
stresses both horizontal and vertical data movement; and 3)

PageRank is an iterative algorithm from GraphX [14] and
stresses vertical data movement.

3. EXPERIMENTAL SETUP
We conducted our experiments on the Edison and Cori

Cray XC supercomputers at NERSC [2]. Edison contains
5,576 compute nodes, each with two 2.4 GHz 12-core Intel
“Ivy Bridge”processors. Cori contains 1,630 compute nodes,
each with two 2.3 GHz 16-core Intel “Haswell” processors.
Both systems use a Cray Aries interconnect based on the
Dragonfly topology.

Cray provides a Cluster Compatibility Mode (CCM) for
compute jobs requiring specialized services, such as secure
connection, etc. CCM runs Linux and allows an easy path
to configure Spark, but imposes limits on the number of
nodes per job. More importantly, it disables network trans-
fer mechanisms accelerated by the Aries hardware.

In this study, we ported Spark 1.5.0 to run on the Cray
Extreme Scalability Mode (ESM) to allow better scaling of
resources. In ESM, a lightweight kernel runs on the compute
nodes and the application has full access to Aries. Spark 1.6
has been subsequently released: as file I/O patterns did not
change the optimizations we describe in this paper remain
applicable to it. We use one manager per compute node,
based on YARN 2.4.1. This required additional porting ef-
forts to allow TCP-based services. Compared to Spark’s
standalone scheduler, YARN allows better control of the re-
sources allocated in each node. The Mesos [16] resource
manager provides similar control as YARN, but requires ad-
ministrative privilege. Job admission is done through a re-
source manager on the front-end node where Spark runs as
a YARN client with exclusive access to all resources.

Both Edison and Cori use the Lustre file system. On
Edison, the Lustre file system is backed by a single metadata
server (MDS) and a single metadata target (MDT) per file
system. On Cori, a master MDS is assisted by a 4 additional
Distributed Namespace (DNE) MDSes. The DNEs do not
yet support full functionality, and for all Spark concerns Cori
performs as a single MDS system.

On Cori we also evaluate a layer of non-volatile storage
(BurstBuffer) that sits between the processors’ memory
and the parallel file system, specifically designed to accel-
erate I/O performance. The NERSC hardware is based on
Cray DataWarp and presented in Figures 4 and 5. The
flash memory for Cray DataWarp is attached to Burst Bu↵er
nodes that are packaged two nodes to a blade. Each Burst
Bu↵er node contains a Xeon processor 64 GB of DDR3 mem-

100

ory, and two 3.2 TB NAND flash SSD modules attached over
two PCIe gen3 x8 interfaces. Each Burst Bu↵er node is at-
tached to a Cray Aries network interconnect over a PCIe
gen3 x16 interface. Each Burst Bu↵er node provides ap-
proximately 6.4 TB of usable capacity and a peak of ap-
proximately 5.7 GB/sec of sequential read and write band-
width. The BurstBuffer nodes can be accessed from the
compute nodes in private mode and in striped mode. Ours
is the first evaluation on such technology at scale. However,
since the hardware is new and not tuned yet for production,
the BurstBuffer results are only indications of its potential
and it features; we expect them to evolve and improve.

We evaluate BigData Benchmark, GroupBy and PageRank
in both weak and strong scaling experiments. Together they
provide good coverage of the important performance factors
in Spark. BigData Benchmark has inputs up to five nodes
and we’ll concentrate the node level performance discussion
around it. GroupBy scales and we evaluate it up to 10,240
cores. For PageRank we have only small inputs available
and evaluate it only up to 8 nodes. Each benchmark has
been executed at least five times and we report mean per-
formance. Some BurstBuffer experiments were very noisy
and we report only the best performance.

4. SINGLE NODE PERFORMANCE
To calibrate initial performance, we evaluated a single

node of Cori and Edison against a local workstation with
fast SSDs: eight 3.5GHz Xeon i7-3770K cores with 1TB fast
SSD. Figure 6 shows the performance of queries 1-3 of the
Big Data Benchmark [28] using both on-disk and in-memory
modes. The results are quite similar on Edison and Cori. As
shown, a single node of Edison when running with eight cores
and accessing the file system is roughly twice as slow than
the workstation. When data is preloaded in memory, eight
cores of Edison match the workstation performance; this is
expected as the workstation contains server grade CPUs.
When scaling up the Edison node and using all 24 cores,
performance is still 50% slower than the workstation. This
slowdown is entirely attributed to the file system; perfor-
mance scales with cores when running with data preloaded
in memory, as illustrated when comparing eight cores with
the full node performance.

0	
1000	
2000	
3000	
4000	
5000	
6000	
7000	
8000	
9000	

Wo
rks
ta3

on	

Edi
son

	8-c
ore

	

Edi
son

	24
-co

re	

Cor
i	8-

cor
e	

Cor
i	32

-co
re	

Tim
e	(

ms
)	

Disk	 Memory	

Figure 6: BigData Benchmark performance on workstation
and a single node of Edison and Cori. Input data is pre-
cached in memory or read from disk.

To quantify the di↵erence in I/O performance, we instru-
mented the Hadoop LocalFileSystem interface used by Spark
to record the number of calls and the time spent in open,
read, write, and close file operations. The time spent

in read, write, and close operations did not significantly
di↵er between the systems, while file open operations were
much slower, as shown in Figure 7. On the workstation the
mean file open time was 23 µs; on Edison it was 542 µs, al-
most 24 times greater. Some file open operations on Edison
took an extreme amount of time to complete: in the worst
case observed, a single file open operation took 324 ms.

The Big Data Benchmark illustrates the application level
I/O bottlenecks. At this stage, the number of open opera-
tions is linear in the number of partitions. The dataset for
Query 1 consists of a single directory containing one data
file per partition in Parquet format: there are 3,977 parti-
tions/files. Each file is accompanied by a checksum file used
to verify data integrity. These all must be opened, so a min-
imum of 7,954 file opens must occur to run Query 1. The
data format readers are designed to operate in series in a
state-free manner. In the first step, the data and checksum
files are opened and read, the checksums are calculated are
compared, and the data and checksum files are closed, com-
pleting the first task. Then, each partition file is opened
and the footer, containing column metadata, is read, and
the partition file is closed, completing the second task. Fi-
nally, the partition file is opened again, the column values
are read, and the partition file is closed again, for a total for
four file opens per partition, or 15,908 file opens.

5. SCALING CONCERNS
On a data center system architecture with local disks, one

does not expect file open (or create) time to have a large ef-
fect on the overall time to job completion. Thus, Spark and
the associated domain libraries implement stateless opera-
tion for resilience and elastic parallelism purposes by open-
ing and closing the files involved in each individual data
access: file metadata operations are a scalability bottleneck
on our HPC systems. Any e↵ort scaling Spark up and out
on an HPC installation has first to address this concern.

There are several Spark configuration alternatives that af-
fect file I/O behavior. We were first interested to determine
if the larger number of cores in a HPC node allows for a
degree of oversubscription (partitions per core) high enough
to hide the MDS latency. We have systematically explored
consolidation, speculation, varying the number of partitions
and data block sizes to no avail.

In the time honed HPC tradition, one solution is to throw
bigger and better hardware at the problem. The first aspect
is to exploit the higher core concurrency present in HPC
systems. As the previous Section shows, increasing1 the
number of cores per node does improve performance, but
not enough to mitigate the e↵ects of the file system.

For the Lustre installations evaluated, metadata perfor-
mance is determined by the MDS hardware configuration.
Although Cori contains multiple MDSes, the current Lus-
tre 2.6 version does not exploit them well2 and performance
for the Spark workload is identical to that of a single MDS.
When comparing Cori with Edison, the former contains newer
hardware and exhibits lower metadata access latency (me-
dian 270µs on Cori vs 338µs on Edison), still when using the

1Cori Phase II will contain Intel Xeon Phi nodes with up
to 256 cores per node. This will become available circa Oct
2016 to early users.
2Supports a restricted set of operations that are not frequent
in Spark.

101

Figure 7: Distribution of file I/O on the Lustre filesystem vs. a workstation with ext4 local disk, during the execution of
Big Data. Left, median file open time is 24⇥ higher on Lustre. Second, range of file open time, ⇡ 14, 000⇥ larger on Lustre.
Third, median of file read time for all BigData reads - latency similar between workstation and Lustre. Right, range of file
open time - Lustre exhibits much larger variability than workstation.

full node (32 and 24 cores) both are at best 50% slower than
a eight core workstation. Enabling multiple MDSes will im-
prove scalability but not the latency of an operation [10],
thus over-provisioning the Lustre metadata service is un-
likely to provide satisfactory per node performance.

A third hardware solution is provided by the BurstBuffer
I/O subsystem installed in Cori. This large NVRAM array
situated close to the CPU is designed to improve through-
put for small I/O operations and for pre-staging of data.
The question still remains if it is well suited for the access
patterns performed by Spark.

Besides hardware, software techniques can alleviate some
of the metadata performance bottlenecks. The first and
most obvious solution is to use a memory mapped file system
(e.g. /dev/shm) as the secondary storage target for Spark.
Subject to physical memory constraints, this will eliminate
a large fraction of the tra�c to the back-end storage system.
In the rest of this paper, we will refer to this configuration as
ramdisk. Note that this is a user level technique and there
are several limitations: 1) the job crashes when memory is
exhausted; and 2) since data is not written to disk it does
not provide any resilience and persistence guarantees.

HPC applications run in-memory so it may seem that
ramdisk provides a solution. For medium to large problems
and long running iterative algorithms Spark will fail during
execution when using ramdisk, due to lax garbage collection
in the block and shu✏e managers. To accommodate large
problems we evaluate a configuration where a local file sys-
tem is mounted and backed by a Lustre file, referred to as
lustremount. This requires administrative privilege on the
systems and due to operational concerns we were initially

granted access to only one node. Based on the results of
this study, this capability was added to Shifter [18], which is
NERSC developed software that enables Docker containers
to be run on shared HPC systems.

To understand scaling with large problems we develop
a software caching layer for the file system metadata, de-
scribed in Section 5.2. In the rest of this paper we refer to
this configuration as filepool. This is a user level approach
orthogonal to the solutions that mount a local file system.
Since data is stored on Lustre, filepool provides resilience
and persistence guarantees.

5.1 I/O Scaling in Spark
I/O overhead occurs due to metadata operations, as well

as proper data access read/write operations. All these op-
erations occur in both the application level I/O, as well as
inside Spark for memory constrained problems or during the
shu✏e stage.

In Section 4 we have illustrated the impact of fopen meta-
data operations on the performance of BigData Benchmark..
There, the benchmark performed during the application in-
put stage a number of open operations linear in the number
of partitions O(partitions). Big Data Benchmark did not
involve a large amount of shu✏e data.

Because Spark allows partitions to be cached in memory,
slow reading of the initial data is not necessarily problem-
atic, particularly in an interactive session in which multiple
queries are being performed against the same data. Assum-
ing that the working set fits in memory, disk access for input
data can be avoided except for the first query. In this case,
the BurstBuffer can be also used for data pre-staging.

102

0	

100	

200	

300	

400	

500	

600	

700	

1	 2	 4	 8	 16	

St
ag
e	
Ti
m
e	
(s
ec
on

ds
)	

Nodes	

GroupByTest	-	Weak	Scaling	-	Edison	

Lustre	Map	Time	 Lustre	Shuffle	Time	 SHM	Map	Time	 SHM	Shuffle	Time	

Figure 8: Time for the map and reduce phases of GroupBy
on Edison for Lustre and ramdisk as we use additional nodes
to process larger datasets (weak scaling).

In Figure 8 we show the scalability of the GroupBy bench-
mark up to 16 nodes (384 cores) on Edison for a weak scaling
experiment where the problem is chosen small enough to fit
entirely in memory.

GroupBy measures worst-case shu✏e performance: a wide
shu✏e in which every partition must exchange data with
every other partition. The benchmark generates key-value
pairs locally within each partition and then performs a shuf-
fle to consolidate the values for each key. The shu✏e pro-
cess has two parts: in the first (map) part, each node sorts
the data by key and writes the data for each partition to a
partition-specific file. This is the local task prior to the stage
boundary in Figure 1. In the second (reduce) part, each node
reads locally-available data from the locally-written shu✏e
files and issues network requests for non-local data. This is
the global task after the stage boundary in Figure 1.

When running entirely in memory (ramdisk) performance
scales with nodes, while scalability is poor when using Lus-
tre. As illustrated, the Map phase scales on Lustre, while
the Shu✏e phase does not. For reference, on the worksta-
tion, mean task duration is 1,618 ms for ramdisk and 1,636
ms for local disk. On the Edison node, mean task duration
was 1,540 ms for ramdisk and 3,228 ms for Lustre.

We instrumented Spark’s Shu✏e Manager component to
track file I/O operations. During the write phase of the
shu✏e, a shu✏e file is created for each partition, and each
shu✏e file is written to as many times as there are partitions.
An index file is also written, which contains a map from keys
to a shu✏e file and o↵set. During the read phase, for each
local partition to read and each remote request received, the
index file is opened, data is read to locate the appropriate
shu✏e data file, which is then opened, read, and closed. The
number of file open operations during the shu✏e is quadratic
in the number of partitions O(partitions2).

To enable load balancing, the Spark documentation sug-
gests a default number of partitions as 4x the number of
cores. On 16 nodes of Edison, with a total of 384 cores,
then, we have 1,536 partitions, giving us 1,536 shu✏e data
files, each of which is opened 1,536 times during the write
phase and another 1,536 times during the read phase, re-
sulting in 4,718,592 file open. Not only is the number of file
opens is quadratic in partitions, but the cost per file open
also grows as we add nodes, as shown in Figure 9.

As the number of file I/O operations is linear with the
number of partitions/cores during the application I/O and

quadratic during the shu✏e stage, in the rest of paper we
concentrate the evaluation on the shu✏e stage.

0	

2000	

4000	

6000	

8000	

10000	

12000	

1	 2	 4	 8	 16	

Ti
m
e	
Pe

r	O
pe

ra
1o

n	
(m

ic
ro
se
co
nd

s)
	

Nodes	

GroupByTest	-	I/O	Components	-	Cori		

Lustre	-	Open	 BB	Striped	-	Open	
BB	Private	-	Open	 Lustre	-	Read	
BB	Striped	-	Read	 BB	Private	-	Read	
Lustre	-	Write	 BB	Striped	-	Write	

Figure 9: Average time for a open, read, and write op-
eration performed during the GroupBy execution with weak
scaling on Cori.

As for each read/write operation Spark will perform a file
open, the performance ratio of these operations is an indica-
tor of scalability. Figure 10 shows the performance penalty
incurred by repeatedly opening a file, performing one read
of the indicated size, and closing the file, versus opening
the file once, performing many reads of the indicated size,
and closing the file. Using many open-read-close cycles on
a workstation with a local disk is 6⇥ slower for 1 KB reads
than opening once and performing many reads, while on Edi-
son with Lustre, many open-read-close cycles is 56⇥ slower
than opening once and reading many times. Lustre on Cori
is similar, while the Burst Bu↵ers in striped mode reduce
the penalty to as low as 16⇥. All of the filesystems avail-
able on our HPC systems incur a substantial penalty from
open-per-read.

The scalability problems caused by the large number of
file opens are exacerbated by the potentially small size of
each read. Many data analytics applications have a struc-
ture in which many keys are associated with a small number
of values. For example in PageRank, most write operations
are smaller than 1KB. This reflects the structure of the data,
as most websites have few incoming links. The data is struc-
tures as key-value pairs with a site’s URL as the key and a
list of incoming links as the value, so most values are short.

1

11

21

31

41

51

61

1024 4096 16384 65536 262144 1048576

Sl
ow

do
w
n	
of
	n
(O
R
C
)	v
s.
	O
(n
R
)C

Read	Size	(bytes)

Many	Open-Read-Close	 Cycles	vs.	Open-Once	Read-Many	

Edison	Lustre Workstation	Local	Disk Cori	Lustre

Cori	Striped	BB Cori	Private	BB Cori	Mounted	File

Figure 10: Performance improvements from amortizing
the cost of file opens. We compare one read per open with
100,000 reads per open.

103

5.2 Improving Metadata Performance With File
Pooling

For problems small enough to fit in the main memory, the
ramdisk Spark configuration scales. However, in our exper-
iments many large problems ran out of memory at runtime,
particularly iterative algorithms where the block garbage
collection inside the shu✏e manager is not aggressive.

In order to accommodate large problems at scale we have
simply chosen to add a layer for pooling and caching open
file descriptors within Spark. All tasks within an Executor
(node) share a descriptor pool. We redefine FileInput-

Stream and FileOutputStream to access the pool for open
and close operations. Once a file is opened, subsequent close
operations are ignored and the descriptor is cached in the
pool. For any subsequent opens, if the descriptor is available
we simply pass it to the application. To facilitate multiple
readers, if a file is requested while being used by another
task, we simply reopen it and insert it into the pool.

This descriptor cache is subject to capacity constraints as
there are limits on the number of Inodes within the node
OS image, as well as site-wide Lustre limits on the number
of files open for a given job. In the current implementation,
each Executor is assigned its proportional number of entries
subject to these constraints.

We evaluated a statically sized file pool using two eviction
policies to solve capacity conflicts: LIFO and FIFO. For
brevity we omit detailed results and note that LIFO provides
best performance for the shu✏e stage. As results indicate,
this simple implementation enables Spark to scale.

Further refinements are certainly possible. Application
I/O files can be easily distinguished from intermediate shuf-
fle files and can be allocated from a smaller pool, using
FIFO. Within the shu✏e, we can tailor the eviction policy
based on the shu✏e manager behavior, e.g. when a block
is dropped from memory the files included in its lineage are
likely to be accessed together in time during recomputation.

Running out of Inodes aborts execution so in our im-
plementation a task blocks when trying to open a file and
the pool descriptor is filled at capacity. As this can lead
to livelock, we have audited the Spark implementation and
confirmed with traces that the implementation paradigm is
to open a single file at a time, so livelock cannot occur.

5.3 Impact of Metadata Access Latency on Scal-
ability

In Figure 11 we show the single node performance on Cori
in all configurations. As shown, using the back-end Lustre
file system is the slowest, by as much as 7⇥ when compared
to the best configuration. Both file system configurations
improve performance significantly by reducing the overhead
of calls to open files: ramdisk is up to ⇡ 7.7⇥ faster and
lustremount is ⇡ 6.6⇥ faster than Lustre.
filepool also improves performance in all cases. It is ⇡

2.2⇥ faster than Lustre, and interestingly enough is speeds
up the other two configurations. For example, for GroupBy
where each task performs O(partitions2) file opens, adding
pooling to the “local” file system (e.g. ramdisk+filepool)
improves performance by⇡ 15%. The performance improve-
ments are attributed to the lower number of open system
calls. For PageRank and BigData Benchmark the improve-
ments are a more modest 1% and 2% respectively. As it
never degraded performance, this argues for running in con-
figurations where our filepool implementation itself or a

user level file system is interposed between Spark and any
other “local” file systems used for shu✏e data management.

For all configurations the performance improvements are
proportional to the number of file opens during the shu✏e
stage: GroupBy is quadratic in partitions while in PageRank
it is a function of the graph structure.

In Figure 12 we show the scalability of GroupBy up to
eight nodes (256 cores). We present the average task time
and within it, distinguish between time spent in serializa-
tion (Serialization), disk access together with network access
(Fetch) and application level computation (App). ramdisk

is fastest, up to 6⇥ when compared to Lustre. filepool is
slower than ramdisk, but still significantly faster than Lus-
tre, up to 4⇥. The performance di↵erences between ramdisk

and filepool increase with the scale: while system call over-
head is constant, metadata latency performance degrades.
When combining filepool with lustremount we observe
performance improvements ranging from 17% on one node
to 2% on 16 nodes.

In Figure 13 we present scalability for PageRank (left)
and BigData Benchmark (right). As mentioned, the inputs
for these benchmarks are not very large and we scale up to
8 nodes. The trends for PageRank are similar to GroupBy
and we observe very good performance improvements from
filepool and ramdisk. The improvements from combining
pooling with ramdisk are up to 3%. In addition, when strong
scaling PageRank the performance of ramdisk improves only
slightly with scale (up to 25%), while configurations that
touch the file system (Lustre and BurstBuffer) improve by
as much as 3.5⇥. The gains are explained by better paral-
lelism in the read/write operations during shu✏e.

The performance of BigData Benchmark is least a↵ected
by any of our optimizations. This is because behavior is
dominated by the initial application level I/O stage, which
we did not optimize. This is the case where ramdisk helps
the least and further performance improvements can be had
only by applying the file pooling optimization or lustremount.
BigData Benchmark illustrates the fact that any optimiza-
tions have to address in shu✏e in conjunction with the ap-
plication level I/O.

When using the Yarn resource manager we could not e↵ec-
tively scale Spark up to more than 16 nodes on either Edison
or Cori. The application runs but executors are very late in
joining the job and repeatedly disappear during execution.
Thus the execution while reserving the initially requested
number of nodes, proceeds on far fewer. After exhausting
timeout configuration parameters, we are still investigating
the cause.

For larger scale experiments we had to use the Spark stan-
dalone scheduler, results presented in Figure 12 right. While
Yarn runs one executor (process) per node, the Spark man-
ager runs one executor per core. The Lustre configuration
stops scaling at 512 cores. The standalone scheduler limits
the the performance impact of our file pooling technique:
with Yarn we provide a per node cache while with the stan-
dalone scheduler we provide a per core cache. This is re-
flected in the results: while with YARN filepool scales
similarly to ramdisk, it now scales similarly to Lustre and
we observe speedup only as high as 30%. Note that file-

pool can be reimplemented for the standalone scheduler, in
which case we expect it to behave again like ramdisk.

As illustrated in Figure 14 we successfully (weak) scaled
ramdisk up to 10,240 cores. Lustre does not scale past 20

104

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ti
m
e	
(m

s)

Cori	- GroupBy	- Time	to	Job	Completion

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Ti
m
e	
(m

s)

Cori	- PageRank	- Time	to	Job	Completion

Figure 11: GroupBy and PageRank performance on a single node of Cori.

0

5000

10000

15000

20000

25000

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

1 2 4 8 16

Ti
m
e(
m
s)

Serialize Fetch App

0

5000

10000

15000

20000

25000

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

1 2 4 8

Ti
m
e(
m
s)

Serialize Fetch App

Figure 12: GroupBy weak scaling on Cori up to 8 nodes (256 cores). Top: with YARN. Bottom: with the Spark standalone
scheduler.

nodes, where we start observing failures and job timeouts.
When running on the BurstBuffer we observe scalability
up 80 nodes (2,560 cores), after which jobs abort. Note that
BurstBuffer performance is highly variable at scale and we
report the best performance observed across all experiments.

Figure 15 compares Lustre, ramdisk and lustremount.
To use lustremount on more than one node, we run Spark
inside a Shifter user-defined image. With Shifter, each node
mounts a single image containing JVM and Spark installa-
tions in read-only mode and a per-node read/write loopback
file system. Because the JVM and Spark are stored on a
file-backed filesystem in Shifter, file opens required to load
shared libraries, Java class files, and Spark configuration files
are also o✏oaded from the metadata server, improving per-
formance over configurations where Spark is installed on the
Lustre filesystem. Identically configured GroupBy bench-

marks running on ramdisk with Spark running in Shifter is
up to 16% faster than than with Spark itself installed on
Lustre. In addition, since the mount is private to a single
node, the kernel bu↵er cache and directory entry cache can
safely cache metadata blocks and directory entries. This can
significantly reduce the number of metadata operations and
improves performance for small I/O operations. For the
lustremount implementation in Shifter initializes a sparse
file in the Lustre file system for each node in the Spark clus-
ter. These files are then formatted as XFS file systems and
mounted as a loop back mount during job launch. Unlike
using ramdisk, the lustremount approach is not limited to
the memory size of the node and it doesn’t take away mem-
ory resources from the application. Using lustremount we
can scale up to 10,240 cores, with time to completion only
13% slower than ramdisk at 10,240 cores.

105

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Lu
st
re

Lu
st
re
	+	
Po

ol
Ra

m
di
sk

Ra
m
di
sk
	+
	P
oo

l
BB

	S
tr
ip
ed

BB
	S
tr
ip
ed

	+	
Po

ol
BB

	P
riv

at
e

BB
	P
riv

at
e	
+	
Po

ol
Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Lu
st
re
	+	
Po

ol
Ra

m
di
sk

Ra
m
di
sk
	+
	P
oo

l
BB

	S
tr
ip
ed

BB
	S
tr
ip
ed

	+	
Po

ol
BB

	P
riv

at
e

BB
	P
riv

at
e	
+	
Po

ol
Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Lu
st
re
	+	
Po

ol
Ra

m
di
sk

Ra
m
di
sk
	+
	P
oo

l
BB

	S
tr
ip
ed

BB
	S
tr
ip
ed

	+	
Po

ol
BB

	P
riv

at
e

BB
	P
riv

at
e	
+	
Po

ol
Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Lu
st
re
	+	
Po

ol
Ra

m
di
sk

Ra
m
di
sk
	+
	P
oo

l
BB

	S
tr
ip
ed

BB
	S
tr
ip
ed

	+	
Po

ol
BB

	P
riv

at
e

BB
	P
riv

at
e	
+	
Po

ol
Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

1 2 4 8

Ti
m
e(
m
s)

Cori	- PageRank	- Strong	Scaling

Running	Time

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

Lu
st
re

Lu
st
re
	+	
Po

ol

Ra
m
di
sk

Ra
m
di
sk
	+
	P
oo

l

BB
	S
tr
ip
ed

BB
	S
tr
ip
ed

	+	
Po

ol

BB
	P
riv

at
e

BB
	P
riv

at
e	
+	
Po

ol

Lu
st
re
m
ou

nt

Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Lu
st
re
	+	
Po

ol

Ra
m
di
sk

Ra
m
di
sk
	+
	P
oo

l

BB
	S
tr
ip
ed

BB
	S
tr
ip
ed

	+	
Po

ol

BB
	P
riv

at
e

BB
	P
riv

at
e	
+	
Po

ol

Lu
st
re
m
ou

nt

Lu
st
re
m
ou

nt
	+	
Po

ol

1 5

Ti
m
e(
m
s)

Cori	- BigDataBenchmark	- Weak	Scaling

Running	Time

Figure 13: PageRank and BigData Benchmark scaling on Cori, up to 8 nodes (256 cores).

5.4 Impact of BurstBuffer on Scalability
The BurstBuffer hardware provides two operating modes,

private where files are stored on a single blade (device) and
striped where files are stored across multiple blades.

In Figure 7 we present the metadata latency and read
operations latency for a single node run of BigData Bench-
mark. As illustrated, the mean time per operation when
using the BurstBuffer is higher than the back-end Lustre
in both striped and private mode. This is expected as inter-
posing the BurstBuffer layer between processors and Lustre
can only increase latency. On the other hand the variance is
reduced 5⇥ compared to Lustre. When comparing striped
mode with the private mode for BigData Benchmark striped
exhibits 15% lower variance than private.

Higher latency per operation a↵ects performance at small
scale and Spark single node performance with BurstBuffer

is slightly worse than going directly to Lustre. On the other
hand, lower variability translates directly in better scaling as
illustrated in Figures 9 and 12. Up to 40 nodes (1,280 cores)
BurstBuffer provides performance comparable to running
in memory with ramdisk. As expected, the configuration
with lower variability (striped) exhibits better scalability
than private mode. This is a direct illustration of the need
to optimize for the tail latency at scale.

6. IMPROVING SHUFFLE SCALABILITY
WITH BETTER BLOCK MANAGEMENT

Even when running using a good configuration available,
e.g. filepool+ramdisk, some algorithms may not scale
due to the memory management within the shu✏e manager,
which introduces excessive vertical data movement. The be-
havior of the PageRank algorithm illustrates this.

In Figure 16 left we show the evolution of the algorithm for
a problem that fits entirely in main memory on one node of
Edison. We plot both memory usage and the duration of an
iteration over the execution. As shown, execution proceeds
at a steady rate in both memory and time. On the right
hand side of the figure, we plot the evolution of the algorithm
when the working set does not fit in the main memory. As
illustrated, each iteration becomes progressively slower and
each iteration takes double the amount of its predecessor.
The same behavior is observed on the workstation, albeit
less severe.

After investigation using the instrumentation framework
already developed, we observed that during constrained exe-
cution the amount of data read from disk grows at a rate two
orders of magnitude higher than during unconstrained exe-
cution. After further investigation, we attributed the root
cause of the problem to the shu✏e block manager. When-
ever running out of memory, the block manager evicts the
least recently used block. The first subsequent access to the
evicted block triggers recomputation, which evicts another

106

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

1 5 10 20 40 80 160 320

Ti
m
e	
(m

s)

Nodes

Cori	- GroupBy	- Weak	Scaling	- Time	to	Job	Completion

Ramdisk

Burst	Buffer

Slowdown

Figure 14: GroupBy at large scale on Cori, up to 320 nodes
(10,240 cores). Standalone scheduler. Series “Slowdown” shows
the slowdown of BurstBuffer against ramdisk, plotted using
the secondary right axis.

0

100000

200000

300000

400000

500000

600000

700000

1 5 10 20 40 80 160 320

Ti
m
e	
(m

s)

Nodes

Cori	- GroupBy	- Weak	Scaling	- Time	to	Job	Completion

Ramdisk

Lustremount

Lustre

Figure 15: GroupBy at large scale on Cori, up to 320 nodes
(10,240 cores). Standalone scheduler. Lustre, ramdisk, and
lustremount.

0
5
10
15
20
25
30
35
40
45

0

2000

4000

6000

8000

10000

0 500 1000 1500 2000

Ite
ra

tio
n

M
em

or
y

U
se

d
(m

eg
ab

yt
es

)

Timestamp (quarter seconds since start)

 Unconstrained Memory - LiveJournal Graph - 40 iterations

memUsed iteration

0

2

4

6

8

10

0

2000

4000

6000

8000

10000

12000

-445 555 1555 2555 3555 4555 5555 6555 7555 8555 9555

Ite
ra

tio
n

M
em

or
y

U
se

d
(m

eg
ab

yt
es

) /

B
lo

ck
s

D
ro

pp
ed

Timestamp (quarter seconds since start)

Constrained Memory - LiveJournal Graph - 10 iterations - 6 GB limit

value dropped iteration

Figure 16: PageRank performance on a single node of Edison. The amount of memory used during execution is plotted
against the right hand side axis. The time taken by each iteration is plotted against the left hand side axis. Execution under
constrained memory resources slows down with the number of iterations.

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

B
yt

es

M
em

or
y

U
se

d
(m

eg
ab

yt
es

)

Timestamp (quarter seconds since start)

Unconstrained Memory – 40 Iterations

memUsed shuffleBytesWritten shuffleBytesRead 0

1E+11

2E+11

3E+11

4E+11

0

2000

4000

6000

8000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

B
yt

es

M
em

or
y

U
se

d
(m

eg
ab

yt
es

)

Timestamp (quarter seconds since start)

Constrained Memory -- 10 iterations

memUsed shuffleBytesWritten shuffleBytesRead

Figure 17: PageRank IO behavior on a single node of Edison. The amount of memory used during execution is plotted
against the right hand side axis. The amount of bytes read and written from disk is plotted against the left hand side axis.
While memory usage stays constant, the amount of bytes read explodes under constrained memory resources.

block needed for the partial solution which in turn triggers
recomputation and eviction of blocks needed. This results
in orders of magnitude increases in vertical data movement,
as illustrated in Figure 17.

This behavior a↵ects the scaling of iterative algorithms on
all systems and it should be fixed. In the data center it is less
pronounced as local disks are better at latency. As shown,
it is very pronounced on our HPC systems. One lesson here
is that because storage behaves di↵erently, in particular for
small requests, there exists incentive to specifically tune the
shu✏e block manager for HPC.

For the PageRank algorithm we have actually an algorith-
mic fix which involves marking as persistent the intermedi-
ate result RDDs from each iteration. This causes Spark to
write them to the back-end storage. Upon eviction, a persis-
tent block is read from storage instead of being recomputed.
Figure 18 shows the performance of the fixed PageRank al-
gorithm and we observe performance improvements as high
as 11⇥. Note that all the performance findings in this paper
are reported on this fixed algorithm. The original GraphX

implementation does not scale beyond a single node on our
systems.

There are two possible generic solutions to this problem.
First, we could implement a system which tracks how often
shu✏e data must be reread from disk and automatically per-
sist partitions that depend on that data when a threshold is
exceeded. Second, we could track the cost of recomputing
and rereading the lineage of an RDD and, rather than evict-
ing on a least-recently-used basis, instead evict the block
which will have the lowest recompute or reread cost.

Note that we were initially interested in evaluating the
spark-perf machine learning benchmark suite [3] for this
study. Due to this problem with iterative algorithms, we
postponed the evaluation to the time when we can consider
the aforementioned fix in the shu✏e manager.

7. DISCUSSION
Metadata latency and its relative lack of scalability is a

problem common to other [4, 8] parallel file systems used in
HPC installations. The shu✏e stage is at worst quadratic

107

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

0	 100	 200	 300	 400	 500	 600	

N
um

be
r	
of
	P
ar
6
6
on

s	

It
er
a6

on
	

Timestamp	(quarter	seconds	since	start)	

PageRank	-	LiveJournal	Graph	-	Unconstrained	Memory	-	10	itera6ons	

itera6on	 par66onsComputed	 par66onsFound	

0	

50000	

100000	

150000	

200000	

250000	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

0	 1000	 2000	 3000	 4000	 5000	 6000	 7000	 8000	 9000	

N
um

be
r	
of
	P
ar
6
6
on

s	

It
er
a6

on
	

Timestamp	(quarter	seconds	since	start)	

PageRank	-	LiveJournal	Graph	-	Constrained	Memory	-	10	itera6ons	

itera6on	

par66onsComputed	

par66onsFound	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

0	 100	 200	 300	 400	 500	 600	 700	

N
um

be
r	
of
	P
ar
6
6
on

s	

It
er
a6

on
	

Timestamp	(quarter	seconds	since	start)	

PageRank	-	LiveJournal	Graph	-	Constrained	Memory	-	10	itera6ons	

itera6on	 par66onsComputed	 par66onsFound	

Figure 18: Number of partitions read during the shu✏e stage for PageRank˙ Left: execution with unconstrained memory.
Right: when memory is constrained the number of partitions read from disk is one order of magnitude larger. Right: persisting
intermediate results fixes the performance problems and we see a reduction by a order of magnitude in partitions read from
disk.

with cores in file open operations, thus metadata latency
can dominate Spark performance. We believe our findings
to be of interest to more than Cray with Lustre HPC users
and operators. While Spark requires file I/O only for the
shu✏e phase, Hadoop requires file I/O for both map and
reduce phases and also su↵ers from poor performance when
run without local storage [26]. Our techniques may therefore
also be applicable to Hadoop on HPC systems.

The hardware roadmap points towards improved perfor-
mance and scalability. Better MDS hardware improves base-
line performance (per operation latency), as illustrated by
the di↵erences between Edison and Cori. Multiple MD-
Ses will improve scalability. The current usage of Burst-
Buffer I/O acceleration on Cori, while it degrades baseline
node performance, it improves scalability up to thousands of
cores. Better performance from it can be expected shortly,
as the next stage on the Cori software roadmap provides a
caching mode for BurstBuffer which may alleviate some of
the current latency problems. It may be the case that the
BurstBuffer is too far from the main memory, or that it is
shared by too many nodes for scales beyond O(103). The
HPC node hardware evolution points towards large NVRAM
deployed inside the nodes, which should provide scalability
with no capacity constraints.

As our evaluation has shown, software approaches can def-
initely improve performance and scalability. Besides ours,
there are several other e↵orts with direct bearing. Deploying
Spark on Tachyon [19] with support for hierarchical storage
will eliminate metadata operations. In fact, we have con-
sidered this option ourselves but at the time of the writing
the current release of Tachyon, 0.8.2, does not fully support
hierarchical storage (missing append). We expect its per-
formance to fall in between that of our configuration with a
local file system backed by Lustre and ramdisk+filepool.
Note also that our findings in Section 6 about the necessity
of improving block management during the shu✏e stage for
iterative algorithms are directly applicable to Tachyon.

The Lustre roadmap also contains a shift to object based
storage with local metadata. Meanwhile, developers [13, 26]
have already started writing and tuning HDFS emulators
for Lustre. The initial results are not encouraging and Lus-
tre is faster than the HDFS emulator. We believe that the
lustremount is the proper configuration for scalability.

The performance improvements due to filepool when us-
ing “local” file systems surprised us. This may come from
the di↵erent kernel on the Cray compute nodes, or it may
be a common trait when running in data center settings. As
HPC workloads are not system call intensive, the compute

node kernels such as Cray CNL may not be fully optimized
for them. Running commercial data analytics workloads on
HPC hardware may force the community to revisit this de-
cision. It is definitely worth investigating system calls over-
head and plugging in user level services (e.g. file systems)
on commercial clouds.

Luu et al [21] discuss the performance of HPC applica-
tions based on six years of logs obtained from three super-
computing centers, including on Edison. Their evaluation
indicates that there is commonality with the Spark behav-
ior: HPC applications tend to spend 40% of their I/O time
in metadata operations than in data access and they tend to
use small data blocks. The magnitude of these operations in
data analytics workloads should provide even more incentive
to system developers to mitigate this overhead.

We are interested in extending this study with a compar-
ison with Amazon EC2 to gain more quantitative insights
into the performance di↵erences between systems with node
attached storage and network attached storage. Without
the optimizations suggested in this paper, the comparison
would have favored data center architectures: low disk la-
tency provides better node performance and masks the defi-
ciencies in support for iterative algorithms. With our opti-
mizations(filepool+lustremount), single node HPC per-
formance becomes comparable and we can set to answer
the question of the influence of system design and software
configuration on scalability. We believe that we may have
reached close to the point where horizontal data movement
dominates in the HPC installations as well. Such a compar-
ison can guide both system and software designers whether
throughput optimizations in large installations need to be
supplemented with latency optimization in order to support
data analytics frameworks.

8. RELATED WORK
Optimizing data movement in Map-Reduce frameworks

has been the subject of numerous recent studies [29, 17, 20,
11]. Hadoop introduced an interface for pluggable custom
shu✏e [15, 29] for system specific optimizations. InfiniBand
has been the target of most studies, due to its prevalence
in both data centers and HPC systems. HDFS emulation
layers have been developed for parallel filesystems such as
PLFS [9] and PVFS [27]. These translate HDFS calls into
corresponding parallel filesystem operations, managing read-
ahead bu↵ering and the distribution (striping) of data across
servers. In Spark, only input and output data is handled
through the HDFS interface, while the intermediate shu✏e

108

data is handled through the ordinary Java file API. Our
work primarily optimizes intermediate shu✏e data storage.

Optimizing the communication between compute nodes
(horizontal data movement) has been tackled through RDMA-
based mechanisms [29, 17, 20]. In these studies, optimized
RDMA shows its best benefit when the data is resident in
memory. Therefore, only the last stage of the transfer is
carried out using accelerated hardware support. The client-
server programming model is still employed to service re-
quests because data are not guaranteed to be in memory.
Performance is optimized through the use of bounded thread
pool SEDA-based mechanism (to avoid overloading compute
resources) [17], or through the use of one server thread per
connection [29] when enough cores are available.

As we use network-attached storage, the bottleneck shifts
to the vertical data movement. A recent study by Cray on
its XC30 system shows that an improved inter-node com-
munication support for horizontal movement may not yield
significant performance improvement [26]. Note that this
study for Hadoop also recommends using memory based file
systems for temporary storage.

Optimizing vertical movement, which is one of the main
motivation for the introduction of Spark, has been addressed
by the file consolidation optimization [11] and by optimiza-
tions to persist objects in memory whenever possible. Our
experiments have been performed with consolidation. We
have analyzed the benefits of extending the optimization
from per-core consolidation to per-node consolidation. As
this will reduce only the number of file creates and not the
number of file opens, we have decided against it.

9. CONCLUSION
We ported and evaluated Spark on Cray XC systems de-

veloped in production at a large supercomputing center. Un-
like data centers, where network performance dominates, the
global file system metadata overhead in fopen dominates in
the default configuration and limits scalability to O(100)
cores. Configuring Spark to use “local” file systems for the
shu✏e stage eliminates this problem and improves scalabil-
ity to O(10,000) cores. As local file systems pose restrictions,
we develop a user level file pooling layer that caches open
files. This layer improves scalability in a similar manner to
the local file systems. When combined with the local file
system, the layer improves performance up to 15% by elim-
inating open system calls.

We also evaluate a configuration with SSDs attached closer
to compute nodes for I/O acceleration. This degrades sin-
gle node performance but improves out-of-the-box scalabil-
ity from O(100) to O(1,000) cores. Since this is the first
appearance of such system and its software is still evolving,
it remains to be seen if orthogonal optimizations still need
to be deployed with it.

Throughout our evaluation we have uncovered several prob-
lems that a↵ect scaling on HPC systems. Fixing the YARN
resource manager and improving the block management in
the shu✏e block manager will benefit performance.

Overall, we feel optimistic about the performance of data
analytics frameworks in HPC environments. Our results are
directly translatable to others, e.g. Hadoop. We scaled
Spark up to O(10,000) cores and since, our NERSC col-
leagues have adopted the Shifter lustremount implementa-
tion and demonstrated runs up to 50,000 cores. Engineering
work to address the problems we identified can only improve

its performance. All that remains to be seen is if the ini-
tial performance and productivity advantages of Spark are
enough to overcome the psychological HPC barrier of ex-
pecting bare-metal performance from any software library
whatsoever.

Acknowledgements
We would like to thank Douglas M. Jacobsen at NERSC for
implementing the support for file mounts inside Shifter. This
work has been partially supported by the US Department of
Defense and by Intel through an Intel Parallel Computing
Center grant to LBNL.

10. REFERENCES
[1] Cori Phase 1. https:

//www.nersc.gov/users/computational-systems/cori/.
[2] National Energy Research Scientific Computing

Center. https://www.nersc.gov.
[3] spark-perf benchmark.

https://github.com/databricks/spark-perf.
[4] S. R. Alam, H. N. El-Harake, K. Howard,

N. Stringfellow, and F. Verzelloni. Parallel i/o and the
metadata wall. In Proceedings of the sixth workshop on
Parallel Data Storage, pages 13–18. ACM.

[5] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia. Spark SQL: Relational
data processing in spark. In Proceedings of the 2015
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 1383–1394.
ACM.

[6] S. Babu and L. Co Ting Keh. Better visibility into
spark execution for faster application development. In
Spark Summit, 2015.

[7] P. J. Braam and others. The Lustre storage
architecture.

[8] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel,
and T. Ludwig. Small-file access in parallel file
systems. In IEEE International Symposium on Parallel
Distributed Processing, 2009. IPDPS 2009, pages 1–11.

[9] C. Cranor, M. Polte, and G. Gibson. HPC
computation on Hadoop storage with PLFS. Technical
Report CMU-PDL-12-115, Carnegie Mellon
University, 2012.

[10] T. Crowe, N. Lavender, and S. Simms. Scalability
testing of dne2 in lustre 2.7. In Lustre Users Group,
2015.

[11] A. Davidson and A. Or. Optimizing Shu✏e
Performance in Spark. UC Berkeley Tech. Report.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. 51(1):107–113.

[13] J. M. Gallegos, Z. Tao, and Q. Ta-Dell. Deploying
hadoop on lustre storage: Lessons learned and best
practices. Lustre User Group Meeting., 2015.

[14] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica. Graphx: Graph
processing in a distributed dataflow framework. In
Proceedings of OSDI, pages 599–613.

[15] A. Hadoop. Pluggable Shu✏e and Pluggable Sort.
https://hadoop.apache.org/docs/current/
hadoop-mapreduce-client/

109

hadoop-mapreduce-client-core/
PluggableShu✏eAndPluggableSort.html.

[16] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in
the data center. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’11, pages 295–308, Berkeley,
CA, USA, 2011. USENIX Association.

[17] N. S. Islam, M. W. Rahman, J. Jose,
R. Rajachandrasekar, H. Wang, H. Subramoni,
C. Murthy, and D. K. Panda. High performance
rdma-based design of hdfs over infiniband. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 35:1–35:35, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press.

[18] D. M. Jacobsen and R. S. Canon. Contain this,
unleashing docker for hpc. Proceedings of the Cray
User Group, 2015.

[19] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and
I. Stoica. Tachyon: Reliable, memory speed storage for
cluster computing frameworks. In Proceedings of the
ACM Symposium on Cloud Computing, pages 1–15.
ACM.

[20] X. Lu, M. Rahman, N. Islam, D. Shankar, and
D. Panda. Accelerating spark with RDMA for big
data processing: Early experiences. In 2014 IEEE
22nd Annual Symposium on High-Performance
Interconnects (HOTI), pages 9–16.

[21] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns,
K. Harms, M. Prabhat, S. Byna, and Y. Yao. A
multiplatform study of I/O behavior on petascale
supercomputers. In Proceedings of the 24th
International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’15, 2015.

[22] X. Meng, J. Bradley, B. Yavuz, E. Sparks,
S. Venkataraman, D. Liu, J. Freeman, D. B. Tsai,
M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar. MLlib:
Machine learning in apache spark.

[23] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker,
B.-G. Chun, and V. ICSI. Making sense of
performance in data analytics frameworks. In
Proceedings of the 12th USENIX Symposium on
Networked Systems Design and Implementation
(NSDI)(Oakland, CA, pages 293–307.

[24] M. Poess, B. Smith, L. Kollar, and P. Larson. Tpc-ds,
taking decision support benchmarking to the next
level. In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data,
pages 582–587. ACM.

[25] R.-I. Roman, B. Nicolae, A. Costan, and G. Antoniu.
Understanding spark performance in hybrid and
multi-site clouds. In 6th International Workshop on
Big Data Analytics: Challenges and Opportunities
(BDAC-15), 2015.

[26] J. Sparks, H. Pritchard, and M. Dumler. The cray
framework for hadoop for the cray XC30.

[27] W. Tantisiriroj, S. W. Son, S. Patil, S. J. Lang,
G. Gibson, and R. B. Ross. On the duality of
data-intensive file system design: reconciling hdfs and
pvfs. In Proceedings of 2011 International Conference
for High Performance Computing, Networking,
Storage and Analysis, page 67. ACM, 2011.

[28] UC Berkeley AmpLab. Big data benchmark.
[29] Y. Wang, X. Que, W. Yu, D. Goldenberg, and

D. Sehgal. Hadoop acceleration through network
levitated merge. In Proceedings of 2011 International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, pages
57:1–57:10. ACM.

[30] T. White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 1st edition, 2009.

[31] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2. USENIX
Association.

[32] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: cluster computing
with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing,
volume 10, page 10.

110

