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Abstract. We present a method for evaluating ICA separation of artifacts from 
EEG (electroencephalographic) data. Two algorithms, Infomax and FastICA, 
were applied to "synthetic data," created by superimposing simulated blinks on 
a blink-free EEG. To examine sensitivity to different data characteristics, mul-
tiple datasets were constructed by varying properties of the simulated blinks. 
ICA was used to decompose the data, and each source was cross-correlated 
with a blink template. Different thresholds for correlation were used to assess 
stability of the algorithms. When a match between the blink-template and a 
component was obtained, the contribution of the source was subtracted from the 
EEG. Since the original data were known a priori to be blink-free, it was possi-
ble to compute the correlation between these "baseline" data and the results of 
different decompositions. By averaging the filtered data, time-locked to the 
simulated blinks, we illustrate effects of different outcomes for EEG waveform 
and topographic analysis. 

1   Introduction 

Accurate assessment of signal decomposition methods such as ICA should account 
for multiple parameters that affect the decomposition, including characteristics of the 
input data (properties of the signal and noise activity) and properties of different ICA 
algorithms and implementations (e.g., contrast functions, tolerance levels). The theo-
retical underpinning of ICA and its various algorithms have been extensively dis-
cussed in the literature [1,2,3], and experiments have been designed to demonstrate 
the effectiveness of the procedure (for example, see [4]). However, there are few 
empirical studies measuring the effectiveness of ICA algorithms, and even fewer 
discussing these measures in the context of specific applications. One reason for the 
lack of empirical studies is the lack of empirical measures of effectiveness [5]. 

To this end, the present paper describes a new method for evaluation of ICA de-
compositions and applies this method to the problem of artifact extraction from multi-
channel EEG (electroencephalographic) data. The goal of this application was to 
compare the efficacy of two ICA algorithms, FastICA [6] and Infomax [3], in remov-
ing blinks from EEG signals. However, the procedure can be generalized to other 
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problems and algorithms. Our technique, described below, is similar to Harmeling, et 
al. [5] and Zibulevski and Zeevi [7] except that our approach uses realistic data, thus 
giving the user a familiar basis for qualitative comparisons.  

The results of our tests demonstrate the quantitative and qualitative utility of 
measures in evaluating ICA decomposition. With this method, it is possible to charac-
terize the sensitivity of different ICA methods to multiple variables and perhaps, in 
future applications, to determine the appropriateness of different ICA methods for 
particular data analysis goals. Further, in addition to quantitative measures, we evalu-
ated the effects of different ICA results on EEG waveforms and topographies. This 
allowed us to visualize the results and to examine the practical implications of differ-
ent statistical outcomes. 

2   Methods 

EEG Acquisition and Preprocessing. EEG data were acquired from 256 scalp 
electrodes EEG net (Electrical Geodesics, Inc) referenced to Cz in a language task 
described elsewhere. Data contaminated by blinks were manually marked and 
removed, providing a blink-free EEG ("baseline") for evaluating the success of the 
blink removal. The EEG was downsampled to 34 channels, making it feasible to 
examine spatial and temporal properties of all 34 extracted components.  

 

Fig. 1. Blink topography. Red, positive. Blue, negative. LE = left eye. RE = right eye. 

Creating the Blink Template. Thirty-two segments of data with representative 
blinks were segmented from the continuous data. The segments were aligned to the 
peak of each blink and averaged to derive a blink template (Fig. 1).   

Construction of Synthesized Datasets. To construct the synthesized data, the raw 
EEG data were inspected for ocular artifacts, and all trials contaminated with blink 
activity were removed from the recording, resulting in a "blink-free" EEG, to which a 
stream of blinks with known spatial and temporal characteristics was added (Fig 2). 
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Fig. 2. Construction of "synthetic" data. Top panel, original data (~10 sec). Center panel, simu-
lated blinks (Dataset #7). Bottom panel, original data plus simulated blinks. 

To assess the robustness of the two algorithms and their sensitivity to data parame-
ters, seven such datasets were constructed. The datasets differed with respect to blink 
amplitude, blink duration, and inter-blink interval. Datasets 1-5 contained blink acti-
vations of constant duration with inter-blink spacing of 400 milliseconds and 5000 
milliseconds, respectively. Intensity of the blink activations ranged from 25% (Set 
#1) to 400% (Set #5) the intensity of the largest non-blink activity. Datasets 6 and 7 
contained blinks of variable duration, spacing and intensity (Table 1). 

Table 1. Test data set characteristics. 

Data Set Blink Strength Inter-blink Spacing (ms) Blink Duration (ms) 
1 25% 5000 400 
2 50% 5000 400 
3 100% 5000 400 
4 200% 5000 400 
5 400% 5000 400 
6 50%-200% 635-2500 312-5000 
7 255-400% 312-5000 25-400 

ICA Algorithms and Blink Removal Procedures. Both ICA algorithms were 
implemented in Matlab. The Infomax code [8] is an enhanced version of the Infomax 
algorithm of Bell and Sejnowski [2]; the FastICA code [9] uses a fixed-point 
algorithm. To remove blinks, we used a modified version of the ICABlinkToolbox 
[10,11]. 

The FastICA decomposition was performed using two contrast functions, the cubic 
(default) contrast function and a hyperbolic tangent (tanh) function. In the initial 
tests, the tanh function outperformed the cubic function. Therefore, in subsequent 
analyses, we used the tanh contrast function only. The Infomax decomposition used 
the developer’s default settings. The projections of the components onto the EEG 
detector array ("spatial correlates" for short) were correlated with the blink template. 
Then contribution of the highest correlated component was removed from the dataset 
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and the cleaned and original datasets were compared to measure the quality of the 
ICA algorithm’s decomposition. 

Metrics. The covariance between corresponding channels of the ICA-filtered EEG 
data and the original EEG data was computed for each dataset. To provide qualitative 
metrics for comparison of the different algorithms, we averaged the original and ICA-
filtered data, time-locking the averages to the peak of the simulated blinks. The 
resulting averages should therefore accentuate residual blink activity after data 
cleaning. This procedure provides a visual reference for the significance of the 
correlation values. 

3   Results 

The overall (grand average) correlation between the original and cleaned data, for 
both ICA algorithms was 0.95 or better for FastICA and 0.969 for Infomax. When 
broken down for the separate electrodes, the lowest correlations occurred for chan-
nels 2, 4, and 6: depending on the particular dataset, and the threshold for blink iden-
tification, correlations at these channels ranged from about 0.55 to about 0.70. This is 
not unexpected, since these channels are located just above the eyes (Fig. 1).  

A more detailed comparison of the results for FastICA and Infomax revealed sev-
eral important differences. The most salient difference is that Infomax decomposi-
tions varied little across the datasets, whereas the FastICA decompositions showed 
considerable variation (Fig. 3). This suggests that changes in the properties of the 
blink data may affect factor extraction, allocation of variance across the factors, or 
both. As mentioned previously, FastICA implemented with the default (cubic) con-
trast function fared considerably worse than the implementation with the tanh con-
trast function. Therefore, subsequent analyses focused on the comparison of Infomax 
and FastICA using the tanh contrast function. Figure 4 demonstrates that the periorbi-
tal channels show the worst correlations. In addition, the largest differences between 
Infomax and FastICA are observed over these same channels, where blink activity is 
most pronounced. 

Infomax was similarly robust to changes in tolerance (threshold for correlation 
with blink template), whereas FastICA on average showed worse accuracy at lower 
tolerances (data not shown here). In general, Infomax was more stable and more 
robust to changes in properties of the data and ICA implementation. 

Further inspection of the ICA decompositions revealed that where FastICA was 
less successful, more than one spatial projector correlated strongly with the blink 
template, a strong correlation being any correlation above the experimentally deter-
mined threshold of 0.90. For example, as illustrated in Figure 5 above, FastICA-1, 
one of the least successful decompositions performed for this report, contained 6 
projectors that matched the blink template > 0.90 as compared to InfoMax and Fas-
tICA-1, which each contained only one. 

To illustrate the effects of successful and less successful ICA decompositions, we 
examined the ICA-cleaned data for different FastICA and Infomax runs (Dataset 5) 
after removing the source that was perfectly correlated with the blink template. Be-
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cause FastICA gave more variable results across runs, we selected one example of a 
successful FastICA run (run 2) and one example of a less successful run (run 1). 
Although "the same" source was removed from the data in each case, the effects were 
very different, reflecting misallocation of variance when additional sources showed a 
close (but less than perfect) match to the blink template, as illustrated in Figure 6.  

The failure of FastICA (run 1) that is evident in the averaged waveforms is also 
visible in the topographic distribution of the filtered data (Fig. 7). Note the resem-
blance of the topography for FastICA (run 1) to the blink template (Fig. 1). This out-
come appears to reflect misallocation of variance to additional components in the 
decomposition [5]. 

 
 

 

Fig. 3. Graph of 
correlations between 
original and ICA-
filtered data across 
the seven datasets. 
Thin line, FastICA 
with cubic constrast 
function. Thick line, 
FastICA with tanh 
contrast function. 
Dotted line, Infomax. 

Fig. 4. Correlation 
between original & 
ICA-filtered data 
across the 34 elec-
trodes. 
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Fig. 5. Correlation between the spatial projectors of the independent component activations and 
the synthetic blink activitity template. The figure shows the 14 components with the strongest 
correlations. 

 

Fig. 6. EEG waveforms, averaged to the peak of the blink activity. Note residual blinks in run 1 
for FastICA, where more than one source was strongly correlated with the blink template, and 
the source activations revealed misallocation of variance (cf. Fig 5). 
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Fig. 7. Topography of blink-averaged data, centered at peak of blink activity. Red, positive 
voltage. Blue, negative voltage. FastICA run1 is the less successful decomposition. Note the 
remaining blink activity at this time point. 

4   Discussion 

In this report we have demonstrated a new method for evaluation of ICA for removal 
of blink activity from multichannel EEG. The grand average correlation suggest that 
Infomax and FastICA were highly accurate in their ability to separate out the simu-
lated blinks from the EEG. In every ICA run, exactly one of the extracted compo-
nents showed a perfect correlation with the blink topography used to construct the 
simulated blinks. On the other hand, the activations corresponding to this source 
differed across runs and across ICA algorithms and implementations. In every case, 
the source activations were less than perfectly correlated with the time series for the 
simulated blinks. Infomax showed the closest correspondence, while FastICA was 
more variable, showing excellent correspondence on some runs, and misallocation of 
variance on other runs. Future studies will examine causes of misallocation of vari-
ance, extend this method to account for other data parameters, and compare results 
for Infomax and FastICA with other ICA algorithms and implementations. 
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