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The source estimation problem for EEG consists of estimating
cortical activity from measurements of electrical potential on the
scalp surface. This is a underconstrained inverse problem as the
dimensionality of cortical source currents far exceeds the number
of sensors. We develop a novel regularization for this inverse prob-
lem which incorporates knowledge of the anatomical connectivity of
the brain, measured by diffusion tensor imaging. We construct an
overcomplete wavelet frame, termed cortical graph wavelets, by ap-
plying the recently developed spectral graph wavelet transform to
this anatomical connectivity graph. Our signal model is formed by
assuming that the desired cortical currents have a sparse represen-
tation in these cortical graph wavelets, which leads to a convex �1-
regularized least squares problem for the coefficients. On data from
a simple motor potential experiment, the proposed method shows
improvement over the standard minimum-norm regularization.

Index Terms— EEG source estimation, sparse representation,
inverse problems, graph wavelets

1. INTRODUCTION
The goal of functional neuroimaging is to infer information about
neural activation within the human brain. However, noninvasive
modalities (including fMRI, PET, MEG, and EEG) cannot measure
cellular activation directly, and instead make indirect inference based
on some other physical measurement process. EEG consists of mea-
suring the time courses of electrical potentials on the surface of the
scalp. These potentials are due to current flow through the conduc-
tive tissues of the head (volume conduction), arising from dipole
current sources reflecting brain activity in the cerebral cortex. Esti-
mating these unknown cerebral source currents from measured po-
tential data is known as EEG source estimation (or source localiza-
tion), and has important applications for both clinical neurology and
basic neuroscience research.

A common approach for this problem is the distributed dipole
framework, where the cortical surface is divided into a large num-
ber of patches, and current dipoles are placed on each cortical patch.
Using an appropriate model for head conductivity, one can deter-
mine a linear relationship between the source dipole currents and
the measured potentials. The source estimation problem then be-
comes an underconstrained linear inverse problem as the number of
sensors (EEG electrodes) is much smaller than the dimensionality of
the cortical sources (typically several thousand). Getting a unique
solution requires introducing some form of regularization, e.g. en-
forcing some prior knowledge about the desired source solution. See
[1] for a recent review of different priors used for this problem.

The brain has a highly interconnected structure, with different
cortical regions linked to each other by tracts of axonal fibers, which
form the brain’s white matter. As regions interact with each other
by neural action potentials following these fiber connections, it is
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natural to expect the patterns of anatomical connectivity to influ-
ence likely patterns of cortical activity. The development of diffu-
sion weighted MRI imaging has enabled non-invasive measurement
of the directionality of white matter. Knowledge of fiber direction-
ality enables tracing fiber streamlines, allowing one to build a de-
tailed, quantitative, subject-specific description of brain connectivity
by measuring the number of fiber tract streamlines interconnecting
different brain regions.

In this work, we propose a novel methodology for constructing a
prior on cortical source activity which uses this connectivity knowl-
edge. We first construct a wavelet frame on the cortical connectome
graph, using the recently developed Spectral Graph Wavelet Trans-
form [2], which defines wavelet transforms on arbitrary weighted
graphs. These resulting “cortical graph wavelets” have the key prop-
erty that they are localized in the intrinsic topology of the connec-
tome graph, e.g. their support tends to diffuse out from a central
vertex across edges in the graph. This implies that they should be ef-
ficient for representing signals that are coherent across graph edges,
and localized in the graph. These properties are to be expected of the
cortical activation we wish to recover : for many EEG experimental
paradigms we are interested in localizing focal brain activity. Addi-
tionally, we expect activity to be similar in regions that are strongly
connected. These considerations motivate our fundamental signal
model - that the desired cortical sources possess a sparse representa-
tion in the cortical graph wavelet frame.

We impose this sparsity in an unconstrained optimization for-
malism by placing an �1 penalty on the wavelet coefficients for the
cortical sources. When used in conjunction with a quadratic data-
fidelity term, this leads to a convex �1-regularized least squares prob-
lem, which may be solved efficiently by interior point methods. As
a preliminary evaluation of our sparse representation with cortical
graph wavelets (SR-CGW) method, we compare source estimation
of our method and the minimum norm method for data for a sim-
ple motor task, showing improved localization, with more focal and
easily interpretable results for the proposed method.

2. ELECTRICAL HEAD MODELING
The research presented here is done in the context of ongoing work
on building accurate numerical models of human head electromag-
netics, for EEG and ERP analysis [3]. The EEG electrical potentials
result from the effects of current flowing through the head, arising
from dipole current sources that are generated as a result of mi-
croscopic synaptic currents following neurotransmitter release. In
the cerebral cortex, the laminar tissue structure allows these micro-
scopic current sources to align coherently, which may be modeled by
macroscopic current dipoles oriented normal to the cortical surface.

The goal of forward electrical head modeling is to calculate the
scalp electrical potential arising from any cortical current source.
This requires knowledge of both the geometry and conductivity of
head tissue. We model the head as purely resistive, with spatially
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Scalp Skull CSF GM WM Eyeball

0.44 0.018 1.79 0.25 0.35 1.5

Table 1. Electrical conductivities of head tissues, in Ω−1m−1

varying conductivity given by σ(x, y, z). In such a medium, current

flux �J is proportional to the electric field �E, i.e. �J = σ �E = σ∇ϕ,
where ϕ(x, y, z) is the electric potential. Conservation of charge
then implies that ϕ satisfies the inhomogenous Poisson equation

∇ · (σ∇ϕ) = s, (1)

with the no-flux boundary condition σ∇ϕ · �n = 0 on the scalp sur-
face, where �n is the scalp surface normal vector, and where the scalar
function s describes current sources or sinks. We note that this equa-
tion is valid in the quasi-static limit, where the current is varying
slowly enough so that contributions to the potential from both time-
varying magnetic fields and capacitive effects may be ignored. In
practice during numerical solution, dipole sources are described by
setting s = 0 everywhere except at a pair of nearby voxels, where s
is set to be positive on one, and negative on the other.

We construct subject-specific models using a high resolution
(1mm3 voxel) T1-weighted MRI image of the head, and performing
tissue segmentation to classify each image voxel as one of six tis-
sues (skull, scalp, cerebral-spinal fluid, grey matter, white matter or
eyeball). The model conductivity σ(x, y, z) is obtained by assigning
a constant, isotropic conductivity to each tissue type (see Table 1).
We solve (1) using a finite difference method on a regular 3D grid
with voxel size 1mm. The solver used implements the alternating
direction implicit (ADI) scheme, details may be found in [4].

The distributed dipole formalism relies on solving the forward
electrical problem for a fixed set of Nd current dipoles located
throughout the grey matter. Once these are fixed we may represent
the cortical currents by a vector J ∈ R

Nd , where Ji is denotes
the current at the ith dipole. In this work, we determine the dipole
locations by first computing a triangulated mesh of the outer cortical
surface, and then partitioning the mesh into 2400 roughly equal-area
surface patches (1200/hemisphere). A different cortical surface is
computed for each subject, in particular a generic atlas surface is
not used. Dipoles are then placed in the center of each patch, and
oriented normal to the surface. An example of the partitioning into
cortical patches is shown in Figure 1(a).

As equation (1) is linear in ϕ, we may use the superposition
principle to establish a linear relationship between source currents J
and the electrode potentials. Abusing notation, in the following we
let ϕ ∈ R

Ne be the potentials at the Ne electrode locations. These
satisfy the linear relationship ϕ = KJ , where K is the Ne × Nd

leadfield matrix. Each column of K corresponds to the electrode
potentials arising from unit activation of a single dipole, thus K may
be computed by repeatedly solving (1) with unit sources placed at
the dipoles, and then placing them in the columns of K.

All of the tissue segmentation, cortical surface extraction and
cortical partitioning is performed using the BrainK software package
developed at the NeuroInformatics center, details are in [5].

3. CORTICAL CONNECTOME GRAPH CONSTRUCTION
Diffusion Tensor Imaging (DTI) is an MRI imaging modality which
enables non-invasive measurements of water diffusion within tissue.
The diffusion tensor model describes diffusion as Gaussian; e.g. that

flux of water �F follows Fick’s Law �F = D∇c, where D is the
spatially varying diffusion tensor, and c water concentration. Typ-
ically the 3 × 3 symmetric diffusion tensor D is estimated at each
voxel from a series of diffusion weighted images, which each probe

a projection of the diffusion in a specific direction. For a comprehen-
sive overview, see [6]. Our raw diffusion data, taken on a Siemens
Allegra MRI, consist of 10 unweighted (b = 0), and 60 gradient
weighted (b = 700s/mm2) images, all of size 128× 128× 60 with
2mm cubic voxels. Diffusion tensors were estimated by least squares
fitting using TEEM (http://teem.sourceforge.net).

As water present in white matter diffuses preferentially along
the direction of the component fiber tracts, DTI can be used to esti-
mate the dominant fiber orientation at each point. By starting at an
initial seed point and following the local fiber direction, it is possible
to trace virtual fiber streamlines throughout the white matter. Within
the past ten years, a large amount of research into tractography al-
gorithms (including many not limited to the diffusion tensor model)
has emerged, see [7] for a review.

We construct our cortical connectome graphs by tracing fibers
starting from seed points distributed uniformly throughout the white
matter, and then counting the number of tracts which connect the
cortical patches corresponding to the distributed dipoles. The trac-
tography method we use, developed at the Computational Radiol-
ogy Laboaratory, differs from simple streamlining through the use
of both tensor deflection and directional inertia, which are employed
to encourage tract streamlines to pass through regions of reduced
anisotropy caused by crossing fibers. Sub-voxel resolution of the
tract trajectory is enabled by interpolating tensors through first tak-
ing the tensor logarithm, and applying the tensor exponential map
after interpolation [8]. At each update step, a new point pk+1 =
pk + vk+1s is calculated for fixed step size s, where the new tract
orientation vk+1 is determined by

vk+1 = γvk + (1 − γ)
“
δ(Dk+1)2vk + (1 − δ)ek+1

”
, (2)

where Dk+1 is the diffusion tensor at point pk, ek+1 is the principal
eigenvector of Dk+1, and the parameters γ and δ are the direction
inertial momentum and the tensor deflection fraction, respectively.
Note in particular that if γ and δ are set to zero, (2) reduces to simple
streamlining using the principle eigenvector as tract direction.

The degree of directionality of diffusion at each point is com-
monly measured by the fractional anisotropy

FA =

s
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ2
1 + λ2

2 + λ2
3)

(3)

where λ1, λ2, λ3 are the eigenvalues of the diffusion tensor. We
seed our tractography by placing 30 seed points randomly distributed
within each voxel where the FA exceeds 0.4 . Streamlines are ter-
minated by stopping when the fractional anisotropy falls below a
specified threshold, or the tract bending angle exceeds a specified
threshold. This procedure results in a very large number of tracts,
approximately 15 million per subject.

Denote these by ζk(t), for t ∈ [0, 1], where k indexes the tracts.
For constructing the tractography-based connectome, we first re-
move all but cortico-cortico tracts, defined as those for which the
endpoints ζi(0) and ζi(1) are both within 10 mm of the cortical sur-
face mesh. In particular this process removes all cortico-thalamic
tracts, which are known to be important for regulating cortical func-
tion. We say that the tract ζk connects patches pi and pj if either the
closest patch to ζk(0) is pi and the closest patch to ζk(1) is pj , or the
converse. This relationship is symmetric as the tractography reveals
no information about the direction of the tracts. The tractography-
based connectome matrix Atr ∈ R

Nd×Nd is given by

Atr
i,j =

X
k : ζk connects pi and pj

1

|ζk| (4)
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(a) (b) (c)

Fig. 1. View of (a) cortical surface mesh (colored to distinguish
patches), (b) selected tracts and (c) surface and tracts, superimposed

where |ζk| is the length of tract k. Division by tract length is nec-
essary above to compensate for the bias towards longer tracts due to
seeding in all regions of white matter.

We have found it useful to include a contribution to the connec-
tome graph derived purely from spatial adjacency of cortical surface
patches. This local connectivity graph may be thought of as a very
coarse manner of including the effect of local connections between
neighboring regions that may not be resolved by the longer-range
tractography. We form the local connectivity matrix Aloc by set-
ting Aloc

i,j to be the length of the border (in mm) between patches pi

and pj . This is straightforward to compute given the representation
of the patches on the triangular cortical surface mesh; in particular
Aloc

i,j = 0 for pair of non-adjacent patches.

We then form the hybrid local/nonlocal adjacency matrix A =
τtrA

tr + τlocA
loc, where the parameters τtr and τloc control the

relative contributions of local vs tractography-cased connectivities.
We have fixed τloc = 1× 10−4 and τtr = 5× 10−1 by hand for the
results shown here, a more detailed study of the effects of these is an
important question for future work.

4. SPECTRAL GRAPH WAVELETS
The Spectral Graph Wavelet Transform (SGWT) [2] is a general
methodology for constructing wavelet frames for spaces of func-
tions defined on the vertices of finite weighted graphs. Consider a
weighted graph with N vertices, and adjacency matrix A ∈ R

N×N .
We may treat any function f on the vertices as a vector f ∈ R

N .
Formally, the SGWT defines the NK wavelets ψj,n ∈ R

N , where
1 ≤ n ≤ N indexes the wavelet center vertex, and 1 ≤ j ≤ K
indexes the wavelet scale. Crucially, these spectral graph wavelets
share many properties of continuous wavelets. They are all zero-
mean, localized around their center vertices, and are supported at
multiple spatial scales. The SGWT also defines the N scaling func-
tions θn, which help to stably represent low-frequency content. In
practice, the wavelets ψj,n and scaling functions θn are not typically
explicitly computed, rather the SGWT defines computation of the
coefficients Wf (j, n) = 〈f, ψj,n〉 and Sf (n) = 〈f, θn〉 .

The SGWT is defined in the space of eigenvectors of the graph
Laplacian operator L = D − A, where the diagonal degree matrix
D is defined by Di,i =

P
k Ai,k. L can be viewed as the graph

analogue of the continuous Laplacian operator −Δ. L is symmetric
and thus has a complete set of orthonormal eigenvectors χ� with
corresponding eigenvalues λ0 ≤ λ1 ≤ ... ≤ λN−1. These χ� may
be viewed as the graph analogue of the complex exponentials eikx

from classical Fourier analysis. They are used to define the graph

Fourier transform, where f̂(�) = 〈χl, f〉.
The SGWT coefficients at each spatial scale are given by band-

pass filtering f , where the filtering is defined in the graph Fourier
space. These filters are all given by rescaling, in the graph frequency

domain, a single bandpass filter g. This wavelet kernel g should be-
have like a bandpass function, i.e. should satisfy g(λ) ≥ 0 for all
λ, g(0) = 0 and g(λ) → 0 as λ → ∞. The SGWT uses a set of
discrete scales tj ∈ R for 1 ≤ j ≤ K, both the selection of g and
the scales tj should be viewed as design parameters. The wavelet
coefficients at scale j are given by applying the bandpass operator

T
tj
g = g(tjL) to f . This operator can be calculated by first observ-

ing its action on the eigenvectors, namely g(tjL)χ� = g(tjλ�)χ�.
By linearity, we see that for f represented in terms of its graph

Fourier expansion as f =
P

� f̂(�)χ�, we have

T
tj
g f = g(tjL)f =

X
�

g(tjλl)f̂(�)χ� (5)

The wavelets themselves are defined by localizing these operators
by applying them to indicator functions on each vertex, e.g. ψj,n =

T
tj
g δn, where δn ∈ R

N equals 1 on the nth vertex and 0 elsewhere.
The scaling function coefficients and scaling functions are defined
analogously as for the wavelets, but with replacing g by a scaling
function kernel h which is a lowpass filter (i.e. h(0) > 0 and
h(λ) → 0 as λ → 0).

By concatenating all the wavelet and scaling function coeffi-
cients of f into a single vector, the SGWT may be viewed as a
linear map W : R

N → R
(K+1)N . This is a K + 1-fold overcom-

plete transform. We note finally that naive computation of the co-
efficients by directly applying (5) would require full diagonalization
of L, which is prohibitive for large graphs. In practice, the SGWT
is computed using a fast transform scheme which relies on Cheby-
chev polynomial approximation of the scaled kernels g(tjλ) over an
interval containing the spectrum of L, details are in [2].

5. SPARSE APPROXIMATION WITH CORTICAL GRAPH
WAVELETS

The linear inverse problem we seek to solve is to find current sources
J ∈ R

Nd , given electrode potentials ϕ ∈ R
Ne . We cannot simply

solve the relation ϕ = KJ , as Nd > Ne. A common formulation
for this is to introduce a prior penalty function ρ(J), and then search
for J minimizing the objective function ||ϕ − KJ ||22 + ρ(J).

We will use a similar regularization framework, but with our ob-
jective function and prior defined in the space of wavelet coefficients.
J has the cortical graph wavelet expansion J =

PK
j=0,n cj,nψj,n,

where for convenience we set ψ0,n = θn. This expansion may be

written as J = W T c, where c ∈ R
(K+1)Nd is a vector of all the co-

efficients cj,n, and W ∈ R
(K+1)Nd×Nd is the matrix representation

of the entire SGWT.
We impose the desired sparsity by penalizing the �1 norm of the

coefficients c; this is motivated by the extensive literature detailing
the connection between wavelet sparsity and �1 regularization (e.g.
[9]). This leads to the minimization problem

c∗ = argmin
c

||ϕ − KW T c||22 + τ ||c||1, (6)

where we have introduced the regularization parameter τ . Once c∗

is found, the cortical sources are given by J∗ = W T c. For results
in this work we take τ = 10−2, as set by hand.

The minimization (6) is an �1-regularized least squares problem,
also known as the Lasso [10]. The problem is strictly convex, and
so admits a unique minimizer. For results in this paper, we solve (6)
using the l1 ls software package [11], which employs an interior-
point method employing preconditioned conjugate gradients. This
algorithm does not require explicit formation of the matrix KW T ,
and may be used by providing it a function to compute the matrix-
vector product. This is significant for our work as we compute the
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(a) (b) (c)

Fig. 2. Comparison of source estimation on ERP data for (a) mini-
mum norm, (b) proposed SR-CGW, (c) sparse dipole method, 40 ms
before LT button press, shown on inflated cortical surface. Values
below 15% of maximum are thresholded (to grey)

matrix-vector product W T c using the fast SGWT polynomial ap-
proximation scheme.

6. RESULTS
As a preliminary indication of the utility of the proposed method,
we present source estimation results for data collected from a sim-
ple motor task. In this study, collected at the University of Oregon,
subjects had high density (256 channel) EEG recorded while per-
forming a button pressing task (left/right thumb/pinky) in response
to a visual cue (color change of fixation point). Data for each of
the four digits were averaged over a large number (> 100) of trials,
synchronized by time of button press, to generate the event related
potential (ERP)’s.

Under this experimental paradigm, activation is expected in the
contralateral hemisphere, localized to the “hand knob” region of mo-
tor cortex [12]. Thus the degree to which estimated source activity
fits this expectation provides a qualitative evaluation of algorithm
performance. In Figure 2 we show source estimates for single sub-
ject, for the left thumb condition, 40 ms before the button press. We
compare the proposed SR-CGW method against the standard mini-
mum norm solution, and against a third “sparse dipole” method.

The minimum norm solution does show activity in the expected
area, indeed with a strong peak (Fig 2a, patch colored red) on the
right precentral gyrus, however, the solution is very diffuse. In con-
trast, the proposed SR-CGW solution (Fig 2b) shows focal activity
in the expected area (shown circled in dashed green), and is sparser,
with much less extraneous activation. As a simple test to see if
this apparent improvement might just be due to general sparsity-
promoting effect of our regularization, without really exploiting
the anatomical information encoded in the cortical graph wavelets,
we examined the sparse dipole method where the �1 penalty is ap-
plied directly in the dipole domain, rather than in the cortical graph
wavelet coefficient domain (Fig 2c). It is computed by solving the
optimization

J∗ = argmin
J

||ϕ − KJ ||22 + τ ||J ||1 (7)

The sparse dipole solution is sparser than the proposed approach, but
appears to produce activity in a shifted location, within the central
sulcus. This comparison provide evidence that the SR-CGW method
is truly exploiting the anatomical connectivity, and at least in some
cases improves upon the standard minimum norm solution.

7. CONCLUSION
We have introduced a novel regularization framework for the EEG
source estimation problem which incorporates anatomical brain con-

nectivity information. This approach relies on estimating a weighted
connectivity graph computed from diffusion tensor imaging, where
the vertices correspond to the distributed dipoles used in the forward
electrical head model. We form the cortical graph wavelet frame by
applying the spectral graph wavelet transform construction to this
connectivity graph. Our sources are then estimated by assuming they
possess a sparse representation in the cortical wavelet frame, lead-
ing to an �1 regularized least squares problem. The proposed method
shows improvement over the standard minimum norm for estimation
of ERP sources in a simple motor task.

While the results presented here are promising, both the perfor-
mance and space of design parameters of the SR-CGW method need
to be explored more carefully. The effects of many of the free design
parameters of the SGWT used (number of scales K, wavelet kernel
g), as well as parameters related to the graph construction including
τtr and τloc should be more systematically explored. Another im-
portant question is whether the method can be modified to make use
of knowledge of thalamo-cortical connectivity, which is currently ig-
nored. Finally, as presented the SR-CGW approach operates at each
timepoint independently, and so cannot model or exploit temporal
correlation in the desired cortical sources. This raises the question of
how to formulate joint spatiotemporal estimation with the SR-CGW.
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