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Abstract. In scientific domains where discovery is driven by simulation model-
ing there are found common methodologies and procedures applied for scientific
investigation. ODESSI (Open Domain-extensible Environment for Simulation-
based Scientific Investigation) is an environment to facilitate the representation
and automatic conduction of scientific studies by capturing common methods
for experimentation, analysis, and evaluation used in simulation science. Specific
methods ODESSI will support include parameter studies, optimization, uncer-
tainty quantification, and sensitivity analysis. By making these methods acces-
sible in a programmable framework, ODESSI can be used to capture and run
domain-specific investigations. ODESSI is demonstrated for a problem in the
neuroscience domain involving computational modeling of human head electro-
magnetics for conductivity analysis and source localization.

1 Introduction

Computational science is now accepted as an important approach for scientific investi-
gation, broadly considered equivalent in its discovery power to theoretical and experi-
mental science. It is typically conducted through mathematical modeling and scientific
simulation, leveraging access to advanced, high-performance computers (HPC) to run
computational experiments (simulations) that seek to model reality in various domains.
The evolution of computational science reflects both a growing need for computational
power and increased sophistication of simulation methodology. Early concerns were on
access to sufficient HPC resources, motivating research in parallel computing, compu-
tational grids, and large-scale storage. More recent research work in computational por-
tals and workflows attempts to simplify resource access as well as provide programming
support for coordinating simulation and analysis tasks. With computational horsepower
becoming more ubiquitous, there is now growing interest in enhancing the discovery
process of scientific investigations. In general, how productivity in computational-based
science can be improved in practice will depend greatly on software environments that
raise the level of investigation creation, execution, and management.

In scientific domains where discovery is driven by simulation there are common
methodologies and procedures. An environment that can capture the shared standard
practices and support their reuse across domains could improve productivity in scientific
investigation creation and application. Methods such as parameter studies and tuning,
optimization, uncertainty and sensitivity analysis, are generally used across simulation
fields. Application of these methods in simulation studies typically require executing the
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simulation many times with different input parameter sets and data files. The environ-
ment could capture the common scientific methods in modules that can be contextual-
ized for domain-specific use. The modules would hide the details of backend execution
(implemented by the environment infrastructure), while providing an interface for their
programming as part of an investigation workflow. The environment could also support
other aspects of scientific investigations, including the management of input and output
data, the specification of parameters, the post-processsing of results, and the genera-
tion of reports. The benefit is to provide a high level of service and automation to the
computational scientist to enhance their work throughput and management.

In this paper we describe our research work to create and apply an environment
for supporting scientific investigation called ODESSI (Open Domain-extensible En-
vironment for Simulation-based Scientific Investigation, pronounced “Odyssey”). The
environment will facilitate the representation and automation of scientific studies by
capturing shared methods for experimentation, analysis, and evaluation used in sim-
ulation science in a framework that can be programmed and specialized for domain
investigations. ODESSI will be demonstrated for scientific studies in the neuroscience
domain involving computational modeling of the human head.

Section §3 describes the ODESSI objectives and design. The development of the
ODESSI prototype is discussed in §4. ODESSI was inspired by our prior ICCS work
[18,20] on computational modeling of human head conductivity. Section §5 outlines the
domain problem in human brain science we are investigating and shows how ODESSI
is applied to improve scientific productivity in this domain. Section §6 concludes with
a discussion of research issues and outline of future research directions.

2 Related Work

The general theme of the ODESSI approach is to manage complexity in domain-specific
scientific investigations by providing a programmable framework with high-level ser-
vices for domain contextualization and use. Problem solving environments (PSE) are
a traditional approach to addressing domain-relevant concerns by incorporating all the
mathematical, algorithmic, and computational features necessary to solve a targeted
class of science or engineering (S/E) problems [1,2]. The main goal of a PSE is to in-
crease the productivity of scientists by letting them describe a problem and its solution
in terms of the S/E concepts and use a highly-functional, integrated set of capabilities
for modeling, analysis, and visualization. PSEs have been developed for partial dif-
ferential equations (PDE) [3], linear algebra [4], chemistry [5], and other S/E areas.
However, the traditional PSE approach has three important drawbacks: 1) it is difficult
to create a new PSE, 2) PSEs are not developed to be reused, and 3) PSEs are hard to
extend with new capabilities or new science methods.

One response to strict PSE design is to identify domain-level functionality that is
common across related fields and build software tools that can be applied in develop-
ing computational science environments [6]. Scientific development environments take
this idea further by offering rich components for data management and analysis, in a
programming framework for scientific applications. For example, SCIRun [7] is a pow-
erful environment for interactive computational science which has been used to create
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integrated problem solving environments in biomedical science [8]. ODESSI comple-
ments these directions by abstracting common simulation-based scientific methods in
reusable components, providing a cross-domain framework for scientific investigation.

Grid computing and workflow systems research take a different tact by focusing on
how to allocate and coordinate the use of computational resources (both systems and
software/tool components) to create and run scientific applications such as GridLab[15].
Grid-enabled workflow systems such as Pegasus[9], Triana [10], and Kepler [11] are
powerful tools being applied in computational science projects. However, their support
for multi-experiment simulation workflows is still rudimentary and is not easily pro-
grammed for cross-domain use or execution on non-grid platforms. Web-based portals
(e.g., the NEES [12] and BIRN [13] portals) and environments such as ViroLab [16]
address some of these issues by offering higher-level S/E services (e.g., analysis, data
management, simulation) while hiding backend complexity. The ability to abstract and
reapply scientific methods for new scientific investigations or new scientific domains in
these environments though is not supported well.

On the other hand, there are wealth of toolkits for scientific methods used in simula-
tion. The DAKOTA toolkit [14] provides several optimization algorithms, uncertainty
quantification, and parameter estimation. The Portable, Extensible Toolkit for Scien-
tific Computation (PETSc) [17] is a suite of data structures and routines for the scalable
(parallel) PDE-based scientific applications. The important aspect of these systems is
their embodiment of a known scientific methodology in a programmable form. The idea
behind ODESSI’s approach is to provide a high-level scientific development framework
that parameterizes and configures scientific methods for domain specialization.

3 ODESSI Requirements and Design

The goal of ODESSI is to provide a productive environment that assists domain scien-
tists in the development and application of their computational investigations. To this
end, the main requirements are:

1. To support common types of scientific methods used in simulation-based science.
2. To provide a programmable framework to contextualize methods for domain use.
3. To insulate the scientist from concerns of HPC resource usage, allowing them to

focus on the process aspects of the domain investigation.
4. To provide record of simulation experiment for evolving scientific investigations.

The ODESSI environment shown in Fig. 1 was designed to support these requirements.
The key concept of the ODESSI approach is the capture of standard procedures to con-
duct and analyze (simulation-based) scientific experiments in a modular, extensible, and
reusable form. We call these procedures scientific methods and think of the methods as
generating a set of simulation experiments to run. Common scientific methods include
parameter studies, comparative analysis, optimization, sensitivity analysis, and uncer-
tainty analysis. These methods are the basis upon which activities such as verification
and validation, parameter tuning, and simulation-based experimentation are built for
domain application. These processes that integrate different methods are the founda-
tion of domain scientific investigations. A scientific investigation is a domain-specific
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Fig. 1. Architecture and components of ODESSI framework

discovery process that applies one or more scientific methods in its lifetime. It defines
the simulation codes to use, the input data files, and post-simulation analysis and vi-
sualization. If ODESSI can capture key scientific methods in easy-to-use modules, the
level of productivity in the development and execution of scientific investigations may
increase. We will focus our discussion on this aspect of the design.

Logically, ODESSI represents methods internally as modules consisting of two parts:
a specification and a template. The specification identifies the context necessary for the
execution of the modules, including the simulation program to be run and parameters.
The template is the software construction of the module with abstract classes for opera-
tion of the specific scientific method. In this respect, the template embodies the method
procedures for the generation of domain simulation experiments. A module is instanti-
ated by an investigation script, setting the specification context and initializing the mod-
ule state. When a method module is executed, it generates an experiment schedule that
is passed to the ODESSI planner.

It is the responsibility of the ODESSI planner to conduct the necessary simulations
on behalf of the invoked method. It is possible multiple methods are concurrently active,
each with its own planner. The planner interfaces with the external simulation system
to run a simulation experiment. It determines which experiments to execute based on
the specified simulation schedule. If a method uses information from earlier experi-
ments to determine future experiments, its module uses a dynamic schedule which is
applied within the planner. The planner attempts to optimize schedules by interrogat-
ing the ODESSI investigation history to determine when simulation experiments have
previously been conducted. A record is maintained in the ODESSI investigation his-
tory of every completed simulation experiment, containing complete metadata for the
investigation and method specification.
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4 ODESSI Development

In this section we describe the implementation of the conceptual design described in
section §3. ODESSI is based on a set of Python objects that implement components
shown in Fig. 1. These objects form a set of interacting threads that cooperate during
the execution of the investigation script. An investigation script imports and instanti-
ates the necessary objects that implement scientific methods that it uses, and these in
turn interact through message passing operations once started. Simulation programs are
invoked through the Python system interface.

An investigation script consists of three main sections. In the first section the user
specifies the simulations under investigation and their initial input parameter values.
The simulation specifications are used to create a simulation manager object that can be
used to request simulation solutions. In the second section, the scientific investigation
methods are customized, instantiated and launched for execution. Each scientific inves-
tigation method is executed in a separate thread. Each scientific method object derives
from a base Planner object, adding the method-specific functionality that it is intended
to provide. The third section is concerned with post-processing the results.

The ODESSI implementation uses messaging to communicate between threads. Due
to the potential for long execution times during simulation runs, it is preferable to use
an asynchronous execution model to allow threads to execute independently without
blocking. Threads in ODESSI are based on the process and messaging model from the
Erlang language [19] implemented by the Python “candygram” package. Each process
has a message mailbox into which messages from other processes are delivered and
later extracted and handled by the receiving process in the order of delivery.

ODESSI provides two entities that can be instantiated in the investigation script: the
Simulation Manger entity and the Scientific Investigation Method entity. The Simula-
tion Manager controls and manages the execution of a simulation. It acts as a server
that provides solutions given sets of input parameters. Each instance of a simulation
manger controls a single simulation. Multiple simulations can be controlled by multiple
instances of the simulation manager. A simulation manager object can serve multiple
requests from different threads. Scientific Investigation Methods provide the procedures
that occur across scientific domains such as optimization and sensitivity analysis.

4.1 Scientific Investigation Methods

Scientific investigation methods are the common procedures that are used in several sci-
entific domains. ODESSI currently supports optimization based on a parallel simulated
annealing algorithm, simplex search, parameter studies and linear regression based sen-
sitivity analysis. ODESSI can easily be extended with more methods and procedures.
A scientific method gets executed in its own thread spawned by the main thread The
scientific method is implemented as a module of four classes described below:

– A specification class providing a template to customize the investigation procedure.
– An interface class providing an interface for the user to instantiate and execute

the scientific method. The interface class is parameterized with an instance of the
method specification class and a simulation manager object. An interface object
provides methods to start and stop execution and access results.
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– The scientific method logic class implements the algorithm or the procedure of the
scientific method and must inherit from the planner base class.

– The planner abstract class that all scientific method logic classes must inherit from.
This class defines the interactions between the scientific method and the execution
manager, cleanly separating scientific method logic from communication code.

4.2 Simulation Manager

The simulation manager class is the user interface to the execution manager class. A
simulation manager object is created in the main thread.A simulation object and other
optional parameters are passed in at initialization. At instantiation, the simulation man-
ager spawns a thread and starts the execution manager. The simulation manager class
currently provides methods to control execution and measure execution timing.

– The execution manager: The execution manager manages and controls a single
simulation. It acts as a server that provides the simulation response given input
parameters. The execution manager is an internal class and is not modified by the
user. It is instantiated and run in its own thread by the simulation manager, and the
planner base class requests solutions from the execution manager. Threads request
solutions from the execution manager by delivering messages to its mailbox. In
handling the request the simulation manager employs a dynamically sized pool of
workers for simulation execution and a solution database manager.

– Workers: Each worker in the pool of an execution manager corresponds to the ex-
ecution of a simulation on a resource. Workers interact with a simulation either
through a very simple modification to the main function of the simulation code or
through a wrapper around the unmodified simulation. The communication protocol
between ODESSI workers and the simulation is very simple. Messages are defined
for starting, stopping, parameterizing, and retrieving results from simulations.

– The database manager: The database manager implements the investigation his-
tory component of ODESSI and manages a repository where simulation solutions
can be obtained. Solutions are associated both with the simulation code which pro-
duced them and the input parameters necessary for the run. This allows for both
provenance tracking of simulation results and performance enhancement by avoid-
ing redundant computations when the output already exists in the database.

5 ODESSI Application

ODESSI was inspired by our research in human neuroscience where we are develop-
ing computational models of human head electromagnetics for use in dynamic brain
analysis [18,20,21]. The main goal of our research is to estimate the locations of the
active brain regions given measured electroencephalogram (EEG) recordings. Called
the source localization problem, its accurate solution will provide an opportunity to an-
alyze cortex dynamics at high temporal and spatial resolution. The source localization
problem has two parts:
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1. Forward problem: given electrical sources (e.g., cortex dipoles), tissue geometries
and conductivities, determine head volume and scalp electrical potentials.

2. Inverse problem: given an accurate forward solution, find optimal sources to match
measured scalp potentials.

An accurate forward solver requires knowledge of the head tissues geometry (ob-
tained from MR or CT images) and their conductivities. To determine the conductivi-
ties of the head tissues, we must solve the conductivity inverse problem. Here, a small
current is injected in a subject’s head and the response is measured on the scalp using
electrical impedance tomography (EIT) technology. A search for optimal conductivi-
ties parameters can then be performed using the forward simulation compared to the
measured potentials. Once the conductivities are found for an individual, a distributed
dipole linear inverse solver can be built for EEG localization [22].

There are several challenges in this research. From the start, the source localiza-
tion problem is ill-posed, since EEG measurements are made on (up to) 256 sensors
and there may be thousands of cortex dipoles active. In addition, there are multiple
sources of measurement error and modeling uncertainties that ultimately contribute to
the accuracy of the solution as well as the performance. Measurement errors include
the quality of MR/CT images, electrode and dipole registration, injected current level,
and the EEG electrode data. These errors lead to modeling inaccuracies which prop-
agate uncertainty in the solution results and also can affect computational efficiency.
These include discretizing the PDEs, adjusting the computational grid resolution, and
accurately segmenting the head tissues. Further, selection of parameters and modeling
algorithm in the forward and inverse solvers also influence the final result.

How can we understand the quality of our source localization solutions and their use
in dynamic brain analysis when dealing with multiple sources of measurement error
and modeling uncertainties in constructing head models? Our desired scientific inves-
tigations involve computational processing to generate candidate models, as well as
verification and validation to determine the effects of uncertainty and the robustness
of solutions. In general, these objectives are shared with other scientific domains. In
the following we outline the use of ODESSI in conducting several analyses from our
domain, in particular showing the results from sensitivity analysis studies.

Conductivity Modeling. In our previous work we developed an inverse solver based
on parallel simulated annealing algorithm to estimate the head tissue conductivities by
solving the conductivity inverse problem. With ODESSI we were able to set up the
problem and adjust the optimization parameters by only interfacing with the optimiza-
tion method module. ODESSI made it trivial to experiment with different optimization
objective function and different optimization algorithms.

PDF Solver Tuning. Our forward model is based on solving the time-dependent Pois-
son equation and considering the steady state solution as the static solution. The conver-
gence of the forward solver depends, on two parameters. The time step, which controls
the speed of reaching the steady state, and the convergence tolerance which specifies
the level of accuracy. We used ODESSI to tune these parameters by performing a para-
metric study for different current injection pairs and different sets of conductivities.
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Fig. 2. Left, the potentials at the electrodes using 1mm resolution geometry vs. 2mm resolution.
Right, tuning the forward-solver convergence parameters (time-step vs. tolerance).

Figure 2 shows a sample from this study. As the tolerance increases the solution fails to
converge. For very small time step, the solver terminates prematurely.

Geometry Resolution Error. The geometry of the head tissues is obtained from imag-
ing such as MRI or CT scans. Geometry obtained from high resolution (1mm) MRI
captures more details about the head tissues, such as wholes in the skull. However, the
computational time is significant. We use a high resolution image to construct lower
resolution geometry by eliminating every other plane from the high resolution image.
Then we used ODESSI to evaluate the error caused by this approximation. RDM and
MAG metrics are used to compare between the solutions obtained using the two geome-
tries. Our results show that the average RDM is about .8 and the average MAG is about
.1. Therefore, the 2mm geometry can be used for visualization and testing. However,
we have to use the high 1mm resolution to obtain accurate conductivity reconstruction.
Here ODESSI allows us to experiment with the metrics for comparison.

Sensitivity Analysis. We further applied ODESSI for regression analysis to study how
the uncertainty in each electrode potential can be apportioned to uncertainties in the in-
puts. In this analysis, we only considered the head tissue conductivities. A multivariate
sample of 1000 points of the head tissue conductivities is generated. The conductivity
of each head tissue is sampled from the normal distribution with mean equal to the av-
erage accepted value from the literature and the standard deviation is chosen such that
the distance between the mean conductivity and the lower and upper bounds is about 3
standard deviations. Then the potentials at the electrodes are computed for each sample
and a multiple regression fitting is performed on the standardized conductivities and
electrode potentials. The standardized regression coefficients (SRC or β) quantify the
effect caused by changes in the model independent variables from their mean values in
terms of standard deviations.

Figure 3 shows distributions of the electrodes sensitivity due to changes in tissue
conductivities. Positive β coefficients (SRC) correspond to electrodes near the current
source while negative β coefficients correspond to electrodes near the sink. From the
distributions we see that the potentials at all electrodes are insensitive to variation of
the CSF tissue. This can be reasoned to the fact that the CSF tissue size is small and the
variation in its conductivity is small. The second important observation is that the po-
tentials are sensitive to changes of the brain conductivity. This observation contradicts
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Fig. 3. Distribution of the electrode’s sensitivity due to changes in tissue conductivities

the belief that most of the current will be shunted in the scalp. Therefore, we believe it is
possible to explore the brain with EIT technology. We explain this sensitivity due to the
fact that the brain is a big tissue and the wholes in the skull –which our forward solver
captures– allow the current to go through the skull (contrary to spherical models). The
third observation is that the potentials are highly sensitive to changes in the skull and
scalp conductivities as expected, since the current sources are on the scalp.

Identifying and ranking the sensitivity of the electrodes due to model input variables
are very important in our research. For instance, the conductivity of the CSF tissue
can be considered homogeneous and be fixed at the literature accepted value. Also, the
contributions of the electrodes potentials in computing the objective function can be
weighted based on their sensitivity in the conductivity inverse problem.

Without the ODESSI framework, this detailed sensitivity analysis would not have
been possible. We parameterized the sensitivity testing template in ODESSI and in-
terfaced the simulation code. Once configured, the investigation required thousands of
simulations to generate the results. These simulations were fully automated by ODESSI.

6 Conclusion and Future Work

ODESSI provides a framework for constructing scientific investigations by instantiating
common methods for simulation-based analysis with domain-specific context. From a
productivity perspective, ODESSI enables a (potentially large) number of simulations
generated from a domain investigation processes to be run in a systematic and auto-
mated way. Extending our earlier ICCS research to allow investigation of uncertainty
in brain conductivity and source modeling absolutely depended on this capability. The
sensitivity results presented demonstrate the investigative power that can be achieved
with relatively simple ODESSI programming.

However, the ODESSI concept extends further to domain support for data manage-
ment (e.g., EEG and MRI data), results processing (e.g., statistics, data mining), visu-
alization (e.g., plotting, 3D graphics), and meta-analysis. The key idea is how ODESSI
can capture domain information to parameterize and contextualize common methods in
these areas for high-level use. Our immediate goal is the development of the investiga-
tion history database to track the provenance of simulation experiments.
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