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Abstract. We describe a novel 3D finite difference method for solving the 
anisotropic inhomogeneous Poisson equation based on a multi-component 
additive implicit method with a 13-point stencil. The serial performance is 
found to be comparable to the most efficient solvers from the family of 
preconditioned conjugate gradient (PCG) algorithms. The proposed multi-
component additive algorithm is unconditionally stable in 3D and amenable for 
transparent domain decomposition parallelization up to one eighth of the total 
grid points in the initial computational domain. Some validation and numerical 
examples are given. 

1   Introduction 

The challenge in most tomographic techniques is to determine unknown complex 
coefficients or driving sources in the partial differential equations (PDEs) governing the 
physics of the particular experimental modality. Problems in neuroscience such as 
electroencephalography (EEG) and magnetoencephalograpy (MEG) source localization, 
electrical impedance tomography (EIT) or diffuse optical tomography (DOT) are 
inherently non-linear, underdetermined and ill-posed, requiring high accuracy in 
measurements and PDE inverse modeling [1]. The first step in solving such inverse 
problems is to find a numerical method to solve the direct (forward) problem. When the 
physical model is three-dimensional and geometrically complex, like the human brain, 
the high- resolution forward solution can be difficult to construct and compute.  

Until recently, most practical research in this field has opted for simplistic 
analytical or semi-analytical models of a human head in the forward calculations [2].  
With geometric information becoming more readily available from MRI or CT scans, 
finite element (FE) and finite difference (FD) approaches can now incorporate 
realistic 3D head geometry for human head model construction. However, most of the 
published models, with a few exceptions, treat the human head tissues as isotropic, 
while it is well known that brain white matter, skull and facial/scalp muscles are 
highly anisotropic, with the anisotropic ratio estimated to be between 1:3 and 1:10  
[3 and references therein]. 
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In the present study we propose an algorithm for solving the anisotropic diffusion 
equation based on multi-component (vector-additive) implicit FD methods. Not only  
are these methods unconditionally stable in 3D, but they offer the potential for high 
domain decomposition parallelization, and are promising candidates for computational 
acceleration with GPGPUs (general purpose graphics processing units) [4]. We 
introduce the algorithm and assess the serial performance of the proposed method in 
comparison with the most efficient solvers from the family of the preconditioned 
conjugate gradient (PCG) algorithms. 

2    Statement of the Problem 

The relevant frequency spectrum in EEG, MEG and EIT of the human head is 
typically below 1 kHz, and most studies deal with frequencies between 0.1 and 100 
Hz. Therefore, the physics of EEG/MEG can be well described by the quasi-static 
approximation of the Maxwell equations, the Poisson equation. The electrical forward 
problem can be stated as follows: given the positions, orientations and magnitudes of 
dipole current sources, ),,( zyxϕ , as well as geometry and electrical conductivity of 

the head volume (Ω), calculate the distribution of the electrical potential on the 
surface of the head (scalp) (ΓΩ). Mathematically, it means solving the inhomogeneous 
anisotropic Poisson equation [2]: 

 
∇ •(σ(∇u) = ϕ(x, y, z), in  Ω                                                    (1) 

 
with no-flux Neumann boundary conditions on the scalp: 

 
σ(∇u) • n = 0, on ΓΩ.                                                   (2) 

 
Here σ= σij(x,y,z) is an inhomogeneous symmetric tensor of the head tissues 
conductivity. Having computed potentials u(x,y,z) and current densities  J=- σ(∇u), 
the magnetic field B can be found through the Biot-Savart law. The similar non-
stationary anisotropic diffusion equation is relevant also in the DOT forward problem 
modeling [1] and the white matter tractography studies using diffusion tensor MRI 
imaging [5]. 

Previously, we built an iterative finite difference forward problem solver for an 
isotropic version of (1) and (2) based on the multi-component alternating directions 
implicit (ADI) algorithm [6]. It is a generalization of the classic ADI algorithm,  
but with improved stability in 3D (the multi-component FD ADI scheme is 
unconditionally stable in 3D for any value of the time step [7,8]). To describe the 
electrical conductivity in the heterogeneous biological media within arbitrary 
geometry, the method of the embedded boundaries has been used. Here an object of 
interest is embedded into a cubic computational domain with extremely low 
conductivity values in the external complimentary regions modeling the surrounding 
air. This effectively guarantees there are no current flows out of the physical area (the 
Neumann boundary conditions, (2), is naturally satisfied). The idea of the iterative 
implicit method is to find the solution of (1) and (2) as a steady state of the 
appropriate evolution (diffusion) problem. At every iteration step, the spatial operator 
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is split into the sum of three 1D operators, which are evaluated alternatively at each 
sub-step.  Such a scheme is accurate to O[τ +(Δx)2 )+(Δy)2+(Δz)2]. In contrast with 
the classic ADI method, the multi-component ADI uses the regularization (averaging) 
for evaluation of the variable at the previous instant of time. 

Parallelization of the vector-additive ADI algorithm in a shared memory 
multiprocessor environment (OpenMP) is straightforward, as it consists of nests of 
independent loops over “bars” of voxels for solving the effective 1D problem in every 
iteration. However, it is less suitable for implementation in an environment with a 
distributed memory.  In the next section we present a vector-additive algorithm of the 
domain decomposition type which is potentially amenable for implementation at 
greater parallel degree. 

3   Numerical Scheme 

In the Cartesian coordinate system, (1) is expressed as  

∂

∂x
σ xx

∂u

∂x
+ σ xy

∂u

∂y
+ σ xz

∂u

∂z

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

∂

∂y
σ yy

∂u

∂y
+ σ yx

∂u

∂x
+ σ yz

∂u

∂z

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

+
∂

∂z
σ zz

∂u

∂z
+ σ zx

∂u

∂x
+ σ zy

∂u

∂y

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = ϕ (x, y, z ).

 

To discretize this equation we will use finite difference approximation of the 

spatial derivatives on the reactangular grid ),,( kji zyx , xNi ,1= , yNj ,1= , 

zNk ,1= , where zyx NNN ,,  are the numbers of grid points in x,y, z spatial 

directions. The finite difference approximation of the second order accuracy for the 
Poisson equation with mixed derivatives can be made with a minimal stencil of 7 
points in 2D [9]. Generalization to 3D leads to a 13-point stencil, as shown in Fig. 1.  
It consists of two diagonal compartments (cells) with one common corner. The whole 
problem computational domain is represented by a 3D checkerboard lending itself for 
domain decomposition (partitioning). One can take into account only even (or only 
odd) mesh cells, each of them having eight neighboring computational cells. Every 
internal node of this checkerboard grid belongs simultaneously to two neighboring 
cells. Therefore, it is natural to introduce two components of an approximate 

numerical solution, ( um , mu −9 ), where 8,1=m  (see Fig. 1). The first component of 

such pair, mu , is considered as an internal component of the given mesh  cell while 

the second one is a complimentary component belonging to the corresponding 
neighboring mesh cell. In these notations, the finite difference approximation, L, of 
the differential operator in (1) in an arbitrary node of the grid, ),,( kji zyx , can be 

represented as  

                       uAuALu mm +=  ,                                                 (3) 
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where Tuuuu ),,,( 821 K= and Tuuuu ),...,,( 178=  are the vectors of two components 

of the approximate numerical solution in two neighboring cells on the grid with a 
common node at ),,( kji zyx .  

 
Fig. 1. Schematic view of the finite difference stencil for (1) 

In (3) factors mA  and mA  are vectors with components given by coefficients of 

the finite difference approximation for (1), which is obtained by the standard finite 
volume method [10]. As a result, the derivatives in (1) are given by the following 
finite differences: 

 

∂

∂x
σxx

∂u

∂x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ≅ σxx

12 u2 − u1

hx
2 − σxx

78 u8 − u7

hx
2 ,

∂

∂y
σyy

∂u

∂y

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ≅ σyy

14 u4 − u1

hy
2 − σyy

58 u8 − u5

hy
2 ,                    

∂

∂z
σzz

∂u

∂z

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ≅ σzz

16 u6 − u1

hz
2 − σzz

38 u8 − u3

hz
2 ,                                                                      (4) 

∂

∂x
σxy

∂u

∂y

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ≅ σxy

34 u3 − u4

2hxhy

− σxy
12 u2 − u1

2hxhy

+ σxy
78 u8 − u7

2hxhy

− σxy
56 u5 − u6

2hxhy

,

∂

∂y
σyx

∂u

∂x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ≅ σyx

23 u3 − u2

2hxhy

− σyx
14 u4 − u1

2hxhy

+ σyx
58 u8 − u5

2hxhy

− σyx
76 u7 − u6

2hxhy

, 

∂

∂x
σxz

∂u

∂z

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ≅ σxz

25 u3 − u4

2hxhz

− σxz
16 u6 − u1

2hxhz

+ σxz
38 u8 − u3

2hxhz

− σxz
47 u7 − u4

2hxhz

, 

∂

∂z
σzx

∂u

∂x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ≅ σzx

56 u5 − u6

2hxhz

− σzx
12 u2 − u1

2hxhz

+ σzx
78 u8 − u7

2 hxhz

− σxz
34 u3 − u4

2hxhz

, 



 A 3D Vector-Additive Iterative Solver  515 

∂

∂y
σyz

∂u

∂z

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ≅ σyz

47 u7 − u4

2hyhz

− σyz
16 u6 − u1

2hyhz

+ σyz
38 u8 − u3

2hyhz

− σyz
25 u5 − u2

2hyhz

, 

∂

∂z
σzy

∂u

∂y

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ≅ σzy

67 u7 − u6

2 hyhz

− σzy
14 u4 − u1

2 hyhz

+ σzy
58 u8 − u5

2 hyhz

− σzy
23 u3 − u2

2hyhz

. 

 

Here )/(2 kmkmmk σσσσσ += , where mk σσ , are values of the conductivity 

tensor components in nodes k  and m , and zyx hhh ,,  are grid steps along the 

Cartesian axis. As it is seen from (4), variables u1

−
 and u8, which correspond to the 

most distant nodes in the two cell arrangement in Fig. 1, are absent. This means these 
nodes are not involved into the stencil.  By grouping the terms belonging to one of 
two cells in the stencil in expressions for finite difference derivatives in (4) one can 
obtain an additive representation of operator L in (3), which allows us to express the 

components of vectors mA  and mA . For instance, for A1 and A8 we have: 
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The similar expressions are obtained for three remaining pairs of operators 2A and 

7A , 3A  and 6A , 4A  and 5A . In the boundary voxels of the computational domain 

the finite difference approximation is constructed taking into account the boundary 
conditions. 

In the particular case of identity between two complimentary components 

'mm uu ≡ , the numerical scheme presented above is equivalent to a system of finite 

difference equations with a 13 diagonal matrix and dimension zyx NNNN ××= , 

where N is a total number of nodes in the grid. The high dimensionality of a finite 
difference model is a major obstacle in the computational complexity of this 
numerical problem. The introduction of additional (complimentary) solution 
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components opens an opportunity for use of the vector-additive iterative methods [7-
9], which are unconditionally stable and potentially amenable for multi-threading 
limited only by a total number of nodes in a grid. 

An application of the vector-additive iterative scheme of the domain 
decomposition type to our problem leads to an algorithm with the following key 
features. Iterative approximations for the internal components in every cell of the grid 
are computed implicitly as solutions of the system of eight linear algebraic equations 
in respect of these unknown internal components. External components (belonging to 
eight neighboring cells) in such an implicit solution are taken from the previous 
iteration step. As a result, an elementary per-voxel step of the iterative process 
consists of solving a system of linear algebraic equations of the following type: 
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Here, iteration parameters 0>τ  and 1≥λ , where k is an iteration number. 
Apparently, the calculation of the next iterative approximation requires solving a 
system of 8 equations of type (5). Thus, the computational complexity per iteration is 
Q=NQ0 /8, where Q0  is the computational cost for solving the linear system in (5) 
with a matrix 88× , and 8/N  is a number of computational cells in the checkerboard 
discretization. Assuming the Gaussian elimination algorithm for solving (5), we  
have approximately Q0 ~ (2/3)83 ≈341 floating operations per–cell at one iteration. 
Thus, the computational complexity per iteration is comparable with the standard 
PCG algorithms. The most important point is that an iterative solution in every 
computational cell can be updated concurrently as it is dependent from the 
neighboring cells input only from the previous iteration. Therefore, the structure of 
this algorithm allows natural partitioning up to N/8 parallel threads of execution. 

Theoretical estimates of convergence for this class of the vector-additive numerical 
schemes and optimal choice of iteration parameters have been developed by Abrashin 
et. al. [7,8]. An example of using the similar iterative scheme in a 2D case for the 
convection-diffusion equation was given in one of our work [9]. 

 

 
 

Fig. 2. Local error (left) and numerical solution (right) for a test analytical case (see text for 
details) 
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4   Validation and Numerical Examples  

A serial version of the proposed forward anisotropic solver was prototyped in Matlab.  
It was validated against an analytical solution and tested on a cubic phantom with 
anisotropic inclusions.   

A simple analytic test was constructed assuming that in a cubic computational 
domain with edge length 2a the solution has the form: 

 
u(x, y, z ) = (x − a)(x + a)(y − a)(y + a)(z − a)(z + a) . 

 
Apparently, such a solution satisfies the Dirichlet boundary conditions at the 

computational domain boundaries. The right-hand term, ),,( zyxϕ , has been found by 

direct analytical differentiation of ),,( zyxu according to (1) and a set of analytical 

conductivity tensor components. In Fig. 2 one can see the good agreement between 
the analytical and numerical solutions. The error between analytical and numerical 
solutions was computed in terms of the local norm. The algorithm converged at 54 
iterations with accuracy 1.e-6 for the problem size 32x32x32 voxels. In addition, we 
 

 

 
Fig. 3. Histograms of computational time (left) and number of iterations (right) to convergence 
for QMR (1), BiCG (2) and vector-additive method (3). Preconditioning: without (a), Jacobi (b) 
and IChF (c). Coefficients and accuracy: smooth, 1.e-6 (top) and heterogeneous, 1.e-4 (bottom). 
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compared performance of the vector-additive algorithm against the Quasi-Minimal 
Residual method (QMR) and BiConjugate Gradients method (BiCG) constructed with 
the same 13-point stencil, as in Fig. 1, and with different preconditioners (Jacobi and 
incomplete Cholesky factorization (IChF)) for smooth and highly heterogeneous 
anisotropic phantoms. The code for QMR and BiCG was prototyped in Matlab using 
the classic schemes [11-13].   

As seen in Fig. 3, the QMR and BiCG algorithms perform about 4-5 times better than 
the vector-additive algorithm in terms of computational time for the heterogeneous and 
smooth problems of size 64x64x64. This is not surprising, as the serial vector-additive 
algorithm in the present Matlab implementation is not optimized in terms of matrix 
operations, while the QMR and BiCG implementations are completely vectorized by 
using the standard Matlab functions. Yet, the convergence of the vector-additive 
algorithm was found to be comparable (Fig. 3, right) in terms of a number of iterations 
needed to reach the prescribed accuracy. 

For simulation of the more realistic case of the human head geometry we have 
employed a cubic phantom with the 20 centimeters edge. The phantom has several 
shells representing air, scalp, skull, Cerebro-Spinal Fluid (CSF) and different 
anisotropic inclusions modeling brain. The isotropic conductivity values of scalp 
(0.45 S/m), skull (0.018 S/m), CSF (1.9 S/m) have been chosen to be equal to the 
median values reported in the published literature [6]. The air conductivity has been 
set to 0.001 S/m. The anisotropic ratio of conductivity in the brain inclusion has been 
set to 1:10 in the orthotropic directions. The results of the current streamline 
calculations generated by a source and a sink placed in different anisotropic parts of 
brain and convergence of the vector-additive method and the BiCG method versus the 
number of discretization points along one direction are shown in Fig.4. Again, in 
terms of the number of iterations, Kε , the vector-additive algorithm performance is 
comparable with the BiCG method. One can see that both methods are converging at 
the rate of about 300 iterations for the problem size 100x100x100.  It is worth noting, 
that the Jacobi preconditioner performed much better in the case of heterogeneous 
anisotropic inclusions (comparable with performance of the IChF preconditioner), 
while in the case of the homogeneous anisotropic cube (Fig. 3, the top-right corner) 
 

 
 

Fig. 4. Anisotropic phantom simulation. Left: convergence of the BiCG( with and without the 
Jacobi preconditioner), and vector-additive method (the red line) versus the grid size. Right: the 
current streamlines inside the brain phantom. 
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the BiCG method with the IChF preconditioner converged essentially faster. The 
current streamlines shown in Fig.4, right by the thick red color lines behave as 
expected in accordance with the anisotropic ratio model chosen for the brain 
inclusions: preferably vertically for the source, horizontally for the sink and 
equidistant in the surrounding isotropic CSF. 

5   Conclusion 

We have described a novel 3D finite volume algorithm for solving the anisotropic 
heterogeneous Poisson equation based on the vector-additive implicit methods with a 
13-point stencil. The proposed multi-component additive algorithm is unconditionally 
stable in 3D and amenable for domain decomposition parallelization with a high 
number of threads, limited only by the number of grid points in the initial 
computational domain. We have introduced two major modifications to the classic 
multi-component vector-additive method suggested in [7-9]. First, we have reduced 
the number of components from four to two in 3D by using the checkerboard 
discretization which relaxes the requirements for the operational memory. In the 
original version of this method [7,8] the minimal number of components was 
estimated to be 2(D-1), where D is the dimension of a computational problem. 
Secondly, we have introduced variable iterative parameters to improve the 
convergence rate in the case of essentially heterogeneous coefficients. Finally, to the 
best of our knowledge, this is the first attempt to use the multi-component numerical 
scheme for solving 3D anisotropic problems. 

The estimated computational complexity per iteration and the method serial 
performance are found to be comparable to the most efficient iterative solvers from 
the family of the preconditioned conjugate gradient (PCG) algorithms, in particular 
the BiCG method with the Jacobi and IChF preconditioners. In the present Matlab 
implementation the serial version takes more time per iteration and to converge than 
the standard methods due to the specifics of Matlab, where the PCG algorithms are 
completely vectorized, while our method can not avoid some necessary cycles. We 
expect the serial performance to be significantly better in the case of C/C++ 
implementation. We believe the 3D vector additive method has better parallelism 
potential than PCG methods due to its cell-level data decomposition.  We expect to 
see performance improvements that overcome the sequential deficiencies as the 
resolution of the head model scales. Our next step will be a parallel implementation of 
this algorithm on a computational cluster and a GPGPU accelerator for large size 
problems based on the high-resolution (256x256x256 voxels) human MRI/CT data.  
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