
G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 511–520, 2009.
© Springer-Verlag Berlin Heidelberg 2009

 A 3D Vector-Additive Iterative Solver for the
Anisotropic Inhomogeneous Poisson Equation in the

Forward EEG problem

Vasily Volkov1, Aleksei Zherdetsky1, Sergei Turovets2, and Allen Malony2

1 Department of Mathematics and Mechanics, Belarusian State University, 4 Independence
Ave., Minsk 220050, Republic of Belarus

volkovvm@bsu.by
2 NeuroInformatics Center, 5294 University of Oregon, Eugene, OR 97403, USA

(sergei,malony)@cs.uoregon.edu

Abstract. We describe a novel 3D finite difference method for solving the
anisotropic inhomogeneous Poisson equation based on a multi-component
additive implicit method with a 13-point stencil. The serial performance is
found to be comparable to the most efficient solvers from the family of
preconditioned conjugate gradient (PCG) algorithms. The proposed multi-
component additive algorithm is unconditionally stable in 3D and amenable for
transparent domain decomposition parallelization up to one eighth of the total
grid points in the initial computational domain. Some validation and numerical
examples are given.

1 Introduction

The challenge in most tomographic techniques is to determine unknown complex
coefficients or driving sources in the partial differential equations (PDEs) governing the
physics of the particular experimental modality. Problems in neuroscience such as
electroencephalography (EEG) and magnetoencephalograpy (MEG) source localization,
electrical impedance tomography (EIT) or diffuse optical tomography (DOT) are
inherently non-linear, underdetermined and ill-posed, requiring high accuracy in
measurements and PDE inverse modeling [1]. The first step in solving such inverse
problems is to find a numerical method to solve the direct (forward) problem. When the
physical model is three-dimensional and geometrically complex, like the human brain,
the high- resolution forward solution can be difficult to construct and compute.

Until recently, most practical research in this field has opted for simplistic
analytical or semi-analytical models of a human head in the forward calculations [2].
With geometric information becoming more readily available from MRI or CT scans,
finite element (FE) and finite difference (FD) approaches can now incorporate
realistic 3D head geometry for human head model construction. However, most of the
published models, with a few exceptions, treat the human head tissues as isotropic,
while it is well known that brain white matter, skull and facial/scalp muscles are
highly anisotropic, with the anisotropic ratio estimated to be between 1:3 and 1:10
[3 and references therein].

512 V. Volkov et al.

In the present study we propose an algorithm for solving the anisotropic diffusion
equation based on multi-component (vector-additive) implicit FD methods. Not only
are these methods unconditionally stable in 3D, but they offer the potential for high
domain decomposition parallelization, and are promising candidates for computational
acceleration with GPGPUs (general purpose graphics processing units) [4]. We
introduce the algorithm and assess the serial performance of the proposed method in
comparison with the most efficient solvers from the family of the preconditioned
conjugate gradient (PCG) algorithms.

2 Statement of the Problem

The relevant frequency spectrum in EEG, MEG and EIT of the human head is
typically below 1 kHz, and most studies deal with frequencies between 0.1 and 100
Hz. Therefore, the physics of EEG/MEG can be well described by the quasi-static
approximation of the Maxwell equations, the Poisson equation. The electrical forward
problem can be stated as follows: given the positions, orientations and magnitudes of
dipole current sources,),,(zyxϕ , as well as geometry and electrical conductivity of

the head volume (Ω), calculate the distribution of the electrical potential on the
surface of the head (scalp) (ΓΩ). Mathematically, it means solving the inhomogeneous
anisotropic Poisson equation [2]:

∇ •(σ(∇u) = ϕ(x, y, z), in Ω (1)

with no-flux Neumann boundary conditions on the scalp:

σ(∇u) • n = 0, on ΓΩ. (2)

Here σ= σij(x,y,z) is an inhomogeneous symmetric tensor of the head tissues
conductivity. Having computed potentials u(x,y,z) and current densities J=- σ(∇u),
the magnetic field B can be found through the Biot-Savart law. The similar non-
stationary anisotropic diffusion equation is relevant also in the DOT forward problem
modeling [1] and the white matter tractography studies using diffusion tensor MRI
imaging [5].

Previously, we built an iterative finite difference forward problem solver for an
isotropic version of (1) and (2) based on the multi-component alternating directions
implicit (ADI) algorithm [6]. It is a generalization of the classic ADI algorithm,
but with improved stability in 3D (the multi-component FD ADI scheme is
unconditionally stable in 3D for any value of the time step [7,8]). To describe the
electrical conductivity in the heterogeneous biological media within arbitrary
geometry, the method of the embedded boundaries has been used. Here an object of
interest is embedded into a cubic computational domain with extremely low
conductivity values in the external complimentary regions modeling the surrounding
air. This effectively guarantees there are no current flows out of the physical area (the
Neumann boundary conditions, (2), is naturally satisfied). The idea of the iterative
implicit method is to find the solution of (1) and (2) as a steady state of the
appropriate evolution (diffusion) problem. At every iteration step, the spatial operator

 A 3D Vector-Additive Iterative Solver 513

is split into the sum of three 1D operators, which are evaluated alternatively at each
sub-step. Such a scheme is accurate to O[τ +(Δx)2)+(Δy)2+(Δz)2]. In contrast with
the classic ADI method, the multi-component ADI uses the regularization (averaging)
for evaluation of the variable at the previous instant of time.

Parallelization of the vector-additive ADI algorithm in a shared memory
multiprocessor environment (OpenMP) is straightforward, as it consists of nests of
independent loops over “bars” of voxels for solving the effective 1D problem in every
iteration. However, it is less suitable for implementation in an environment with a
distributed memory. In the next section we present a vector-additive algorithm of the
domain decomposition type which is potentially amenable for implementation at
greater parallel degree.

3 Numerical Scheme

In the Cartesian coordinate system, (1) is expressed as

∂

∂x
σ xx

∂u

∂x
+ σ xy

∂u

∂y
+ σ xz

∂u

∂z

⎛
⎝
⎜

⎞
⎠
⎟ +

∂

∂y
σ yy

∂u

∂y
+ σ yx

∂u

∂x
+ σ yz

∂u

∂z

⎛
⎝
⎜

⎞
⎠
⎟ +

+
∂

∂z
σ zz

∂u

∂z
+ σ zx

∂u

∂x
+ σ zy

∂u

∂y

⎛
⎝
⎜

⎞
⎠
⎟ = ϕ (x, y, z).

To discretize this equation we will use finite difference approximation of the

spatial derivatives on the reactangular grid),,(kji zyx , xNi ,1= , yNj ,1= ,

zNk ,1= , where zyx NNN ,, are the numbers of grid points in x,y, z spatial

directions. The finite difference approximation of the second order accuracy for the
Poisson equation with mixed derivatives can be made with a minimal stencil of 7
points in 2D [9]. Generalization to 3D leads to a 13-point stencil, as shown in Fig. 1.
It consists of two diagonal compartments (cells) with one common corner. The whole
problem computational domain is represented by a 3D checkerboard lending itself for
domain decomposition (partitioning). One can take into account only even (or only
odd) mesh cells, each of them having eight neighboring computational cells. Every
internal node of this checkerboard grid belongs simultaneously to two neighboring
cells. Therefore, it is natural to introduce two components of an approximate

numerical solution, (um , mu −9), where 8,1=m (see Fig. 1). The first component of

such pair, mu , is considered as an internal component of the given mesh cell while

the second one is a complimentary component belonging to the corresponding
neighboring mesh cell. In these notations, the finite difference approximation, L, of
the differential operator in (1) in an arbitrary node of the grid,),,(kji zyx , can be

represented as

 uAuALu mm += , (3)

514 V. Volkov et al.

where Tuuuu),,,(821 K= and Tuuuu),...,,(178= are the vectors of two components

of the approximate numerical solution in two neighboring cells on the grid with a
common node at),,(kji zyx .

Fig. 1. Schematic view of the finite difference stencil for (1)

In (3) factors mA and mA are vectors with components given by coefficients of

the finite difference approximation for (1), which is obtained by the standard finite
volume method [10]. As a result, the derivatives in (1) are given by the following
finite differences:

∂

∂x
σxx

∂u

∂x

⎛
⎝
⎜

⎞
⎠
⎟ ≅ σxx

12 u2 − u1

hx
2 − σxx

78 u8 − u7

hx
2 ,

∂

∂y
σyy

∂u

∂y

⎛
⎝
⎜

⎞
⎠
⎟ ≅ σyy

14 u4 − u1

hy
2 − σyy

58 u8 − u5

hy
2 ,

∂

∂z
σzz

∂u

∂z

⎛
⎝
⎜

⎞
⎠
⎟ ≅ σzz

16 u6 − u1

hz
2 − σzz

38 u8 − u3

hz
2 , (4)

∂

∂x
σxy

∂u

∂y

⎛
⎝
⎜

⎞
⎠
⎟ ≅ σxy

34 u3 − u4

2hxhy

− σxy
12 u2 − u1

2hxhy

+ σxy
78 u8 − u7

2hxhy

− σxy
56 u5 − u6

2hxhy

,

∂

∂y
σyx

∂u

∂x

⎛
⎝
⎜

⎞
⎠
⎟ ≅ σyx

23 u3 − u2

2hxhy

− σyx
14 u4 − u1

2hxhy

+ σyx
58 u8 − u5

2hxhy

− σyx
76 u7 − u6

2hxhy

,

∂

∂x
σxz

∂u

∂z

⎛
⎝
⎜

⎞
⎠
⎟ ≅ σxz

25 u3 − u4

2hxhz

− σxz
16 u6 − u1

2hxhz

+ σxz
38 u8 − u3

2hxhz

− σxz
47 u7 − u4

2hxhz

,

∂

∂z
σzx

∂u

∂x

⎛
⎝
⎜

⎞
⎠
⎟ ≅ σzx

56 u5 − u6

2hxhz

− σzx
12 u2 − u1

2hxhz

+ σzx
78 u8 − u7

2 hxhz

− σxz
34 u3 − u4

2hxhz

,

 A 3D Vector-Additive Iterative Solver 515

∂

∂y
σyz

∂u

∂z

⎛
⎝
⎜

⎞
⎠
⎟ ≅ σyz

47 u7 − u4

2hyhz

− σyz
16 u6 − u1

2hyhz

+ σyz
38 u8 − u3

2hyhz

− σyz
25 u5 − u2

2hyhz

,

∂

∂z
σzy

∂u

∂y

⎛
⎝
⎜

⎞
⎠
⎟ ≅ σzy

67 u7 − u6

2 hyhz

− σzy
14 u4 − u1

2 hyhz

+ σzy
58 u8 − u5

2 hyhz

− σzy
23 u3 − u2

2hyhz

.

Here)/(2 kmkmmk σσσσσ += , where mk σσ , are values of the conductivity

tensor components in nodes k and m , and zyx hhh ,, are grid steps along the

Cartesian axis. As it is seen from (4), variables u1

−
 and u8, which correspond to the

most distant nodes in the two cell arrangement in Fig. 1, are absent. This means these
nodes are not involved into the stencil. By grouping the terms belonging to one of
two cells in the stencil in expressions for finite difference derivatives in (4) one can
obtain an additive representation of operator L in (3), which allows us to express the

components of vectors mA and mA . For instance, for A1 and A8 we have:

A1u = −
σxx

12

hx
2 +

σyy
14

hy
2 +

σzz
16

hz
2 −

σxy
14

+ σyx
12

2hxhy

−
σxz

16
+ σzx

12

2hxhz

−
σyz

16
+ σzy

14

2hyhz

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ u1 +

+
σxx

12

hx
2 −

σxy
32

+ σyx
12

2hxhy

−
σxz

25
+ σzx

12

2hxhz

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ u2 +

σxy
32

+ σyx
34

2hxhy

u3 +
σyy

14

hy
2 −

σxy
14

+ σyx
34

2hxhy

−
σyz

47
+ σzy

14

2 hyhz

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ u4 +

+
σxz

25
+ σzx

56

2hxhz

u5 −
σxz

16
+ σzx

56

2hxhz

u6 +
σyz

47
+ σzy

67

2hyhz

u7; A8u =
σyz

25
+ σzy

23

2hyhz

u2 +
σzz

38

hz
2 −

σxz
38

+ σzx
34

2hxhz

⎛

⎝
⎜

⎞

⎠
⎟ u3

+
σxz

47
+ σzx

34

2hxhz

u4 +
σyy

58

hy
2 −

σxy
58

+ σyx
65

2 hxhy

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ u5 + +

σxy
67

+ σyx
65

2hxhy

u6 +
σxx

78

hx
2 −

σxy
67

+ σyx
87

2hxhy

−
σxz

47
+ σzx

78

2hxhz

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ u7 −

−
σxx

78

hx
2 +

σyy
58

hy
2 +

σzz
38

hz
2 −

σxy
58

+ σyx
87

2hxhy

−
σxz

38
+ σzx

78

2hxhz

−
σyz

38
+ σzy

58

2hyhz

⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ u8.

The similar expressions are obtained for three remaining pairs of operators 2A and

7A , 3A and 6A , 4A and 5A . In the boundary voxels of the computational domain

the finite difference approximation is constructed taking into account the boundary
conditions.

In the particular case of identity between two complimentary components

'mm uu ≡ , the numerical scheme presented above is equivalent to a system of finite

difference equations with a 13 diagonal matrix and dimension zyx NNNN ××= ,

where N is a total number of nodes in the grid. The high dimensionality of a finite
difference model is a major obstacle in the computational complexity of this
numerical problem. The introduction of additional (complimentary) solution

516 V. Volkov et al.

components opens an opportunity for use of the vector-additive iterative methods [7-
9], which are unconditionally stable and potentially amenable for multi-threading
limited only by a total number of nodes in a grid.

An application of the vector-additive iterative scheme of the domain
decomposition type to our problem leads to an algorithm with the following key
features. Iterative approximations for the internal components in every cell of the grid
are computed implicitly as solutions of the system of eight linear algebraic equations
in respect of these unknown internal components. External components (belonging to
eight neighboring cells) in such an implicit solution are taken from the previous
iteration step. As a result, an elementary per-voxel step of the iterative process
consists of solving a system of linear algebraic equations of the following type:

ϕλ
τ

+++−=
− +

+
k

m
k

m

kk

m

k

m uAuAuuA
uu

)(
1

~1

, 8,1=m , 2/)(9
~

mm uuu −+= . (5)

Here, iteration parameters 0>τ and 1≥λ , where k is an iteration number.
Apparently, the calculation of the next iterative approximation requires solving a
system of 8 equations of type (5). Thus, the computational complexity per iteration is
Q=NQ0 /8, where Q0 is the computational cost for solving the linear system in (5)
with a matrix 88× , and 8/N is a number of computational cells in the checkerboard
discretization. Assuming the Gaussian elimination algorithm for solving (5), we
have approximately Q0 ~ (2/3)83 ≈341 floating operations per–cell at one iteration.
Thus, the computational complexity per iteration is comparable with the standard
PCG algorithms. The most important point is that an iterative solution in every
computational cell can be updated concurrently as it is dependent from the
neighboring cells input only from the previous iteration. Therefore, the structure of
this algorithm allows natural partitioning up to N/8 parallel threads of execution.

Theoretical estimates of convergence for this class of the vector-additive numerical
schemes and optimal choice of iteration parameters have been developed by Abrashin
et. al. [7,8]. An example of using the similar iterative scheme in a 2D case for the
convection-diffusion equation was given in one of our work [9].

Fig. 2. Local error (left) and numerical solution (right) for a test analytical case (see text for
details)

 A 3D Vector-Additive Iterative Solver 517

4 Validation and Numerical Examples

A serial version of the proposed forward anisotropic solver was prototyped in Matlab.
It was validated against an analytical solution and tested on a cubic phantom with
anisotropic inclusions.

A simple analytic test was constructed assuming that in a cubic computational
domain with edge length 2a the solution has the form:

u(x, y, z) = (x − a)(x + a)(y − a)(y + a)(z − a)(z + a) .

Apparently, such a solution satisfies the Dirichlet boundary conditions at the

computational domain boundaries. The right-hand term,),,(zyxϕ , has been found by

direct analytical differentiation of),,(zyxu according to (1) and a set of analytical

conductivity tensor components. In Fig. 2 one can see the good agreement between
the analytical and numerical solutions. The error between analytical and numerical
solutions was computed in terms of the local norm. The algorithm converged at 54
iterations with accuracy 1.e-6 for the problem size 32x32x32 voxels. In addition, we

Fig. 3. Histograms of computational time (left) and number of iterations (right) to convergence
for QMR (1), BiCG (2) and vector-additive method (3). Preconditioning: without (a), Jacobi (b)
and IChF (c). Coefficients and accuracy: smooth, 1.e-6 (top) and heterogeneous, 1.e-4 (bottom).

518 V. Volkov et al.

compared performance of the vector-additive algorithm against the Quasi-Minimal
Residual method (QMR) and BiConjugate Gradients method (BiCG) constructed with
the same 13-point stencil, as in Fig. 1, and with different preconditioners (Jacobi and
incomplete Cholesky factorization (IChF)) for smooth and highly heterogeneous
anisotropic phantoms. The code for QMR and BiCG was prototyped in Matlab using
the classic schemes [11-13].

As seen in Fig. 3, the QMR and BiCG algorithms perform about 4-5 times better than
the vector-additive algorithm in terms of computational time for the heterogeneous and
smooth problems of size 64x64x64. This is not surprising, as the serial vector-additive
algorithm in the present Matlab implementation is not optimized in terms of matrix
operations, while the QMR and BiCG implementations are completely vectorized by
using the standard Matlab functions. Yet, the convergence of the vector-additive
algorithm was found to be comparable (Fig. 3, right) in terms of a number of iterations
needed to reach the prescribed accuracy.

For simulation of the more realistic case of the human head geometry we have
employed a cubic phantom with the 20 centimeters edge. The phantom has several
shells representing air, scalp, skull, Cerebro-Spinal Fluid (CSF) and different
anisotropic inclusions modeling brain. The isotropic conductivity values of scalp
(0.45 S/m), skull (0.018 S/m), CSF (1.9 S/m) have been chosen to be equal to the
median values reported in the published literature [6]. The air conductivity has been
set to 0.001 S/m. The anisotropic ratio of conductivity in the brain inclusion has been
set to 1:10 in the orthotropic directions. The results of the current streamline
calculations generated by a source and a sink placed in different anisotropic parts of
brain and convergence of the vector-additive method and the BiCG method versus the
number of discretization points along one direction are shown in Fig.4. Again, in
terms of the number of iterations, Kε , the vector-additive algorithm performance is
comparable with the BiCG method. One can see that both methods are converging at
the rate of about 300 iterations for the problem size 100x100x100. It is worth noting,
that the Jacobi preconditioner performed much better in the case of heterogeneous
anisotropic inclusions (comparable with performance of the IChF preconditioner),
while in the case of the homogeneous anisotropic cube (Fig. 3, the top-right corner)

Fig. 4. Anisotropic phantom simulation. Left: convergence of the BiCG(with and without the
Jacobi preconditioner), and vector-additive method (the red line) versus the grid size. Right: the
current streamlines inside the brain phantom.

 A 3D Vector-Additive Iterative Solver 519

the BiCG method with the IChF preconditioner converged essentially faster. The
current streamlines shown in Fig.4, right by the thick red color lines behave as
expected in accordance with the anisotropic ratio model chosen for the brain
inclusions: preferably vertically for the source, horizontally for the sink and
equidistant in the surrounding isotropic CSF.

5 Conclusion

We have described a novel 3D finite volume algorithm for solving the anisotropic
heterogeneous Poisson equation based on the vector-additive implicit methods with a
13-point stencil. The proposed multi-component additive algorithm is unconditionally
stable in 3D and amenable for domain decomposition parallelization with a high
number of threads, limited only by the number of grid points in the initial
computational domain. We have introduced two major modifications to the classic
multi-component vector-additive method suggested in [7-9]. First, we have reduced
the number of components from four to two in 3D by using the checkerboard
discretization which relaxes the requirements for the operational memory. In the
original version of this method [7,8] the minimal number of components was
estimated to be 2(D-1), where D is the dimension of a computational problem.
Secondly, we have introduced variable iterative parameters to improve the
convergence rate in the case of essentially heterogeneous coefficients. Finally, to the
best of our knowledge, this is the first attempt to use the multi-component numerical
scheme for solving 3D anisotropic problems.

The estimated computational complexity per iteration and the method serial
performance are found to be comparable to the most efficient iterative solvers from
the family of the preconditioned conjugate gradient (PCG) algorithms, in particular
the BiCG method with the Jacobi and IChF preconditioners. In the present Matlab
implementation the serial version takes more time per iteration and to converge than
the standard methods due to the specifics of Matlab, where the PCG algorithms are
completely vectorized, while our method can not avoid some necessary cycles. We
expect the serial performance to be significantly better in the case of C/C++
implementation. We believe the 3D vector additive method has better parallelism
potential than PCG methods due to its cell-level data decomposition. We expect to
see performance improvements that overcome the sequential deficiencies as the
resolution of the head model scales. Our next step will be a parallel implementation of
this algorithm on a computational cluster and a GPGPU accelerator for large size
problems based on the high-resolution (256x256x256 voxels) human MRI/CT data.

References

1. Arridge, S.R.: Optical Tomography in Medical Imaging. Inverse Problems 15, R41–R93
(1999)

2. Gulrajani, R.M.: Bioelectricity and Biomagnetism. John Wiley & Sons, New York (1998)
3. Hallez, H., et al.: Review on Solving the Forward Problem in EEG Source Analysis.

Journal of Neuroengineering and Rehabilitation 4, 46 (2007)
4. General-Purpose Computation Using Graphics Hardware, http://www.gpgpu.org

520 V. Volkov et al.

5. Qin, C., Kang, N., Cao, N.: Performance evaluation of anisotropic diffusion simulation
based tractography on phantom images. In: 45th Annual Southeast Regional Conference
ACMSE 2007, pp. 521–522. ACM, New York (2007)

6. Salman, A., Turovets, S., Malony, A., Volkov, V.: Multi-Cluster, Mix-Mode
Computational Modeling of Human Head Conductivity. In: Mueller, M.S., et al. (eds.)
IWOMP 2005 and IWOMP 2006. LNCS, vol. 4315, pp. 119–130. Springer, Heidelberg
(2008)

7. Abrashin, V.N., Egorov, A.A., Zhadaeva, N.G.: On the Convergence Rate of Additive
Iterative Methods. Differential Equations 37, 867–879 (2001)

8. Abrashin, V.N., Egorov, A.A., Zhadaeva, N.G.: On a Class of Additive Iterative Methods.
Differential Equations 37, 1751–1760 (2001)

9. Volkov, V.M., Lechtikov, S.N.: Multicomponent Iterative Methods of Decomposition
Type for Two-Dimensional Stationary Problems of Dissipative Transfer. Differential
Equations 33, 927–933 (1997)

10. LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University
Press, Cambridge (2002)

11. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: The Numerical Recipes in
C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York
(1992)

12. Barrett, R., Berry, M., Chan, T.F., et al.: Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)

13. Freund, R., Nachtigal, N.: QMR: A Quasi-Minimal Residual Method for Non-Hermitian
Linear Systems. Numer. Math. 60, 315–339 (1991)

	A 3D Vector-Additive Iterative Solver for the Anisotropic Inhomogeneous Poisson Equation in the Forward EEG problem
	Introduction
	Statement of the Problem
	Numerical Scheme
	Validation and Numerical Examples
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

