
Special Issue Article

Tools for machine-learning-based
empirical autotuning and specialization

Nicholas Chaimov, Scott Biersdorff and Allen D Malony

Abstract
The process of empirical autotuning results in the generation of many code variants which are tested, found to be
suboptimal, and discarded. By retaining annotated performance profiles of each variant tested over the course of many
autotuning runs of the same code across different hardware environments and different input datasets, we can apply
machine learning algorithms to generate classifiers for runtime selection of code variants from a library, generate spe-
cialized variants, and potentially speed the process of autotuning by starting the search from a point predicted to be close
to optimal. In this paper, we show how the TAU Performance System suite of tools can be applied to autotuning to enable
reuse of performance data generated through autotuning.

Keywords
autotuning, specialization, TAU, machine learning, decision trees

1. Introduction

Scientific codes are often written by scientists who are

experts in their particular domain but for whom low-level

optimizations taking advantage of architectural features

of particular systems is not a priority, yet this is essential

for attaining good performance. Experts in computer archi-

tecture can help make these optimizations, but the process

is time-consuming and yields code which can be difficult to

read, difficult to debug, and tied to a particular system or

class of systems. The process is further complicated by

code with performance characteristics which additionally

depend upon properties of the input dataset. Hence, efforts

have been undertaken to automate the process of tuning

code through empirical autotuning, a process wherein

many optimizations are carried out and their effects

on performance measured in order to select the best

optimizations.

Autotuning has been employed with success in various

libraries, such as the linear algebra library ATLAS (Whaley

and Dongarra, 1998; Whaley et al., 2000) and the Fourier

transform library FFTW (Frigo et al., 2005) In both of these

cases, the autotuning system is specific to the domain and

self-contained. Just as it is non-ideal to burden application

developers with the task of carrying out low-level optimi-

zations, it is non-ideal to burden them with the design and

implementation of a library-specific autotuning system. For

this reason, general-purpose autotuning systems, such as

Active Harmony (Hollingsworth and Tiwari, 2010) and

Orio (Hartono et al., 2009) have been developed.

The output of an autotuning system is a set of optimiza-

tions, or a code variant, which was measured to yield the

highest performance. During the autotuning process, how-

ever, a large number of optimizations or variants are tested.

We propose that performance data for each variant tested

over the course of autotuning should be preserved, anno-

tated with provenance metadata specifying the execution

environment, input data, and optimizations applied. More-

over, by retaining the complete information, we can ana-

lyze the performance characteristics of the optimized

variants in order to generate understanding of the effects

of the various optimizations. By preserving such data in a

centralized database across multiple runs on multiple

machines and with multiple input data, we can analyze

how optimizations, machine, and input data characteristics

interact. Interoperability between tools used within the

autotuning framework, including performance analysis

tools, can be enabled by a well-defined data format acces-

sible through open application programming interfaces

(APIs).

Department of Computer and Information Science, University of Oregon,

Eugene, OR, USA

Corresponding author:

Nicholas Chaimov, Department of Computer and Information Science,

University of Oregon, 207B Deschutes Hall, 1202 University of Oregon,

Eugene, OR 97403, USA.

Email: nchaimov@uoregon.edu

The International Journal of High
Performance Computing Applications
27(4) 403–411
ª The Author(s) 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342013493124
hpc.sagepub.com

http://www.sagepub.co.uk/journalsPermissions.nav
http://hpc.sagepub.com

There are other benefits of capturing and managing rich

performance information generated during empirical auto-

tuning. By applying machine learning algorithms to such

data, we can generate classifiers which enable runtime-

adaptive code without requiring autotuning at runtime, and

we can potentially speed up the process of autotuning by

using learned classifiers to select good starting points for

search. In the former case, we may want to create a classi-

fier which, given past performance measures, properties of

the machine on which the code is currently executing, and

properties of the input data, selects a variant predicted to be

the best-performing from those in a library of variants

generated by earlier autotuning sessions. In the latter case,

given the same information, we may want to select a set of

parameters specifying a starting point in the search space of

potential variants. Here, we show how performance mea-

surement, autotuning, performance database and machine

learning tools can be integrated to attain these goals.

2. Related Work

Machine learning techniques have been used previously for

the prediction of beneficial optimizations. Monsifrot et al.

(2002) used decision tree learning to select optimal unroll

factors for loops extracted from the SPEC benchmarks.

Their approach was to perform static analysis of the code

to extract various descriptors of the code: number of state-

ments, number of operations, number of array accesses, etc.

For each loop, the space of possible unroll factors was

enumerated exhaustively and the performance of each was

measured. By using decision tree learning over that dataset,

a tree was produced which could, given a loop from the

overall dataset omitted from the training dataset, identify

the empirically determined optimal unroll factor in 85.2%
of cases tested. This approach was also used by unroll: code

properties obtained by Stephenson and Amarasinghe

(2005): code properties selection by static analysis were

used train nearest-neighbor classifiers and support vector

machines for selection of unroll factors, with accuracies

of 62% and 79%, respectively.

Cavazos et al. (2007) use machine learning to selecting

compiler flags based upon measurement of hardware per-

formance counters. Their approach involves first testing a

around 500 randomly selected combinations of compiler flags

and recording execution time along with the values stored in

various hardware counters. Logistic regression is then used

to assign to each compiler optimization a probability indi-

cating whether it should be evaluated given the performance

counter data, which are used to guide future autotuning ses-

sions. Optimization flags selected by this method improved

the performance of the SPEC benchmarks by 17%.

Decision trees and artificial neural networks have also

been used to predict optimal MPI runtime parameters based

on static code analysis (Pellegrini et al., 2009), while kernel

canonical correlation analysis has been used to predict code

transformations to improve performance and energy effi-

ciency (Ganapathi et al., 2009).

This work expands on the above by combining the use of

runtime performance counter data with metadata about the

execution environment and input dataset to generate classi-

fiers for prediction of optimal values for multiple optimiza-

tion types.

3. TAU and TAUdb

In this work, we apply the TAU Performance System

(Shende), a performance measurement, instrumentation,

analysis and visualization framework, to the problem of

autotuning by integrating TAU with existing code transfor-

mation and optimization frameworks.

TAU has several important features which are useful in

empirical autotuning. For example, TAU can gather execu-

tion time data and also access hardware performance coun-

ters in CPUs through PAPI (Browne et al., 2000) and in

GPUs through CUPTI (Malony et al., 2010). Thus, an auto-

tuning system that depends on multiple performance

metrics to reach optimization decisions, or is interested in

evaluating multiple objective functions, can use TAU to

measured multiple parameters simultaneously.

Along with performance metrics, TAU automatically

captures metadata describing the execution environment,

to allow an autotuning system to understand the measure-

ments in context: data on the CPU type, number of cores,

cache sizes, system memory size, operating system, and

compiler used are collected, along with other information.

Application-specific metadata can also be captured. One

example of this is TAU’s support for parameterized profil-

ing, in which performance data is captured separately

according to the input parameters to a function, allowing for

variation in performance resulting from differences in input

to be seen. By capturing both types of metadata, we can ana-

lyze not only both the effect of the execution environment

and the effect of the input data on performance, we can also

examine the interaction between execution environment and

input data, as we might expect in the interaction between the

size of an input and the size of the available data cache.

TAU also includes the TAUdb performance database,

based on the earlier PerfDMF database (Huck et al.,

2005). It is a performance measurement database designed

to store performance profiles of sequential and parallel

applications over the course of multiple experiments. It

provides for multiple clients to submit performance data

to a central repository, for analysis in aggregate. It also fea-

tures robust support for the storage of metadata. It can

import performance data from TAU as well as from many

other tools, and provides Java and C APIs for querying and

data storage with which autotuning tools can retrieve per-

formance measurements from TAU and store annotated

measurements into the database.

Data stored in TAUdb can be easily used in the Para-

Prof visualization system (Bell et al., 2003) and the PerfEx-

plorer data mining framework (Huck and Malony, 2005).

PerfExplorer provides an interface through which data

stored in TAUdb can be subjected to various analyses, such

404 The International Journal of High Performance Computing Applications 27(4)

as clustering and principal component analysis. PerfEx-

plorer is integrated with the Weka library (Hall et al.,

2009) to allow access to a large package of data mining and

machine learning algorithms, which can be scripted in

Python via a Jython interface.

4. Integrating TAU

4.1. Active Harmony and CHiLL

To achieve the goals set out in the introduction, we inte-

grated TAU, TAUdb and PerfExplorer with two autotuning

systems. The first utilized ROSE, CHiLL and Active Har-

mony as described in Tiwari et al. (2011). The basic work-

flow of this system is shown in Figure 1. The procedure

carried out is as follows:

1. TAU, with PDT (Lindlan et al., 2000), is used to carry

out source-based instrumentation of the target applica-

tion at the function level, which is then run to gather

baseline performance information, including wall-

clock time and any user-specified metrics. These per-

formance measurements and associated metadata are

saved into the TAUdb database.

2. A PerfExplorer script is run to carry out triage, evalu-

ating performance data from the initial run to identify

potential targets for autotuning.

3. Source-level instrumentation with TAU is repeated,

this time instrumenting potential targets at the loop

level. In addition, parameterized profiling is used, so

that performance data is recorded separately according

to input parameters.

4. Target loops are extracted into their own functions for

ease of analysis and transformation using the ROSE

outliner (Liao et al., 2010). The ROSE outliner is based

on the ROSE compiler system (Quinlan, 2000), a com-

piler framework designed for source-to-source trans-

formation. ROSE parses C, Cþþ and FORTRAN

code into a common abstract syntax tree representation

which can be traversed, analyzed and modified. The

outliner allows the user to specify a section of code

to be extracted into a separate function either using

compiler pragmas or by ‘‘abstract handles’’ which

allow position-independent references to nodes in the

AST. During outlining, side-effect and liveness analy-

ses are performed to determine whether it is possible to

pass variables by value rather than by reference. By

avoiding repeated pointer dereferences inside the out-

lined function wherever possible, the performance

characteristics of the original code are maintained.

5. Active Harmony (Tiwari and Hollingsworth, 2011)

and CHiLL (Chen et al., 2008) are used to carry out

autotuning of the extracted kernel.

Active Harmony is a search engine capable of rapidly

exploring the parameter search space by testing multiple

hypotheses in parallel, using the Parallel Rank Ordering

algorithm to evaluate potential parameters (Tiwari, 2011).

The user can specify parameters, ranges for the parameters,

and constraints restricting the values parameters can take

on. Active Harmony runs using a client–server architecture,

in which a centralized Harmony server communicates with,

and provides parameters to, multiple clients running on dif-

ferent, identically configured nodes of a cluster. Additional

servers can be configured as code servers, which perform

compilation of code variants and distribute compiled object

files to the execution nodes.

CHiLL is a code variant generator which allows the user

to specify a series of high-level loop transformations to be

applied together. The version of CHiLL used in this inte-

grated system uses ROSE internally to parse code and

applies transformations by making modifications to the

ROSE AST. It uses a polyhedral model of loop transforma-

tions. CHiLL recipes can be parameterized, and autotuning

can be performed by searching the space of parameters to

available recipes. CHiLL recipes also allow for specializa-

tion by indicating known loop bounds. This can enable

optimizations which otherwise would not be available. A

version of CHiLL known as CUDA-CHiLL (Rudy et al.,

2011) can generate CUDA code for execution on GPUs

from standard C code.

Active Harmony proposes CHiLL-recipe parameters

which are used to generate a code variant, which is

Outlined
Function

Selective Instrumentation
File (specifying

parameters to capture)

Instrumented
Variant

tau_instrumentor

Parameterized
Performance Profile

execute

parameters
from TauDB

CHiLL
Recipes

Active Harmony

code variant

TAUdb

CHiLL

Figure 1. Workflow of the integrated TAU–CHiLL–Active
Harmony system.

Chaimov et al. 405

instrumented using TAU. The application is run using the

generated variant, with the gathered performance data being

saved into TAUdb. The database entries are annotated with

the name of the CHiLL script used and its parameters.

In Section 4, we show how the TAU-integrated Active

Harmony-CHiLL workflow is used in automatic

specialization.

4.2. Orio

We also integrated TAU with the Orio performance tuning

framework orio. Orio differs from CHiLL in that it inte-

grates its own search engine, rather than relying on an

external search engine such as Active Harmony, and oper-

ates not on original source files written in general-purpose

languages such as C or Fortran, but rather on domain-

specific languages, such as a restricted subset of C which

disallows pointer arithmetic.

Orio is highly extensible, allowing for new input and

output languages to be defined. It also provides support for

user-specified skeleton functions used to test the perfor-

mance of generated variants; as such, a skeleton function

using TAU timers can be used in place of the defaults pack-

aged with Orio. Orio was also modified to save parameter-

ized performance data into TAUdb, as with the Active

Harmony–CHiLL workflow described above. The Orio

workflow is depicted in Figure 2. Since TAUdb provides

a common representation for parameterized performance

data, autotuning experiments from both the Active

Harmony–CHiLL and the Orio-based workflows can be

processed using the same tools.

As an example of the Orio workflow, Orio was used to

autotune a matrix multiplication kernel, generating CUDA

code for execution on a GPU. Over the course of the autotun-

ing process, 2,048 different code variants were generated

and evaluated, with annotated performance data for each

Orio Code Generator

Experiment

TAU Metadata Entries

Transformations

Execution Time
Writes

measurement library
CUPTI callback

TAUdb

Writes

Uploaded

Links at Runtime

TAU Profiles

Figure 2. Workflow of the integrated TAU and Orio system.

Threads Per Block # of Blocks Preferred L1 Size Unroll factor CFLAG Warps Per SM

K
er

ne
l E

xe
cu

tio
n

Ti
m

e

Figure 3. PerfExplorer-generated component analysis of parameters used in the generation of optimized CUDA matrix multiply
kernels by Orio.

406 The International Journal of High Performance Computing Applications 27(4)

being saved into TAUdb. Once in TAUdb, PerfExplorer was

used to do component analysis to reveal the effects of differ-

ent tuned parameters on the overall execution time of the

generated kernels; see Figure 3. That analysis shows that

threads per block, number of blocks, and number of warps

per streaming multiprocessor are more highly correlated

with minimum achievable runtime, while other factors were

less correlated with runtime. Individual parameters can be

investigated in more depth, as in Figure 4.

5. Automatic specialization

Once metadata-annotated performance measurements are

loaded into TAUdb, we can process the data with machine

learning algorithms to generate classifiers for purposes of

selecting high-performance code variants. We use decision

tree learning (Quinlan, 1993) to generate such a classifier,

using metadata about system and input data to make a

selection. Decision tree learning is used in preference to

other types of classifiers because they are simple and

straightforward to evaluate and can be examined by the

user, who can see the relationships between features in the

tree. In contrast, other classifier types, notably neural net-

works, are difficult for a human to interpret in any mean-

ingful way.

The workflow is shown in Figure 5. A decision tree is

generated from data in TAUdb using Weka’s J48 algorithm

invoked from a PerfExplorer script; an example is shown

in Figure 6. Once a decision tree has been generated, it is

read by a ROSE-based tool which constructs the AST of

a wrapper function and unparses it to C or Cþþ code. The

wrapper function is then inserted into the original source

code in place of the call to the outlined function. The wrap-

per function represents the tree as a series of if-then-else

statements (for binary decision trees) or switch statements

(for n-ary decision trees where n > 2). Code to evaluate

each decision node is provided for each of the default types

of metadata generated by the framework. If application-

specific metadata is used as a feature in constructing the

decision tree, the user must provide a function for runtime

evaluation.

Figure 4. Kernel execution time and GPU occupancy as a function of the number of threads across generated optimized CUDA matrix
multiply kernels by Orio.

and metadata

WEKA

decision tree
induction
algorithm

ROSE-based
Code

Generation
Tool

Code Variants

Wrapper Function

TAUdb

profile data

Figure 5. Wrapper-generation workflow for automatic speciali-
zation and runtime-adaptive code.

Chaimov et al. 407

This decision-tree-based wrapper function can be used

for automatic specialization. In specialization, function

variants are generated which take advantage of known

properties of their inputs. Since TAU can capture input

parameters to functions along with performance measure-

ments, we can automatically identify the most frequently

encountered parameters and generate specialized variants

during autotuning. Input parameters can then be used as

features during decision tree learning, so that the wrapper

function will select a function variant based on input para-

meters. Specialization was used by Shin et al., (2010) to

generate variants of a matrix multiply routine optimized for

particular matrix sizes, which generated a wrapper function

to select a variant based upon a custom-designed algorithm

which evaluates matrix dimensions in an order designed to

minimize the number of comparisons needed. Decision tree

learning achieves this objective automatically, since J48 is

biased towards small trees, places highly informative nodes

near the root, and trims the tree, replacing interior nodes

with leaf nodes, when the resulting information loss is

small.

To evaluate the ability of the decision tree learning

methodology to assist in specialization based on input,

we used the Active Harmony–CHiLL-based workflow to

generate specialized variants of a naı̈ve dense matrix multi-

ply kernel. The matrix multiply kernel was called with a

test set of randomly generated matrices of different dimen-

sions containing both ‘‘small’’ (fits entirely in cache) and

‘‘large’’ (does not fit entirely in cache) matrices, with some

small matrix sizes being more common than others, provid-

ing an opportunity for improving performance by specializ-

ing for common matrix sizes. Parameterized transformation

scripts allowed for varying levels of loop unrolling and

loop tiling, and for permutation and splitting of loops. Two

autotuning rounds were run: in the first, specialization and

wrapper-function generation was disabled; one autotuned

kernel was output and was used for all matrices in the test

set. In the second, specialization was used, using matrix

dimensions as parameters for runtime selection of a variant.

By taking advantage of opportunities, overall performance

was increased, as shown in Table 1. Learning a classifier

for selecting optimal unrolling factors and tile sizes

allowed these to be predicted without an architectural

expert manually producing a model directly incorporating

architectural features, which is an alternate approach

(Murthy et al., 2010).

Another use for machine learning in autotuning is in the

selection of a good starting point in the search space; in this

case, we learn a decision tree the leaves of which represent

not code variants themselves but the parameters which

Table 1. Performance improvements in a matrix multiply kernel
from autotuning and specialization.

Original Autotuned Specialized

Speedup 1.000 1.341 1.712

PARAM_k

=10

PARAM_m

=10

PARAM_n

=10

MM_v1

PARAM_n

MM_v2

=100?

MM_v0

?

MM_v0

=2

PARAM_m

=2

=2

MM_v3 MM_v0 MM_v4

=8?

=10

PARAM_m

=10

MM_v5 MM_v0 MM_v6

=100?

MM_v6

?

MM_v7

Figure 6. A decision tree for selecting an optimized variant of a matrix multiply kernel specialized for the most frequently encountered
dimensions.

1000 10 20 30 40 50 60 70 80 90

5
Default starting configuration
Predicted starting configuration

0

1

2

3

4

Evaluations

Ti
m

e
(s

)

Figure 7. Evolution of the search process for a matrix multiply
kernel on an NVIDIA GTX 480 GPU when the default starting
configuration is used (red) and when a starting configuration
based on runs in different execution environments is used (green).

408 The International Journal of High Performance Computing Applications 27(4)

generate the code variant. When we run another round of

autotuning in a new execution environment or on a new

dataset, we first measure the performance of the unopti-

mized code to gather baseline parameterized performance

information. The baseline profile is used as input to the

classifier, yielding a set of parameters which are given to

the search engine as the starting point.

To test this, we used the matrix multiply kernel described

above, but used CUDA–CHiLL to generate CUDA kernels.

The test set contained only large matrices, as the cost of

copying small matrices to device memory would eliminate

any performance increase from faster computation. Auto-

tuning was performed using the same test set on different

GPUs: NVIDIA C2050, C2070, S1070 and GTX 480 GPUs

were used. For each card, autotuning was performed for the

other three to generate a dataset used to build a decision

tree which was used to predict a starting point for the card

under consideration. The configuration with the best per-

formance varied with the targeted GPU. Figure 7 shows the

evolution of the search process on the GTX 480 for the

default configuration and for the predicted configuration

based upon trials on the other three GPU models. The pre-

dicted initial configuration had better performance than the

default configuration, regardless of whether prior informa-

tion was used, the search on each individual GPU eventu-

ally converged to the same best configuration for that

GPU model . However, the use of prior information could

increase search time when the tested architecture is suffi-

ciently different from those the classifiers were trained

on. In the above example, all cards were NVIDIA GPUs

of varying specifications. If this classifier is used to predict

initial search configurations for an unrelated architecture,

the performance of the chosen initial configuration can be

worse than that of the default configuration. Figure 8 shows

that search performance is degraded when the GPU-trained

classifier is used in autotuning the same code on an Intel

MIC card. Hence, some degree of architectural similarity

is required to benefit from initial configuration prediction.

Another use of the ability to select a variant at runtime

arises because the conversion to CUDA code is, like unrol-

ling or tiling, a step in a transformation recipe. By provid-

ing transformation recipes with and without the cudaize

step, the generated wrapper function is able to select

whether or not to use the GPU. This allows the wrapper

function to invoke a CPU-based variant for datasets small

enough that the increased performance of the GPU does not

overcome the additional latency required to transfer data

between the host and GPU, and to invoke a GPU-based

function otherwise.

6. Conclusion

In this paper, we have shown how the TAU suite of tools,

including the TAU instrumentor, TAUdb and PerfExplorer

can be integrated with autotuning tools such as Active

Harmony, CHiLL and Orio to automate collection of per-

formance data annotated with metadata identifying proper-

ties of the execution environment and the input data. We

then showed how annotated performance data can be used

to learn classifiers which can be used for runtime selection

of specialized function variants and for reducing the num-

ber of evaluations necessary for autotuning.

Funding

The research at the University of Oregon was supported by

a grant from the U.S. Department of Energy, Office of

Science (contract number DE-SC0006723).

500 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

10

0

1

2

3

4

5

6

7

8

9

Evaluations

Ti
m

e
(s

)

Default starting configuration

Predicted starting configuration

Figure 8. Evolution of the search process for a matrix multiply kernel on an Knights Corner Intel MIC card when the default starting
configuration is used (red) and when a starting configuration based on runs on four NVIDIA GPU models is used (green).

Chaimov et al. 409

References

Bell R, Malony A and Shende S (2003) Paraprof: A portable,

extensible, and scalable tool for parallel performance pro-

file analysis. In: Euro-Par 2003 Parallel Processing, pp.

17–26.

Browne S, Dongarra J, Garner N, Ho G and Mucci P (2000) A

portable programming interface for performance evaluation

on modern processors. International Journal of High Perfor-

mance Computing Application 14(3): 189–204. DOI: 10.

1177/109434200001400303.

Cavazos J, Fursin G, Agakov F, Bonilla E, O’Boyle MFP and

Temam O (2007) Rapidly selecting good compiler optimiza-

tions using performance counters. In: Proceedings of the Inter-

national Symposium on Code Generation and Optimization

(CGO ‘07). Washington, DC: IEEE Computer Society, pp.

185–197. DOI: 10.1109/CGO.2007.32.

Chen C, Chame J and Hall M (2008) CHiLL: A framework for

composing high-level loop transformations. Technical report,

University of Utah.

Frigo M, Steven and Johnson G (2005) The design and implemen-

tation of FFTW3. Proceedings of the IEEE 93(2): 216–231.

Ganapathi A, Datta K, Fox A and Patterson D (2009) A case for

machine learning to optimize multicore performance. In:

Proceedings of the First USENIX conference on Hot topics

in parallelism (HotPar ‘09). Berkeley, CA, USA: USENIX

Association.

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P and

Witten IH (2009) The WEKA data mining software: an update.

SIGKDD Explorations Newsletter 11(1): 10–18. DOI: 10.

1145/1656274.1656278.

Hartono A, Norris B and Sadayappan P (2009) Annotation-based

empirical performance tuning using Orio. In: Proceedings of

the 23rd IEEE International Parallel & Distributed Process-

ing Symposium, Rome, Italy. Also available as Preprint ANL/

MCS-P1556-1008, http://www.mcs.anl.gov/uploads/cels/papers/

P1556.pdf.

Hollingsworth J and Tiwari A (2010) End-to-End Auto-Tuning

with Active Harmony, chapter 10. Boca Raton, FL: CRC Press,

pp. 217–238. DOI: 10.1201/b10509-11.

Huck KA and Malony AD (2005) PerfExplorer: A performance

data mining framework for large-scale parallel computing.

In: Proceedings of the 2005 ACM/IEEE conference on Super-

computing (SC ‘05). Washington, DC, USA: IEEE Computer

Society, pp. 41–53. DOI: 10.1109/SC.2005.55.

Huck KA, Malony AD, Bell R and Morris A (2005) Design and

implementation of a parallel performance data management

framework. In: Proceedings of the International Conference

on Parallel Computing, pp. 473–482.

Liao C, Quinlan DJ, Vuduc R and Panas T (2010) Effective

source-to-source outlining to support whole program empirical

optimization. In: Proceedings of the 22nd international con-

ference on Languages and Compilers for Parallel Computing

(LCPC ‘09). Berlin: Springer-Verlag, pp. 308–322. DOI: 10.

1007/978-3-642-13374-9_21.

Lindlan KA, Cuny J, Malony AD, et al. (2000) A tool framework

for static and dynamic analysis of object-oriented software

with templates. In: Proceedings of the 2000 ACM/IEEE confer-

ence on Supercomputing (Supercomputing ‘00). Washington,

DC, USA: IEEE Computer Society (CDROM).

Malony AD, Biersdorff S, Spear W and Mayanglambam S (2010)

An experimental approach to performance measurement of

heterogeneous parallel applications using cuda. In: Proceed-

ings of the 24th ACM International Conference on Supercom-

puting (ICS ‘10). New York: ACM Press, pp. 127–136. DOI:

10.1145/1810085.1810105.

Monsifrot A, Bodin F and Quiniou R (2002) A machine learning

approach to automatic production of compiler heuristics. In:

Proceedings of the 10th International Conference on Artificial

Intelligence: Methodology, Systems, and Applications (AIMSA

‘02). London: Springer-Verlag, pp. 41–50.

Murthy G, Ravishankar M, Baskaran M and Sadayappan P (2010)

Optimal loop unrolling for GPGPU programs. In: 2010 IEEE

International Symposium on Parallel Distributed Processing

(IPDPS), pp. 1–11. DOI: 10.1109/IPDPS.2010.5470423.

Pellegrini S, Wang J, Fahringer T and Moritsch H (2009) Opti-

mizing MPI runtime parameter settings by using machine

learning. In: Proceedings of the 16th European PVM/MPI

Users’ Group Meeting on Recent Advances in Parallel Virtual

Machine and Message Passing Interface. Berlin: Springer-

Verlag, pp. 196–206. DOI: 10.1007/978-3-642-03770-2_26.

Quinlan DJ (2000) ROSE: Compiler support for object-oriented

frameworks. Parallel Processing Letters 10(2/3): 215–226.

Quinlan JR (1993) C4.5: Programs for Machine Learning. San

Francisco, CA: Morgan Kaufmann Publishers Inc.

Rudy G, Khan MM, Hall M, Chen C and Chame J (2011) A pro-

gramming language interface to describe transformations and

code generation. In: Proceedings of the 23rd international

conference on Languages and compilers for parallel comput-

ing (LCPC ‘10). Berlin: Springer-Verlag, pp. 136–150.

Shende SS and Malony AD (2006) The TAU parallel performance

system. International Journal of High Performance Comput-

ing Application 20(2): 287–311. DOI: 10.1177/1094342006

064482.

Shin J, Hall MW, Chame J, Chen C, Fischer PF and Hovland PD

(2010) Speeding up nek5000 with autotuning and specializa-

tion. In: Proceedings of the 24th ACM International Confer-

ence on Supercomputing (ICS ‘10). New York: ACM Press,

pp. 253–262. DOI: 10.1145/1810085.1810120.

Stephenson M and Amarasinghe S (2005) Predicting unroll factors

using supervised classification. In: Proceedings of the Interna-

tional Symposium on Code Generation and Optimization (CGO

‘05). Washington, DC: IEEE Computer Society, pp. 123–134.

DOI: 10.1109/CGO.2005.29.

Tiwari A (2011) Tuning Parallel Applications in Parallel. Ph.D.

thesis, University of Maryland, College Park.

Tiwari A and Hollingsworth JK (2011) Online adaptive code gen-

eration and tuning. In: Proceedings of the 2011 IEEE Interna-

tional Parallel and Distributed Processing Symposium

(IPDPS ‘11). Washington, DC: IEEE Computer Society, pp.

879–892. DOI: 10.1109/IPDPS.2011.86.

Tiwari A, Hollingsworth JK, Chen C, et al. (2011) Auto-tuning

full applications: A case study. International Journal of High

410 The International Journal of High Performance Computing Applications 27(4)

http://www.mcs.anl.gov/uploads/cels/papers/P1556.pdf
http://www.mcs.anl.gov/uploads/cels/papers/P1556.pdf

Performance Computing Application 25(3): 286–294. DOI:

10.1177/1094342011414744.

Whaley C, Petitet A and Dongarra JJ (2000) Automated empirical

optimization of software and the ATLAS project. Parallel

Computing 27: 2001.

Whaley RC and Dongarra JJ (1998) Automatically tuned linear

algebra software. In: Proceedings of the 1998 ACM/IEEE con-

ference on Supercomputing (Supercomputing ‘98). Washington,

DC: IEEE Computer Society, pp. 1–27 (CDROM).

Author biographies

Nicholas Chaimov is a Ph.D. student in the Department of

Computer and Information Science at the University of

Oregon (UO). He is a graduate research assistant in the

Performance Research Lab at the University of Oregon.

His research concerns optimization of code for high-

performance computing and data mining of performance

profiles.

Scott Biersdorff is a software engineer in the TAU group at

the University of Oregon (UO). He received his B.S. degree

in the Department of Computer and Information Science at

the University of Oregon. He is interested in the use of par-

allel tools for studying application performance behavior

on large-scale systems, in particular, heterogeneous plat-

form that deploy application accelerators, such as GPUs.

He led the development effort to integrate GPU perfor-

mance measurement and analysis in the TAU Performance

System.

Allen D Malony is a Professor in the Department of Com-

puter and Information Science at the University of Oregon

(UO). He has extensive experience in performance bench-

marking and characterization of high-performance comput-

ing (HPC) systems, and has developed performance

evaluation tools for a variety of parallel machines in the last

20 years. In particular, his research group has created the

TAU Performance System, a leading open-source parallel

performance tool suite in use by many academic, govern-

mental and industrial projects around the world. He was

awarded the NSF National Young Investigator award,

was a Fulbright Research Scholar to The Netherlands

and Austria, and received the prestigious Alexander von

Humboldt Research Award for Senior U.S. Scientists by

the Alexander von Humboldt Foundation. His research

interests are in parallel computing, performance analysis,

supercomputing, scientific software environments and neu-

roinformatics. His work is funded by the National Science

Foundation, the Department of Energy, the National Insti-

tutes of Health, and the Department of Defense. He is CEO

of ParaTools, Inc. which he founded with Dr Sameer

Shende in 2004.

Chaimov et al. 411

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

