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Abstract. The introduction of tasks in the OpenMP programming
model brings a new level of parallelism. This also creates new challenges
with respect to its meanings and applicability through an event-based
performance profiling. The OpenMP Architecture Review Board (ARB)
has approved an interface specification known as the “OpenMP Runtime
API for Profiling” to enable performance tools to collect performance data
for OpenMP programs. In this paper, we propose new extensions to the
OpenMP Runtime API for profiling task level parallelism. We present an
efficient method to distinguish individual task instances in order to track
their associated events at the micro level. We implement the proposed ex-
tensions in the OpenUH compiler which is an open-source OpenMP com-
piler. With negligible overheads, we are able to capture important events
like task creation, execution, suspension, and exiting. These events help
in identifying overheads associated with the OpenMP tasking model, e.g.,
task waiting until a task starts execution or task cleanup etc. These events
also help in constructing important parent-child relationships that de-
fine tasks’ call paths. The proposed extensions are in line with the newest
specifications recently proposed by the OpenMP tools committee for task
profiling.

Keywords: OpenMP, OpenMP Runtime API for Profiling, Open-Source
Implementation, OpenMP Tasks.

1 Introduction

OpenMP is a standard API for shared memory programming. It provides a
directive-basedprogrammingapproach for generatingparallel versionsofprograms
from the sequential ones. The compiler generated code invokes the OpenMP run-
time library routines to create and manage threads and tasks. The lack of stan-
dards in the runtime layer has hampered the development of third-party tools to
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support OpenMP application development. The OpenMP Runtime API (ORA)
for profiling OpenMP applications was presented in [9]. The ORA has been ac-
cepted by the tools committee of the OpenMPArchitecture ReviewBoard (ARB).
The API is designed to permit a tool, known as a collector, to gather information
about anOpenMPprogramfrom the runtime system in such amanner that neither
the collector nor the runtime system needs to know any details about each other.
The ORA is designed to ensure that tool developers are not required to have an
insight into the details of the different OpenMP implementations. However, these
tools shouldmaintain information about the OpenMP executionmodel in order to
trouble-shoot the OpenMP specific performance problems.

The ORA is an event-based interface that relies on bi-directional commu-
nications between a performance tool, i.e. collector, and an OpenMP runtime
library. The communication is established through a collection of requests that
take a send-receive protocol with a distinct functionality for each request. The
main advantage of the ORA is that no modifications to an application’s source
code are required. Consequently, compiler analysis and optimizations will not be
affected. Hence, the performance measurements of an application, collected by
a performance tool, are more accurate and specific.

Traditionally, parallel programming models for shared memory multiproces-
sors had focused on scientific applications using large arrays and exhibiting loop
level parallelism. In order to exploit the new massive parallelism provided by the
modern architectures, the parallel programming models had to propose a new
dimension of concurrency to cap available parallelism within high performance
computing applications. Applications exhibiting irregular parallelism in the form
of recursive algorithms and pointer based data structures were not taken care of
before the introduction of tasking in the OpenMP programming model. Tasking
has added a new dimension of concurrency, represented by the task construct,
to OpenMP applications. The task construct allows a developer to dynamically
create asynchronous units of work to be scheduled at runtime. Two types of tasks
have been introduced in the OpenMP specification; 1) Tied tasks 2) Untied
tasks. Tied tasks can be suspended at specific scheduling points that include
the creation of tasks, taskwait constructs, barriers, and completion of tasks etc.
Untied tasks can be suspended at any point in an OpenMP program according
to OpenMP 3.1 specifications. Moreover, a tied task can be resumed only by the
thread that started its execution while an untied task can be resumed by any
thread in the team.

In order to handle the challenges and performance issues associated with the
introduction of tasks, we propose new extensions to the ORA in the OpenMP
runtime library of the OpenUH compiler [17], [2]. The main motivation behind
this work lies in observing the viability of monitoring the individual task in-
stances and tracking the events associated with each one of them at the micro
level. The new API we propose allows developers to:

– Distinguish the individual task instances in the same task construct by as-
signing a distinct ID to each task instance.
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– Distinguish the task instances that get suspended at the different scheduling
points.

– Construct parent-child relationships between tasks, which can be used to
construct a task tree.

– Track task creation, switching, suspension, resumption, exiting, and comple-
tion.

– Allow collector tools to maintain performance measurements associated with
the aforementioned events.

Our implementation supports C/C++ and Fortran programs with tied tasks
and untied tasks. Furthermore, our implementation is in line with the task profil-
ing specification proposed by the OpenMP ARB tools committee [4]. Reference
implementations of the ORA are sparse since it requires compiler and OpenMP
runtime library support. To the best of our knowledge, the work reported here
is the first open-source implementation of the ORA with extensions to support
tasks.

The remainder of the paper is organized as follows. Section 2 briefly describes
the OpenMP task implementation in the OpenUH compiler runtime library.
Section 3 gives details about our new extensions in the ORA for task profiling.
Section 4 presents the experimental framework used to evaluate the implemen-
tation. The related work is discussed in Section 5. Finally, Section 6 concludes
our contributions and discusses directions for the future work.

2 OpenMP Tasking Implementation in OpenUH

The OpenUH compiler supports OpenMP 3.0 tasking on the IA-64, IA-32,
x86 64, and Opteron Linux ABI platforms. This includes the front-end sup-
port ported from the GNU C/C++ compiler, back-end translation implemented
by the HPCTool group at the University of Houston jointly with the Tsinghua
University, and an efficient task scheduling infrastructure developed by the HPC-
Tools group. The HPCTools group also implemented a configurable task pool
framework that allows a user to choose an appropriate task queue organization
at runtime.

We use the popular Fibonacci code in Figure 1a to explain the role of the
OpenMP runtime library regarding our implementation. In the code, two task
constructs have been inserted to handle recursion in a dynamic parallel fashion.
In the same manner, a taskwait construct has been used to get correct results by
preventing parent tasks from proceeding while child tasks are still running. The
number of tasks created depends on the value of integer n. The task construct
will create a task instance. The execution of the task will be deferred based on
the availability of threads and the status of its children. Figure 2 shows how the
OpenMP tasking directives in Figure 1a are translated into the OpenMP runtime
routines. A description of the tasking runtime routines is given in Table 1.

We use the OpenMP runtime routines to capture the OpenMP events and
states related to the OpenMP task, such as task creation, task waiting in the task



Open Source Task Profiling by Extending the OpenMP Runtime API 189

Table 1. Description of the OpenMP tasking runtime routines in OpenUH

Routine Description

ompc task create() creates a task and inserts it into a queue

ompc task wait() suspends a task until all of its children complete

ompc task exit() called at the end of a task to perform cleanup and
schedule a new task

ompc task switch() switches the execution from one task to another

ompc task firstprivates alloc() allocate memory for firstprivate copies

ompc task will defer() checks if a task should be deferred or executed im-
mediately

ompc task firstprivates free() deallocate memory for firstprivate copies

(a) Fibonacci code (b) A task tree (n=4)

Fig. 1. Fibonacci OpenMP tasking example

pool, task switching from a create state to a suspend state etc. These states and
events are captured by simply modifying the OpenMP runtime routines, without
modifying the OpenMP translation of the source code. The ORA extensions to
support task profiling provide an API to query the OpenMP runtime library for
task states and event notifications using callback functions.

3 Implementation of the OpenMP Tasking Profiling APIs

The ORA interface [9] consists of a single routine that takes the form: int
omp collector api (void *arg). The arg parameter is a pointer to a byte array

that can be used by a collector tool to pass one or more requests for information
from the runtime. The collector requests notification of a specific event by passing
the name of the event to be tracked as well as a callback routine to be invoked
by the OpenMP runtime each time the event occurs. Figure 4 demonstrates the
interaction between the collector and the OpenMP runtime library through the
Collector API. As shown, this interaction is acheived by a set of implemented
requests.

The aforementioned single routine is implemented once in the runtime and its
symbol is exported in the OpenMP runtime library. This strategy allows the tool
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Fig. 2. OpenUH translation of the Fibonacci code in Fig. 1a into explicitly multi-
threaded code

to check whether the symbol exists via a dynamic linker in order to establish
a communication with the runtime and start sending requests and monitor-
ing events and states. The OpenMP runtime should distinguish thread’s states,
which are related to tasks. These states include when a task is created, sus-
pended, existing, or being executed. When the collector tool makes a request for
notification of a specified task event(s), the OpenMP runtime will start keeping
track of this event inside its environment. The collector may also make requests
to pause, resume, or stop event generation.

When a collector tool sends a request to register any event through the ORA,
the event type OMP COLLECTORAPI REQUEST and a callback function
pointer is passed as an argument to the API call in the runtime. Race con-
ditions might occur when multiple threads try to register the same event with
multiple callbacks. The callback function pointer is stored in a table in which
each entry has a lock associated with it to prevent race conditions. This ta-
ble contains the event callbacks shared by all the threads. The frequency in
which the events are registered relies on the nature of the collector tool. Two
functions, ompc event callback(event) and ompc set state(state), are inserted
at different positions in the OpenMP runtime task routines specifed in Table
1. These functions implement the different events and states associated with
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Fig. 3. OpenUH tasking execution model

the task instances. The state values are stored in the OpenMP thread de-
scriptor in the runtime. Once a thread reaches an event point, the function
ompc event callback((OMP COLLECTORAPI EVENT) e ) is executed and

the callback function, associated with this event, is invoked. The functionality of
the callback is determined by a performance tool in order to collect the required
performance measurements.

The OpenMP ARB tools committee proposed a framework for task profiling
in the face to face meeting recently held at the University of Houston [4]. The
proposal categorizes the profiling events into two groups 1) mandatory events
2) optional events. The proposal defines the OpenMP task creation and task
exiting as mandatory events, while task waiting and task switching have been
defined as optional events. Our extensions include support for the mandatory
events proposed during this meeting. We also provide support for some optional
events in addition to some other events specific to our tasking model. Figure 3
shows the task execution model implemented in the OpenUH runtime to support
OpenMP tasks. The model depicts all the different states encountered by each
task instance starting from task’s creation to its completion ,i.e., when the task
is destroyed. In the following sections, we describe our extensions in detail.

3.1 Task Creation Events and States

These events and states are designed to capture the start and completion of a
task instance creation. The following states and events have been defined:

– THR TASK CREATE STATE : The enumerated value of this state is as-
signed to the thread’s state field in the descriptor whenever the thread is
working on a task creation.
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Fig. 4. Example of an interaction between collector and OpenMP runtime

– OMP EVENT THR BEGIN CREATE TASK : This event indicates that the
parent task creates a new explicit task before the new task starts execution.

– OMP EVENT THR END CREATE TASK IMM : This event indicates that
the process of creating the task is done and its execution will start immedi-
ately.

– OMP EVENT THR END CREATE TASK DEL: This event indicates that
the process of creating the task is done and its execution will start with a
delay.

3.2 Task Suspension Events and States

These events and states are designed to capture the start and completion of a
task instance suspension. This suspension occurs when the taskwait construct is
encountered.

– THR TASK SUSPEND STATE : The enumerated value of this state is in-
stantly assigned to the thread’s descriptor once the parent task encounters
a taskwait construct. The thread, working on the parent task, will later be
asssigned to another work. Child tasks, associated with the suspended task,
should finish their execution in order for the suspended task to resume its
execution.

– OMP EVENT THR BEGIN SUSPEND TASK : This event indicates that
the parent task has been suspended.

– OMP EVENT THR END SUSPEND TASK : This event indicates the com-
pletion of the parent task’s suspension.
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3.3 Task Execution/Exiting Events and States

These events and states are designed to capture the start and completion of a task
instance execution and exiting. Once a new task is created, it may start executing
immediately or with some delay depending on the availability of threads.

– THR WORK STATE : The enumerated value of this state is assigned to the
thread’s descriptor once the thread starts the execution of a task.

– OMP EVENT THR BEGIN EXEC TASK : This event is hit once the task’s
execution begins.

– OMP EVENT THR BEGIN FINISH TASK : This event indicates that the
task’s execution is done. This event is hit immediately after the previous
event if the task being executed does not encounter a taskwait construct.

– OMP EVENT THR END FINISH TASK : This event indicates that the re-
moval of the task from the task-pool and the required cleanup have success-
fully been completed.

By defining these new states, we guarantee that a thread will always have a
distinct state associated with it while working on tasks. The collector tool can
request the state of a thread at any given point during the execution of the
program.

3.4 Task IDs and Parent Task IDs

In order to distinguish the various task instances, keep track of their associated
events, and construct parent-child relationships between tasks, we have added a
new OpenMP task ID field to the task data structure descriptor. It is initialized
with a value corresponding to the initial implicit task. Each time a new task is
created, the task ID is incremented atomically to ensure that only one thread
can modify this field at any instance of time. The parent task ID is obtained
by having a pointer to the parent task. Two requests are defined to enable the
collector tool to obtain these IDs at any given point of the program execution.

4 Evaluation

We evaluated our implementation in the OpenUH compiler. We performed the
following two analyses;

– We measured the overheads introduced by the inclusion of our implementa-
tion in the runtime.

– We tracked the newly developed task IDs, states, and events through our em-
ployed requests. This part was achieved by developing a prototype OpenMP
task profiler tool.

We used the Barcelona OpenMP Task Suite (BOTS) kernels [3] as benchmark
applications. The experiments were done using the x86 64 Linux system with
four 2.2 GHz 12-core AMD Opteron processor (48 cores total).
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4.1 Overhead Measurements

Table 2 gives details about our measurements. Each sub-table represents a kernel
in the BOTS. Interested readers can consult the work [3] for full details about
these kernels. We used six different numbers of threads. We collected data for
both tied and untied tasks. Each kernel has two versions. One with tied tasks
and the other with untied tasks. To calculate the overheads, we compiled the
benchmark kernels using the OpenUH compiler. We ran the binaries with our
OpenMP runtime library, while the tool is not attached. We employed a without
vs. a with scenario, in which the without case excludes: assigning an ID to each
task instance, assigning states to threads while working on tasks, tracking tasking
events, and implementing task requests.

The results show that the overhead associted with our implementation is in-
significant. The absolute overhead percentage ranges from 0% to 6% of the execu-
tion time. The average overhead percentage obtained is less than 1%. Overhead
detail from Floorplan and NQueens kernels are given by Table 2g and Table 2h

(a) FFT (b) Health (c) UTS

(d) Alignment (e) SparseLU (f) Fibonacci

(g) Floorplan (h) NQueens (i) Sort

(j) Strassen

Fig. 5. BOTS overhead comparison (Tied vs. Untied)
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respectively. These two kernels produced the maximum overhead. SparseLU and
FFT, overhead described in Table 2e and Table 2a respectively, generated the
minimum overhead. The variation in overhead is due to the behavior of these
benchmarks.

Figure 5 demonstrates the overhead percentage obtained using tied vs. untied
tasks for all the aforementioned kernels. The x-axis in each sub-figure represents
the number of threads, while the y-axis represents the overhead percentage.
As we can see from Figure 5, the behavior of tied and untied tasks, in terms
of the range of deviations and the overhead’s average, is very similar, except
for the SparseLU benchmark shown in Figure 5e, where tied tasks have higher
overheads.

Furthermore, when more threads are used, the overhead scales well with the
increment of threads. As an example, when 48 threads are used, the worst over-
head percentage obtained, among the different kernels, is 2.56%.

Table 2 can be consulted to obtain detailed overhead measurements about
each benchmark.

4.2 Prototype OpenMP Task Profiler Tool

The motivation behind having such a profiler is to evaluate our proposed exten-
sions in the runtime. The tool’s functionality is to collect profiling measurements
regarding task instances. These measurements can lead to a better utilization of
task load-balancing, scheduling, and reducing overheads. OMP REQ START
request should be used first to initialize the collector API to establish a connec-
tion with the runtime. OMP REQ RE

GISTER request should be used next to selectively register the
task events required for our calculations. OMP REQ TASK ID and
OMP REQ TASK PID are used to get the task ID and the parent task ID
respectively to construct the task-tree. By tracking the task events, we are able
to request the thread-ID associated with each task as well as the thread’s state
while working on these tasks at any instance of time. Our tool also enables
developers to obtain measurements about:

– Task instance creation time
– Task instance suspension time
– Task instance execution time
– Task instance cleanup and destroying time
– Task instance overhead waiting after creation to start execution

We have tested our tool with all the BOTS kernels. Our tool is capable of track-
ing millions of task instances including their IDs, states, and events. For the sake
of simplicity, we show how our tool is useful by using the Fibonacci code shown
in Figure 1a with different input sizes N and two threads. Figure 1b displays the
task tree showing the parent and child tasks for each instance associatedwith their
task IDs when N=4. Task 2 has to wait for tasks 7 and 8 until they finish their ex-
ecution. We found that task 7 and task 8 were running in parallel since the two
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Table 2. The Barcelona OpenMP Task Suite (BOTS) overhead measurements

(a) FFT

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 10.35/10.26 10.37/10.27 0.02/0.01 0.19%/0.097%

4 5.94/5.65 5.971/5.67 0.031/0.02 0.52%/0.35%

8 3.73/3.36 3.67/3.39 (-0.06)/0.03 (-1.61%)/0.89%

16 2.839/3.3 2.866/3.31 0.027/0.01 0.95%/0.30%

32 3.17/4.33 3.2/4.17 0.03/-0.16 0.95%/-3.69%

48 4.22/5.73 4.26/5.75 0.04/0.02 0.95%/0.35%

(b) Health

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 1.85/1.8 1.9/1.9 0.05/0.1 2.7%/5%

4 1.15/1.13 1.2/1.2 0.05/0.07 4.34%/6%

8 1/0.95 1.06/1 0.06/0.05 6%/5%

16 1.28/1.25 1.29/1.26 0.01/0.004 0.78%/0.3%

32 1.25/1.19 1.26/1.2 0.007/0.01 0.55%/0.8%

48 1.36/1.36 1.37/1.37 0.004/0.01 0.29%/0.7%

(c) UTS

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 1.55/1.47 1.6/1.5 0.05/0.03 3.22%/2.04%

4 1.47/1.35 1.5/1.4 0.03/0.05 2.04%/3.70%

8 1.45/1.45 1.5/1.49 0.05/0.04 3.44%/2.75%

16 1.59/1.46 1.6/1.5 0.01/0.04 0.63%/2.74%

32 1.68/1.499 1.72/1.5 0.04/0.001 2.38%/0.07%

48 1.99/1.59 2/1.61 0.01/0.02 0.5%/1.25%

(d) Alignment

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 8.28/8.27 8.3/8.272 0.05/0.002 0.24%/0.024%

4 4.13/4.14 4.13/4.14 0/0 0%/0%

8 2.079/2.07 2.08/2.08 0.001/0.01 0.05%/0.48%

16 1.046/1.044 1.049/1.049 0.003/0.005 0.28%/0.48%

32 0.546/0.541 0.549/0.542 0.003/0.001 0.55%/0.18%

48 0.396/0.389 0.4/0.394 0.004/0.005 1.01%/1.29%

(e) SparseLU

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 1.27/1.278 1.27/1.28 0/0.001 0%/0.08%

4 3.661/3.663 3.664/3.66 0.003/0.002 0.08%/0.05%

8 1.945/1.955 1.953/1.956 0.008/0.001 0.41%/0.05%

16 1.0884/1.08 1.089/1.082 0.001/0.0003 0.055%/0.03%

32 0.658/0.659 0.66/0.659 0.002/0.0002 0.30%/0.030%

48 0.54/0.54 0.541/0.54 0.001/0 0.18%/0%

(f) Fibonacci

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 4.38/2.899 4.5/3 0.12/0.101 2.7%/3.48%

4 3.79/1.97 3.85/2 0.06/0.03 1.58%/1.52%

8 3.529/2.59 3.53/2.6 0.001/0.01 0.03%/0.38%

16 3.19/2.86 3.24/2.9 0.05/0.04 1.56%/1.39%

32 5.28/2.15 5.28/2.2 0.07/0.05 1.32%/2.32%

48 6.68/1.95 6.74/2 0.06/0.05 0.89%/2.56%

(g) Floorplan

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 24/11 25/11.5 1/0.5 4.1%/4.5%

4 11/7.5 11.49/8 0.49/0.5 4.45%/6.6%

8 9.7/8.7 9.89/9 0.19/0.3 1.95%/3.4%

16 11.87/12.5 11.9/13 0.03/0.5 0.25%/4%

32 11.02/9.7 11.24/9.73 0.22/0.03 1.99%/0.3%

48 10.98/9.66 10.99/9.68 0.01/0.02 0.09%/0.2%

(h) NQueens

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 5/4.8 4/5 0/0.2 0%/4.1%

4 3.5/3.5 3.65/3.65 0.15/0.15 4.3%/4.3%

8 3.5/3.6 3.65/3.75 0.15/0.15 4.3%/4.2%

16 4.35/4.12 4.35/4.22 0/0.1 0%/2.4%

32 5.17/4.68 5.18/4.69 0.01/0.01 0.19%/0.21%

48 5.64/5.01 5.68/5.02 0.04/0.01 0.7%/0.19%

(i) Sort

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 2.5/2.51 2.51/2.52 0.01/0.01 0.4%/0.39%

4 1.45/1.36 1.47/1.36 0.02/0.005 1.37%/0.36%

8 0.905/0.89 0.908/0.892 0.003/0.002 0.33%/0.22%

16 0.686/0.723 0.69/0.728 0.004/0.005 0.58%/0.69%

32 0.635/0.71 0.64/0.719 0.005/0.009 0.78%/1.26%

48 0.78/1.43 0.785/1.44 0.005/0.01 0.64%/0.69%

(j) Strassen

runtime (tied/untied) overhead(tied/untied)

#thr without with sec %

2 0.353/0.353 0.354/0.354 0.001/0.001 0.28%/0.28%

4 0.205/0.207 0.207/0.208 0.002/0.001 0.97%/0.48%

8 1.4/0.132 1.4/0.133 0/0.001 0%/0.75%

16 0.121/0.124 0.122/0.125 0.001/0.001 0.828%/0.81%

32 0.201/0.23 0.205/0.234 0.004/0.004 1.9%/1.73%

48 0.345/0.44 0.35/0.445 0.005/0.003 1.4%/0.68%

threads were available at that instance of time. Table 3 records the timing mea-
surements in seconds when Task-ID=2 with different values of N . The different
task instance timings that include creation, execution (not including suspension),
waiting before execution, and exiting were not affected by the input size, which is
normal due to the fact that these events cannot be interrupted by another thread
or task instance once they start. The main variation was found in the suspension
time, which is due to the fact that the number of child tasks is positively pro-
portional to the input size in a 2N relationship. The parent task-id, which is 2 in
Table 3, has to wait for all its child tasks before it can resume execution. The sus-
pension time measurements, indicated by our tool, grow with the number of child
tasks in the same relationship 2N . These measurements present the efficiency and
necessity of using our tool to get precise profiling information about the different
OpenMP task applications.
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Tasking collector API, proposed in this paper, are crucial to validate the var-
ious OpenMP task scheduling algorithms. OpenMP runtime library developers
can consult our proposal to find the best approach in which a task should start
execution and the thread that should be assigned to it. Two main optimizations
(load balancing and data locality) related to task scheduling can be tested using
our proposal. Load balancing should be taken care of when scheduling OpenMP
tasks. Assigning tasks to the working threads in an equivalent manner is manda-
tory for any task scheduling algorithm. Our tool shows the thread associated with
each task instance during all the different phases of the task execution. On the
other hand, data locality is another concern for any scheduling algorithm. Tasks
operating on the same data should be scheduled for execution on the same thread
to improve data reuse, especially on non-uniform memory access (NUMA) archi-
tectures. The task tree constructed by our tool can indicate the data that was as-
signed to each task by mapping this tree back to the source code application.

Table 3. Fibonacci code timing measurements for Task-ID=2

Input #Childs Creation Pool-waiting Execution Suspension Exiting

2 0 0.0001 0.0001 0.0001 0.0 0.0001

4 2 0.0001 0.0001 0.0001 0.0002 0.0001

8 33 0.0001 0.0001 0.0001 0.0011 0.0001

16 1596 0.0001 0.0001 0.0001 0.3100 0.0001

32 3524577 0.0001 0.0001 0.0001 970 0.0001

5 Related Work

Profiler for OpenMP (POMP) [15] was the first profiling mechanism for OpenMP
runtime. It enables performance tools to detect OpenMP events by specifying the
names and properties of some instrumentation calls, including the invocation po-
sition and time associated with each event. The POMP adheres to the abstract
OpenMP execution model and is independent of a compiler and an OpenMP
runtime library. OpenMP Pragma and Region Instrumentor (OPARI) [15] is a
portable source-to-source translation tool that inserts the POMP instrumenta-
tion calls in Fortran, C, and C++ programs. However, these instrumentation
calls can notably affect the compiler optimizations and hence might not capture
the true picture of an OpenMP program. The OPARI has been broadly used
for OpenMP instrumentation in different performance tools such as TAU [18],
KOJAK [16], and Scalasca [7]. Vampir [10] is another tool, which provides thread-
specific measurements that can include the OpenMP static and runtime context.
Another version of the POMP [14] was proposed as an attempt to standardize
the OpenMP monitoring interface. However, this version was rejected by the
OpenMP ARB because of its complexity and its implementation cost.

The work proposed by the Sun Microsystems [9] describes the OpenMP Run-
time API (ORA) for profiling OpenMP applications. The ORA was accepted by
the OpenMP Architecture Review Board (ARB). The ORA provides a framework
to the performance collector tools to collect necessary information. This informa-
tion is needed to enhance the performance of OpenMP programs. The OpenUH
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research compiler group has developed an open source implementation [1], [8] for
the ORA in the OpenUH runtime library. Another paper by Lin [11] presents
a data model that captures the runtime behavior of OpenMP applications with
tasks constructs. However, the work only captures the abstraction-level (construct-
level) information of the OpenMP tasking constructs.

In order to measure the performance of task instances, Lorenz et al. [12] de-
scribe a portable method to distinguish individual task instances and track their
suspension and resumption events using instrumentation calls implemented as
an extension of OPARI. Lorenz et al. [13] also present an implementation within
the Score-P performance measurement system to overcome the performance is-
sues related to task profiling. Furlinger and Skinner [6] describe the support for
task profiling using instrumentation in the ompP tool [5].

6 Conclusions and Future Work

In this work, we have presented our experiences in implementing a new API for
OpenMP task profiling. The OpenMP Runtime API for profiling (ORA) was
approved by the OpenMP tool committee to create a standardized tool inter-
face for OpenMP programs. We have extended the ORA to support profiling for
OpenMP tasks at the micro level. We have implemented our extensions using
the OpenUH open-source compiler. Our extensions to the ORA allow the exe-
cution and scheduling of tied and untied OpenMP tasks to be tracked by a tool
to collect performance measurements. These measurements assist OpenMP ap-
plication developers to gain more insight into the dynamic behavior of OpenMP
based applications. Our extensions adhere to the proposal recently suggested by
the OpenMP tool committee for task profiling. Moreover, Our experimental re-
sults show that the overheads associated with our implementation are negligible.
Finally, C/C++ and Fortran programs are supported by our implementation.

Our next step is to integrate our implementation with TAU, a powerful per-
formance tool, to visualize the ORA measurements. We also plan to extend the
ORA to support taskgroup and work-sharing constructs in order to make the
ORA more powerful and comprehensive. We also plan to use the task related dy-
namic information, extracted through the ORA, for task-related optimizations
using a feedback framework.
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7. Geimer, M., Wolf, F., Wylie, B.J., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca
performance toolset architecture. Concurrency and Computation: Practice and Ex-
perience 22(6), 702–719 (2010)

8. Hernandez, O., Nanjegowda, R.C., Chapman, B., Bui, V., Kufrin, R.: Open source
software support for the OpenMP runtime API for profiling. In: International Con-
ference on Parallel Processing Workshops, ICPPW 2009, pp. 130–137. IEEE (2009)

9. Itzkowitz, M., Mazurov, O., Copty, N., Lin, Y.: An OpenMP runtime API for
profiling. OpenMP ARB as an official ARB White Paper 314, 181–190 (2007),
http://www.compunity.org/futures/omp-api.html

10. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller,
M.S., Nagel, W.E.: The Vampir performance analysis tool-set. In: Tools for High
Performance Computing, pp. 139–155. Springer (2008)

11. Lin, Y., Mazurov, O.: Providing observability for openMP 3.0 applications. In:
Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS,
vol. 5568, pp. 104–117. Springer, Heidelberg (2009)

12. Lorenz, D., Mohr, B., Rössel, C., Schmidl, D., Wolf, F.: How to reconcile event-
based performance analysis with tasking in openMP. In: Sato, M., Hanawa, T.,
Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS,
vol. 6132, pp. 109–121. Springer, Heidelberg (2010)

13. Lorenz, D., Philippen, P., Schmidl, D., Wolf, F.: Profiling of OpenMP tasks with
score-p. In: 2012 41st International Conference on Parallel Processing Workshops
(ICPPW), pp. 444–453. IEEE (2012)

14. Mohr, B., Malony, A.D., Hoppe, H.-C., Schlimbach, F., Haab, G., Hoeflinger, J.,
Shah, S.: A performance monitoring interface for OpenMP. In: Proceedings of the
Fourth Workshop on OpenMP, EWOMP 2002 (2002)

15. Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Design and prototype of a perfor-
mance tool interface for OpenMP. The Journal of Supercomputing 23(1), 105–128
(2001)

16. Mohr, B., Wolf, F.: KOJAK–a tool set for automatic performance analysis of par-
allel programs. In: Euro-Par 2003 Parallel Processing, pp. 1301–1304 (2003)

17. Qawasmeh, A., Chapman, B., Banerjee, A.: A compiler-based tool for array analysis
in HPC applications. In: 2012 41st International Conference on Parallel Processing
Workshops (ICPPW), pp. 454–463. IEEE (2012)

18. Shende, S.S., Malony, A.D.: The TAU parallel performance system. International
Journal of High Performance Computing Applications 20(2), 287–311 (2006)

http://www.compunity.org/futures/omp-api.html

	Open Source Task Profiling by Extending
the OpenMP Runtime API

	1 Introduction
	2 OpenMP Tasking Implementation in OpenUH
	3 Implementation of the OpenMP Tasking Profiling APIs
	3.1 Task Creation Events and States
	3.2 Task Suspension Events and States
	3.3 Task Execution/Exiting Events and States
	3.4 Task IDs and Parent Task IDs

	4 Evaluation
	4.1 Overhead Measurements
	4.2 Prototype OpenMP Task Profiler Tool

	5 Related Work
	6 Conclusions and Future Work
	References




