Improving the Scalability
of Performance Evaluation Tools

Sameer Suresh Shende, Allen D. Malony, and Alan Morris

Performance Research Laboratory
Department of Computer and Information Science
University of Oregon, Eugene, OR, USA
{sameer,malony,amorris}@cs.uoregon.edu

Abstract. Performance evaluation tools play an important role in help-
ing understand application performance, diagnose performance problems
and guide tuning decisions on modern HPC systems. Tools to observe
parallel performance must evolve to keep pace with the ever-increasing
complexity of these systems. In this paper, we describe our experience in
building novel tools and techniques in the TAU Performance System®
to observe application performance effectively and efficiently at scale.
It describes the extensions to TAU to contend with large data volumes
associated with increasing core counts. These changes include new in-
strumentation choices, efficient handling of disk I/O operations in the
measurement layer, and strategies for visualization of performance data
at scale in TAU’s analysis layer, among others. We also describe some
techniques that allow us to fully characterize the performance of appli-
cations running on hundreds of thousands of cores.

Keywords: Measurement, instrumentation, analysis, performance tools.

1 Introduction

Tools for parallel performance measurement and analysis are important for eval-
uating the effectiveness of applications on parallel systems and investigating
opportunities for optimization. Because they executes as part of the parallel pro-
gram and process performance data that reflects parallel behavior, measurement
and analysis techniques must evolve in their capabilities to address the complex-
ity demands of high-end computing. Scaling in the degree of parallelism is one of
the key driving requirements for next-generation applications. To address scaling
concerns, performance tools can not continue with traditional techniques with-
out considering the impacts of measurement intrusion, increased performance
data size, data analysis complexity, and presentation of performance results.
This paper discusses approaches for improving the scalability of the TAU
Performance System® instrumentation, measurement, and analysis tools. Our
perspective looks generally at the maximizing performance evaluation return
to the tool user. This starts with improving the instrumentation techniques to

K. Jénasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 441-{451] 2012.
© Springer-Verlag Berlin Heidelberg 2012

442 S.S. Shende, A.D. Malony, and A. Morris

select key events interest and avoid the problem of blindly generating a lot of
low value performance data. Section §2] presents a few of the new techniques
in TAU to support more flexible and intelligent instrumentation. Performance
measurement presents a scaling challenge for tools as it places hard requirements
on overhead and efficiency. Section §3 describes TAU’s new measurement capa-
bilities for addressing scale. Scalable performance analysis deals mainly with
concerns of reducing large performance data into meaningful forms for the user.
Recent additions to TAU performance analysis are discussed in Section §4l The
paper concludes with thoughts towards future extreme-scale parallel machines.

2 Instrumentation

2.1 Source Instrumentation

For probe-based performance measurement systems such as TAU, instrumen-
tation is the starting point for thinking about scalability because it is where
decisions are made about what to observe. It is also where automation becomes
important for tool usability. TAU has traditionally relied on a source-to-source
translation tool to instrument the source code. Based on the PDT (Program
Database Toolkit) [6] static analysis system, the tau instrumentor [4] tool can
insert instrumentation for routines, outer loops, memory, phases, and I/O oper-
ations in the source code. While source code instrumentation provides a robust
and a portable mechanism for instrumentation, it does require re-compiling the
application to insert the probes. While not directly affected by scaling, source
instrumentation can become somewhat cumbersome in optimizing instrumenta-
tion for efficient measurement.

In the past, TAU addressed the need to re-instrument the source code by
supporting runtime instrumentation (via the tau run command) using binary
editing capabilities of the DyninstAPI [2] package. However, dynamic instru-
mentation requires runtime support to be efficient at high levels of parallelism
since every executable image would need to be modified. Techniques have been
developed in ParaDyn to use a multicast reduction network [9] for dynamic in-
strumentation control, as well as in TAU to use a startup shell script that is
deployed on every MPI process and then instruments and spawns an executable
image prior to execution [10/7].

2.2 Binary Instrumentation

To address both usability and scalability issues, we implemented binary instru-
mentation in TAU using re-writing capabilities of Dyninst API. This allows us to
pre-instrument an executable instead of sending an uninstrumented executable
to a large number of cores just to instrument it there. By re-writing the exe-
cutable code using binary editing, probes can be inserted at routine boundaries
pre-execution, saving valuable computing resources associated with spawning
a Dyninst API-based instrumentor on each node to instrument the application.
The approach improves the startup time and simplifies the usage of TAU as no
changes are introduced to the application source code or the build system.

Improving the Scalability of Performance Evaluation Tools 443

i) O TAU: ParaProf: Context Events for thread: n,c,t, 31,0,0 - conc_io.ppk
Name Total 7 Numsamples Maxvalue Minvalue Meanvalue std. Dev.
Bytes Read 217,558 151 4,944 2 1,440.781 995.142
Bytes Written 208,104 119 2,070 8 1,748.773 737.408
| Message size for all-reduce 102,400 50 2,048 2,048 2,048 Om
Bytes Read <file="socket"> 39,016 34 4,944 8 1,147.529 1,194.223
Bytes Read <file="10.1.1.222,port=57864"> 36,710 20 2,070 8 1,835.5 605.793
Bytes Written <file="socket"> 36,016 26 2,070 8 1,385.231 942.039.
| Bytes Written <file="10.0.1.222,port=52411"> 35,348 19 2,070 8 1860421 6114567

Fig.1. Using a POSIX I/O interposition library, tau exec shows the volume of I/O
in an uninstrumented application

2.3 Instrumentation via Library Wrapping

While this is a solution for binary executables, shared libraries (dynamic shared
objects or DSOs) used by the application cannot be re-written at present. If the
source code for the DSO is unavailable, we are left with a hole in performance ob-
servation. To enable instrumentation of DSOs, we created a new tool, tau wrap,
to automate the generation of wrapper interposition libraries. It takes as input
the PDT-parsed representation of the interface of a library (typically provided
by a header file) and the name of the runtime library to be instrumented. The
tau wrap tool then automatically generates a wrapper interposition library by
creating the source code and the build system for compiling the instrumented
library. Each wrapped routine first calls the TAU measurement system and then
invokes the DSO routine with the original arguments. The wrapper library may
be preloaded in the address space of the application using the tau exec tool
that also supports tracking I/O, memory and communication operations|[I2].
Preloading of instrumented libraries is now supported on the IBM BG/P and
Cray XT5/XE6 architectures.

The ability to enable multiple levels of instrumentation in TAU (as well as
runtime measurement options) gives the user powerful control over performance
observation. Figure [l shows how the volume of read and write I/O operations
can be tracked by TAU using library-level preloading of the POSIX I/0O library
in tau exec. If callpath profiling is enabled in TAU measurement, a complete
summary of all operations on individual files, sockets, or pipes along a program’s
callpath can be generated, as shown in Figure Here we have instrumented
MPT operations (through the standard MPI wrapper interposition approach). In
doing so, we can now see how MPI routines like MPT Allreduce invoke low-level
communications functions, typically unobserved in other performance tools.

The linker is another avenue for re-directing calls for a given routine with
a wrapped counterpart. For instance, using the GNU 1d --wrap routine name
commandline flag, we can surround a routine with TAU instrumentation. How-
ever, this approach requires each wrapped routine to be specified on the link line.
While onerous, this could be automated (and TAU does), but one may exceed
the system limits for the length of the command line if a lot of routines are de-
sired. Using a combination of wrapped instrumentation libraries with re-linked or
re-written binaries provides complete coverage of application and system library
routines without access to the source code of the application.

444 S.S. Shende, A.D. Malony, and A. Morris

ANnO TAU: ParaProf: Context Events for thread: net, 31.0,0 - cant o pok
Hame Towl KumSampies Maxvalue Miavalue Meanvabse 51l Diew.

* TAU application
v int mainint, char **) C [{conc_allred.c} {19.11-{74.1}|
= MPI_Finalizef}
* MPI_Comm_split])
¥ MPI_Allreduce()
* recv)
* send()

0
Write Bandwidth (MB/s) <file="10.0.1.222 port=52411"> 17 295.714 1858.182 263.055 32117
Bytes Written 207,000 100 2,070 2,070 2,070 0
Bytes Written <file="172.17.0.223 port=34273" 15,190 17 2,070 2,070 2,070 0
Write Bandwidth (MB/x) <file="172.17.0.222 port=42187"> 17 295.714 1725 224456 32.332
Bytes Written <file="socket™> 35,190 17 2,070 2,070 2,070 0
Write Bandwidth (MB/s) <file="172.17.0.223,port=34273"> 17 258.75 147.857 226.081 29.554
Bytes Written <file="10.1.1.223 port=47660"> 33120 16 2,070 2,070 2,070 o
Bytes Written <file="10.0.1.222 port=52411"> 35,190 17 2,070 2,070 2,070 0
Write Bandwidth (MB/x) 100 345 147.857 247706 39.179
Write Bandwidth (MB/s) <file="10.1.1.222 port=57E664"> 16 295.714 207 256491 29.838
Bytes Written <file="172.17.0.222 port=42187"> 35,190 17 2,070 2,070 2,070 0
Bytes Written <file="10.1.1.222 port=57B64"> 33120 16 2,070 2,070 2,070 o
Write Bandwidth (MB/s) <file="socket"™> 17 295.714 207 264,983 32.635
Write Bandwidth (MB/x) <file="10.1.1.223 port=47660"> 16 345 1725 251.922 51.998
* readvl)
= MPI_lnitl)
» MPI_Beasti)
* MPI_Barrier(}
Bytes Read 217,558 151 4,084 2 1440781 995,142
Bytes Read <file="/proc/net/if_inet6"> a4 4 21 21 2 0
Bytes Read <file="/sys/devices/system epu/epul/topology/core_id™> 2 1 2 2 2 0.
Bytes Read <file="/sys/devices/systemfcpu fcpudftopology/physical_package id™> 2 1 2 2 2 (157}

Fig.2. 1/0 statistics along a calling path reveal the internal workings of MPI library
showing the extent of data transfers for each socket and file accessed by the application

2.4 Source and Compiler Instrumentation for Shared Libraries

When the source code is available for instrumentation, direct source instrumenta-
tion of static or shared libraries can be done automatically using TAU’s compiler
scripts (tau cxx.sh, tau cc.sh, and tau £90.sh). The purpose of these scripts
is to replace host compilers in the build system without disrupting any of the
rest of the build process. TAU also supports compiler-based instrumentation
where the compiler emits instrumentation code directly while creating an object
file. This is supported for IBM, Intel, PGI, GNU, and Pathscale compilers at
present. Source-based instrumentation involves deciphering and injecting rou-
tine names as parameters to timer calls in a copy of the original source code.
While shared object instrumentation is relatively easy to implement in source-
based instrumentation, it poses some unique challenges in identifying routine
names for compiler-based instrumentation. Compiler-based instrumentation in
statically linked code is easier to implement because the address of routines does
not change during execution and is the same across all executing contexts. The
address may be mapped to a name using BFD routines at any point during the
execution (notably at the end of the execution).

On the other hand, dynamic shared objects, by their very nature, load position-
independent object code at addresses that are assigned from an offset using a
runtime loader. The same routine may be loaded at a different address in differ-
ent executing contexts (ranks). Also, as the application executes, different shared
objects represented by Python modules may be loaded and unloaded, and the
map that correlates addresses to the routine names changes during the execution
of the application. This address map (typically stored in the /proc file system

Improving the Scalability of Performance Evaluation Tools 445

under Linux) cannot be queried at the end of the execution as the addresses
may be re-used and shift as different shared objects are brought in and out of
the executing process.

To handle instrumentation of shared objects, we examine the address ranges
for the different routines after loading a shared object and determine the map-
ping of routines names and their addresses, dynamically in each context. This
simplifies object code instrumentation in dynamic shared objects and we need
only store these address mappings for shared objects that are loaded during
execution. During execution, compiler-based instrumentation generates events
and calls the measurement library. Events from C and Fortran languages typi-
cally map directly to their routine names. C++ events need an additional de-
mangling step. Events from multiple layers co-exist in the executing context and
performance data is generated by each context separately.

Providing robust support for selecting events to observe is important for giv-
ing optimal visibility of performance. TAU integrates several instrumentation
approaches in a cohesive manner allowing a user to slice and examine the per-
formance across multiple application layers at an arbitrary level of detail. By
providing access to instrumentation hooks at multiple levels of program trans-
formation, the user can refine the focus of instrumentation to just the relevant
part while reducing the overhead by not instrumenting application constructs
that may not be pertinent to a given performance experiment, thereby reducing
the volume of the performance data generated.

3 Measurement

The scaling of parallel performance measurement must meet critical require-
ments. Most importantly, it must impact application’s performance a little as
possible. However the choice of what and how to measure is not that simple.
Every performance measurement system will intrude on the execution. It is im-
portant then to optimize the balance between the need for performance data
and the cost of obtaining it. Our goal in TAU is to provide flexible support for
making optimal choices concerning measurement type and degree.

3.1 Parallel Profiling

TAU provides both parallel profiling and tracing in its measurement system.
Parallel profiling characterizes the behavior of every application thread in terms
of its aggregate performance metrics such as total exclusive time, inclusive time,
number of calls, and child calls executed. A rich set of profiling functionality is
available in TAU, including callpath profiling, phase profiling, and parameter-
based profiling, that offers choices in scope and granularity of performance mea-
surement. Although parallel profiling records minimal temporal information, it
is the recommend first measurement choice in TAU because it allows significant
performance characterization and runtime performance data is of a fixed size.
All profiling measurements take place in a local context of execution and do not

446 S.S. Shende, A.D. Malony, and A. Morris

involve synchronization or communication. This keeps it lightweight in overhead
and intrusion even as the number of threads of execution scales.

However, the largest systems available now have exceeded many of the tradi-
tional means of profile data output, collection, and analysis. Tools like TAU have
historically written process-local profile files. This method no longer scales to the
largest systems since it creates challenges at multiple levels. It can excessively
slow down the execution of the application job by creating potentially hundreds
of thousands of files. The metadata operations to simply create this number of
files have been shown to be a significant bottleneck [3]. After execution, the
huge number of files is very difficult to manage and transfer between systems. A
more subtle problem is that TAU assigns event identifiers dynamically and lo-
cally. This means that the same event can have different IDs in different threads.
Event unification has typically been done in TAU in the analysis tools. Unfor-
tunately, this requires verbose and redundant event information to be written
with the profiles. Thus, not only do we end up with multiple profile files, they
contain excessive information.

The TAU project has been investigating these two issues for the past year.
We currently have prototype parallel implementations of event unification and
profile merging. These are built from a MPI-based parallel profile analyzer that
runs at the end of the application execution[I5]. By using an efficient reduc-
tion layer based on a binomial heap, the unification and merging operations are
implementation is portable and fast. We have tested it on over 100,000 cores
on a Cray XT5 and IBM BG/P. More generally, we are looking to improve the
scalability of online profile-based performance measurement. A TAU monitoring
system is being implemented that uses scalable infrastructure such as MRNet to
provide runtime access to parallel performance data [8I15].

Moving forward, we plan to implement various forms of on-the-fly analysis
at the end of application execution, to reduce the burden on the post-mortem
analysis tools, and online, to provide data reduction and feedback to the live ap-
plication. For post-mortem analysis purposes, a new file format will be designed
to contain multiple levels of detail and pre-computed derived data (e.g., from
the runtime parallel analysis). This will allow the analysis tools the ability to
read only the portions of the overall profile that they need for a given analysis
or data view. In these way, we are confident that we can address the issues of
large scale profile collection and analysis.

3.2 Parallel Tracing

In contrast to profiling, tracing generates a timestamped event log that shows
the temporal variation of application performance. TAU traces can be merged
and converted to the Vampir’s [I] Open Trace Format (OTF), Scalasca’s Epilog
[5], Paraver [13], or Jumpshot’s SLOG2 trace formats. Merging and conversion of
trace files is an expensive operation at large core counts. To reduce the time for
merging and conversion, and to provide more detailed event information, TAU
interfaces with the Scalasca and VampirTrace libraries directly. VampirTrace
provides a trace unification phase at the end of execution that requires re-writing

Improving the Scalability of Performance Evaluation Tools 447

binary traces with updated global event identifiers. However, this can be an
expensive operation at large scale.

In the near future, TAU will write OTF2 traces natively using the Score-P
measurement library from the SILC[I4] project. It will feature an efficient trace
unification system that only re-writes global event identifier tables instead of
re-writing the binary event traces. If the trace visualizer supports the OTF2
format, it will also eliminate the need to convert these large trace files from one
format to another. This will improve the scalability of the tracing system.

3.3 Measuring MPI Collective Operations

As applications are re-engineered to run on ever increasing machine sizes, track-
ing performance of the collective operations on the basis of individual MPI com-
municators becomes more important. We have recently introduced tracking of
MPI communicators in TAU’s profiling substrate using its mapping capabilities
in parameter-based profiling. TAU partitions the performance data on the basis
of its communicator in a collective operation. Each communicator is identified
by the list of MPI ranks that belong to it. When multiple communicators use
the same set of ranks, the TAU output distinguishes each communicator based
on its address. Figure Bl shows the breakdown of the average time spent in the
MPI Allreduce routine based on each set of communicators across all 32 ranks
in an MPT application. To contend with large core counts, TAU only displays
the first eight ranks in a communicator, although this depth may be altered by
the user while configuring TAU’s measurement library. This is shown for the
MPI Bcast call where all ranks participate in the broadcast operation on the
MPI COMM WORLD communicator.

4 ParaProf Scalable Analysis

Scalable performance measurement only produces the performance data. It still
needs to be analyzed. Analysis scalability concerns the exploration of potentially
large parallel performance datasets. The TAU ParaProf parallel performance
analyzer is specifically built for analysis of large scale data from the largest lead-
ership class machines. It can easily analyze full size datasets on common desk-
top workstations. TAU provides a compressed, normalized, packed data format
(ParaProf Packed format, .ppk) as a container for profile data from any sup-
ported measurement tool. This makes reading of parallel profiles significantly
more efficient in ParaProf.

Analysis in ParaProf takes place in-memory for fast access and to support
global aggregation and analysis views. Basic bar charts support large dataset
with standard scrollbars allowing the detail for each node/thread to be seen in
its own context. Additionally, we present aggregate statistics such as the mean
and standard deviation. Aggregate views such as the histogram display allow a
simplified view of the entire dataset in a single chart.

448

000

S.S. Shende, A.D. Malony, and A. Morris

TAU: ParaProf: Mean Statistics - conc_allred.32p.ppk

Name A Exclusive TIME Inclusive TIME Inclusive TIME / Call

MPI_Allreduce() 17,195.69 17,196.47 343.93¢
MPI_Allreduce() [<comm> = <ranks: 0, 8, 16, 24> <addr=0x1ab800a0>] 533.94 533.94 341.72
MPI_Allreduce() [<comm> = <ranks: 0, 8, 16, 24> <addr=0x17de0ef0> | 538.41 538.41 34458
MPI_Allreduce() [<comm> = <ranks: 0, 8, 16, 24> <addr=0xc58d0c0>] 533.66 533.66 341.54
MPI_Allreduce() [<comm> = <ranks: 0, 8, 16, 24> <addr=0xdb64050>] 530.62 530.62 339.60
MPI_Allreduce() [<comm> = <ranks: 1,9, 17, 25> <addr=0x1a31a070>] 532.47 532.47 340.78
MPI_Allreduce() [<comm> = <ranks: 1,9, 17, 25> <addr=0x11eel0d0>] 531.00 531.00 339.84
MPI_Allreduce() [<comm> = <ranks: 1,9, 17, 25> <addr=0xa29ef0>] 534.94 534.04 342.36
MPI_Allreduce() [<comm> = <ranks: 1,9, 17, 25> <addr=0xdac0fb0>] 538.09 538.09 34438
MPI_Allreduce() [«<comm> = <ranks: 2, 10, 18, 26> <addr=0x10b36fd0> | 541.66 541.66 346.66
MPI_Allreduce() [<comm> = <ranks: 2, 10, 18, 26> <addr=0x16a0def0> | 537.91 537.91 344.26
MPI_Allreduce() [<comm> = <ranks: 2, 10, 18, 26> <addr=0x12438000>] 535.47 535.47 342.70
MPI_Allreduce() [<comm> = <ranks: 2, 10, 18, 26> <addr=0xa6bf070>] 534.12 534.12 341.84
MPI_Allreduce() [<comm> = <ranks: 3,11, 19, 27> <addr=0x6cd70d0>] 549.62 549.62 351.76
MPI_Allreduce() [<comm> = <ranks: 3, 11, 19, 27> <addr=0x9f5ffd0>] 555.09 555.09 355.26.
MPI_Allreduce() [<comm> = <ranks: 3,11, 19, 27> <addr=0x238c070>] 550.78 550.78 352.50
MPI_Allreduce() [<comm> = <ranks: 3, 11, 19, 27> <addr=0x11146ef0>] 560.97 560.97 359.02
MPI_Allreduce() [<comm> = <ranks: 4, 12, 20, 28> <addr=0x1a83a000>] 516.84 516.84 330.78
MPI_Allreduce() [<comm> = <ranks: 4, 12, 20, 28> <addr=0x1284f070>] 523.38 523.38 334.96
MPI_Allreduce() [<comm> = <ranks: 4, 12, 20, 28> <addr=0xc939fd0> | 523.88 523.88 335.28
MPI_Allreduce() [<comm> = <ranks: 4, 12, 20, 28> <addr=0xe214ef0> | 528.34 528.34 338.14
MPI_Allreduce() [<comm> = <ranks: 5,13, 21, 29> <addr=0x1b2c8ef0> | 519.31 519.31 332.36
MPI_Allreduce() [<comm> = <ranks: 5, 13, 21, 29> <addr=0x1194f000>] 515.12 515.12 329.68
MPI_Allreduce() [<comm> = <ranks: 5, 13, 21, 29> <addr=0x4003070> | 512.88 512.88 328.24
MPI_Allreduce() [<comm> = <ranks: 5,13, 21, 29> <addr=0xdf9fd0>] 520.78 520.78 333.30
MPI_Allreduce() [<comm> = <ranks: 6, 14, 22, 30> <addr=0x191b6ef0>] 550.69 550.69 352.44
MPI_Allreduce() [<comm> = <ranks: 6, 14, 22, 30> <addr=0x1406b000>] 548.19 548.19 350.84
MPI_Allreduce() [<comm> = <ranks: 6, 14, 22, 30> <addr=0x4772fd0>] 554.53 554.53 354.90
MPI_Allreduce() [<comm> = <ranks: 6, 14, 22, 30> <addr=0x4003070> | 542.16 542.16 346.9810
MPI_Allreduce() [<comm> = <ranks: 7, 15, 23, 31> <addr=0x2f08ef0>] 551.62 551.62 353.04
MPI_Allreduce() [<comm> = <ranks: 7, 15, 23, 31> <addr=0x15f95f50>] 546.59 546.59 349.82
MPI_Allreduce() [<comm> = <ranks: 7, 15, 23, 31> <addr=0x4772fd0>] 554.00 554.00 354.56
MPI_Allreduce() [<comm> = <ranks: 7, 15, 23, 31> <addr=0x6055000>] 549.41 549.41 351.62
MPI_Barrier() 1,610.78 1,610.78 805.39
MPI_Bcast() b
MPI_Bcast() [<comm> = <ranks: 0, 1,2, 3,4,5,6,7..> <addr=0x683f40>] 2,299.78 2,299.78 2,299.78 v

Fig. 3. ParaProf’s shows the peformance of a collective operation partitioned by the

communicator

ParaProf uses OpenGL-based 3D visualization support to enhance the inter-

pretation of large-scale performance data. Here, millions of data elements can be
visualized at once and be manipulated in real time. We provide triangle mesh
displays, 3d bar plots, and scatterplots, all with width, height, depth, and color
to provide 4 axes of differentiable data values. For instance, Figure @ shows a
ParaProf 3D view of the entire parallel profile for the XBEC application on
128K core of an IBM BG/P. Figure [(left) is an example of ParaProf’s new 3D
communication matrix view showing the volume of point-to-point interprocessor
communication between sender and receiver tasks. Although this is for a smaller
execution, parallel programs larger than 2k processors will necessarily require
such a 3D communications perspective.

Internally, the performance data representation in ParaProf is kept as mini-
mally as possible. Rather than store NxM tables of performance data for each
region and node, we keep sparse lists to allow for differing regions on each node.
Our goal is to apply this to all visualization options where complete information
is being rendered. However, it is also possible to conduct various forms of data
dimensionality analysis and reduction. We have implemented several scalable
analysis operations, including averaging, histogramming, and clustering.

To validate the scalability of TAU’s paraprof profile browser, we synthesized
a large one million core profile dataset by replicating a 32k core count dataset

Improving the Scalability of Performance Evaluation Tools 449

Fig. 4. ParaProf 3D browser shows the profile of a code running on 128k cores

———a—

MP1_Barrier()

N |

Fig. 5. Left: ParaProf’s 3D communication matrix shows the volume of communication
between a pair of communicating tasks. Right: ParaProf’s histogram display showing
the performance of MPI Barrier in a synthesized 1 million core count profile dataset.

repeatedly. While it is cumbersome to scroll through a million lines representing
individual MPI ranks, TAU’s histogram displays are useful in highlighting the
performance variation of a routine across multiple cores. Figure Blright) shows
a histogram display of the distribution of threads based on their MPI Barrier
execution time. The number of bins partitions the range of the chose performance
metric for an event, and this can be selected by the user. Our goal here was to

450 S.S. Shende, A.D. Malony, and A. Morris

00 TAL: ParaProf: n.c.t 0,0,0 - matlk.ppk
Metric: TIME
Walue: Exclusive percent

B ! pgi_cu_launch multiphy_matrices (pgi_kernel_7.gx=32 gy=132,gz=1 bx=16by=16br=1) [{mm2 f90H 15}
24.417%] pagi_cu_init multiply_matrices [[mm2.f90H39}
3.206% B _pgl_cu_downlnad2 multiply_matrices var=a [[mm2 fo0} 20
1.572% W _pgi_cu_upload? multiply_matrices var=b [[mm2.f30H 9}
1.572% [0 _pai_cu_upload2 multiply_matrices vars=c [{mm2.f90H5¢|
0.782% [mymatrixmultiply [{fmmdriv.f90} 1,01
0.142% | _pgl_cu_launch multiply_matrices (pgi_| k!melj gx=32 gy=32,g2=1bx=16 by=16bz=1) [imm2.fa0H 11}
0.122% | _pgi_cu, _free multiphy_matrices [[mm2790]]
0.12% | _pgi_cu_alloc multiphy_ matrices [[mm2.f90}(9]]
0.017% | multiply_matrices [{mm2.F30} {5,01
D005 | pai accelerator region
0.002% | _pgi_cu_module multiply_matrices [{mm2.190H9}]
2.16-4% | _pgi_cu_madule_function multiply_matrices [[mm2 f90)(11}]
1.26-4% | _pgi_cu_paramset multiply_matrices [{mm2.{30
1.26-4% | _pgi_cu_module_function multiply_matrices [{mm2 30} 151

ey t
Name Exclusive T Inciet e T Cam ke Calle
—pgi_cu_launch multiply_matrices (pgi_kernel_7,gx=32,9y=32,92=1,bx=16,by=16bz=1) [[mm2.FI0H 15} 10.901 10.901 5 0
__pgi_cu_init multiply_matrices [{mm2 30493 * Show Source Code 3.912 3.812 5 o
—pgi_cu_download2 multiply_matrices var=a [{mm2.fo0H 20}] Show Function Bar Chart 0.514 0.514 5 ol
_pgi_cu_upload2 multiply_matrices var=b [Imm2.f90H %} Show Function Histogram 0.252 0.252 5 0
__pgi_cu_upload? multiply_matrices var=c [{mm2 f30K9}] Assign Function Calor 0.252 0.252 L o
mymatrixmultiply [(mmdriv.fa0} 1,00 Reset to Default Color 0.125 16.021 1 1
_pgi_cu_launch multiply_matrices (pgi_kernel_2,9x=32,9y=32,92~1bx~16,by=16,bz~1) [[mm2.F90}{11]] 0.023 0.023 5 0
__pgi_cu_free multiphy_matrices [{mm2_ {80} 0.02 0.02 15 o
__pgi_cu_alloe multiply_matrices [{mm2.f90HS}] 0.019 0.019 15 0
multiply_matrices [[mm2.f90] {5,001 0.003 15.895 5]
pgi accelerator region 0.001 15.893 5 85
__pai_cu_module multiply_matrices [{mm2 f90H91| 0] 5 o
—pgi_cu_module_function multiply_matrices [[mm2 f30H11]]]] 5 o
__pgi_cu_paramset multiply_matrices [{mm2 {90}] o o 10 0,

Fig.6. ParaProf’s shows the profile of a kernel executing on a GPGPU using PGI’s
runtime library instrumentation

ensure that the profile browsers were capable of handling large data volumes and
able to handle displays of millions of cores. We do not have access to machines
with a million cores at present, but such large scale machines are being built
and will be available in the near future.

5 Conclusions and Future Work

Scaling will continue to be a dominant concern in high-end computing, espe-
cially as attention turns towards exascale platforms for science and engineering
applications. High levels of concurrent execution on upwards of one million cores
are being forecast by the community. Parallel performance tools must continue
to be enhanced, re-engineered, and optimized to meet these scaling challenges
in instrumentation, measurement, and analysis.

Scaling is not the only concern. Future HPC systems will likely rely on hetero-
geneous architectures comprised of accelerator components (GPGPU). This will
require development of performance measurement and analysis infrastructure to
understand parallel efficiency of the application at all levels of execution. We are
working closely with compiler vendors (such as PGI and CAPS Entreprise HMPP)
to target instrumentation of accelerator kernels at the runtime system level. Us-
ing weak bindings of key runtime library events, TAU can intercept and track the
time spent in key events as they execute on the host. For instance, Figure[6lshows
the time spent in launching individual kernels on the GPGPU as well as the time
spent in transferring data from the host memory to the memory of the GPGPU.
Variable names as well as source locations are shown in the profile display.

Improving the Scalability of Performance Evaluation Tools 451

However, in general, the heterogeneous environment will dictate what is pos-

sible for performance observation. The challenge for heterogeneous performance
tools will be to capture performance data at all levels of execution and integrate
that information into consistent, coherent representation of performance for anal-
ysis purposes. Heterogeneity introduces issues such as asynchronous, overlapped
concurrency between the CPU and accelerator devices, and potentially limited
performance measurement visibility, making solutions to this challenge difficult.

References

1.

0

10.

11.

12.

13.

14.
15.

Brunst, H., Kranzlmiiller, D., Nagel, W.E.: Tools for Scalable Parallel Program
Analysis - Vampir NG and DeWiz. In: Distributed and Parallel Systems, Cluster
and Grid Computing, vol. 777 (2004)

. Buck, B., Hollingsworth, J.: An API for Runtime Code Patching. Journal of High

Performance Computing Applications 14(4), 317-329 (2000)

. Frings, W., Wolf, F., Petkov, V.: Scalable Massively Parallel 1/O to Task-Local

Files. In: Proc. SC 2009 Conference (2009)

. Geimer, M., Shende, S.S., Malony, A.D., Wolf, F.: A Generic and Configurable

Source-Code Instrumentation Component. In: Allen, G., Nabrzyski, J., Seidel, E.,
van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009, Part II. LNCS,
vol. 5545, pp. 696-705. Springer, Heidelberg (2009)

. Geimer, M., Wolf, F., Wylie, B., Brian, J.N., Abrahém, E., Becker, D., Mohr, B.:

The SCALASCA Performance Toolset Architecture. In: Proc. of the International
Workshop on Scalable Tools for High-End Computing (STHEC), pp. 51-65 (2008)

. Lindlan, K.A., Cuny, J., Malony, A.D., Shende, S., Mohr, B., Rivenburgh, R.,

Rasmussen, C.: A Tool Framework for Static and Dynamic Analysis of Object-
Oriented Software with Templates. In: Proc. of SC 2000 Conference (2000)

. Mucci, P.: Dynaprof (2010), http://www.cs.utk.edu/~mucci/dynaprof
. Nataraj, A., Malony, A., Morris, A., Arnold, D., Miller, B.: In Search of Sweet-

Spots in Parallel Performance Monitoring. In: Proc. IEEE International Conference
on Cluster Computing (2008)

. Roth, P., Arnold, D., Miller, B.: Proc. High-Performance Grid Computing Work-

shop, IPDPS (2004)

Shende, S., Malony, A., Ansell-Bell, R.: Instrumentation and Measurement Strate-
gies for Flexible and Portable Empirical Performance Evaluation. In: Proc. Tools
and Techniques for Performance Evaluation Workshop, PDPTA. CSREA, pp.
1150-1156 (2001)

Shende, S., Malony, A.D.: The TAU Parallel Performance System. The Interna-
tional Journal of High Performance Computing Applications 20(2), 287-311 (2006)
Shende, S., Malony, A.D., Morris, A.: Simplifying Memory, I/O, and Communica-
tion Performance Assessment using TAU. In: Proc. DoD UGC 2010 Conference.
IEEE Computer Society (2010)

Barcelona Supercomputing Center, “Paraver” (2010),
http://www.bsc.es/paraver

VI-HPS, “SILC” (2010), http://www.vi-hps.org/projects/silc

Lee, C.W., Malony, A.D., Morris, A.: TAUmon: Scalable Online Performance
Data Analysis in TAU. In: Guarracino, M.R., Vivien, F., Traff, J.L., Cannatoro,
M., Danelutto, M., Hast, A., Perla, F., Kniipfer, A., Di Martino, B., Alexan-
der, M. (eds.) Euro-Par-Workshop 2010. LNCS, vol. 6586, pp. 493-499. Springer,
Heidelberg (2011)

http://www.cs.utk.edu/~mucci/dynaprof
http://www.bsc.es/paraver
http://www.vi-hps.org/projects/silc

	Improving the Scalability
of Performance Evaluation Tools
	Introduction
	Instrumentation
	Source Instrumentation
	Binary Instrumentation
	Instrumentation via Library Wrapping
	Source and Compiler Instrumentation for Shared Libraries

	Measurement
	Parallel Profiling
	Parallel Tracing
	Measuring MPI Collective Operations

	ParaProf Scalable Analysis
	Conclusions and Future Work
	References

