
Performance Tool Integration in a GPU
Programming Environment:

Experiences with TAU and HMPP

Allen D. MALONY1,3 , Shangkar MAYANGLAMBAM1 , Laurent MORIN2 ,
Matthew J. SOTTILE1 , Stephane BIHAN2 , Sameer S. SHENDE1,3 , and

Francois BODIN2

1Dept. of Computer & Information Science, University of Oregon, Eugene, OR 97403
2CAPS Entreprise, 35000 Rennes, France

3ParaTools, Inc., Eugene, OR 97405

Abstract. Application development environments offering high-level program-
ming support for accelerators will need to integrate instrumentation and measure-
ment capabilities to enable full, consistent performance views for analysis and tun-
ing. We describe early experiences with the integration of a parallel performance
system (TAU) and accelerator performance tool (TAUcuda) with the HMPP Work-
bench for programming GPU accelerators using CUDA. A description of the de-
sign approach is given, and two case studies are reported to demonstrate our devel-
opment prototype. A new version of the technology is now being created based on
the lessons learned from the research work.

1. Introduction

Multi-core systems with GPU acceleration offer a high performance potential to appli-
cation developers. Unfortunately, achieving performance improvements with accelera-
tors is challenging due to complexity of the multi-core hardware and their low-level de-
vice interface. Programming environments targeting GPU accelerators attempt to hide
this complexity by allowing the application developer to work with libraries, special lan-
guage constructs, or directives to a compiler. The benefit for the programmer is a higher-
level abstraction for accelerator programming and protection of their software invest-
ment, since the environment takes the responsibility for translating the program to work
with different acceleration backends. The challenge for accelerator programming envi-
ronments is to provide high-level support and flexibility without sacrificing delivered
performance. Traditionally the use of performance tools for measurement and analysis
allows developers to identify performance inefficiencies and inform optimization strate-
gies. For optimization of GPU-accelerated applications, these tools must 1) be able to
measure performance of GPU computations, and 2) be integrated with the high-level pro-
gramming framework to generate important performance events and meta data for rep-
resenting performance results to the user. Furthermore, when used in large-scale parallel
environments, it is important to understand the performance of accelerators in the context



of whole parallel program’s execution. This will require the integration of accelerator
measurements in scalable parallel performance tools.

This paper discusses our initial efforts to integrate the TAU Performance System R© [4]
and the HMPP Workbench [2]. We focus on the use of the prototype TAU CUDA mea-
surement interface (TAUcuda [5] within HMPP and the model for inserting TAU in-
strumentation in the HMPP-translated code to best present a performance picture of
the resulting application execution. Two case studies are presented to demonstrate the
approach.

Figure 1. HMPP Workbench compilation for applications targeting CUDA.

2. Design Approach

The objective of a high-level programming environment is to insulate the developer from
dealing with low-level concerns. In the case of accelerator programming, the HMPP
Workbench offers a directive-based approach for C and Fortran languages to specify
codelets for execution on accelerator devices and callsites in the host program where
codelets will be invoked. HMPP operates as a source-to-source translator, adding all the
necessary host-side code to interface with the accelerator, and generating target-specific
code depending on accelerator type. Figure 1) shows the two compilation paths needed
to build HMPP applications with CUDA as the target accelerator. The HMPP execu-
tion model allows for asynchronous CPU/GPU execution and managed data transfers,
utilizing the functionality provided in the CUDA driver interface.

To evaluate the performance of an HMPP application, it is necessary to make mea-
surements of important execution events and to relate the performance data back to the



Figure 2. Integration of HMPP, TAU, and TAUcuda instrumentation and measurement support.

HMPP programming abstractions. As shown in Figure 2, there are three levels in the
HMPP framework to instrument to capture the full picture of application execution: ap-
plication code, HMPP runtime, and CUDA codelets. Although HMPP is a source-to-
source translator, the application developer is ill-equipped for performance instrumenta-
tion on their own, much less knowledgable of the event semantics between levels. The
advantage HMPP brings for performance integration is in the automation of instrumen-
tation, designed specifically to capture necessary event information to present a full per-
formance view.

Instrumentation relies on an underlying measurement infrastructure. We chose the
TAU Performance System for HMPP performance measurements, given its robust ca-
pabilities for profiling and tracing of parallel applications. However, TAU only solves
the problem of CPU-side measurements. Some other technology was needed for CUDA
measurements. Luckily, our concurrent work on the prototype TAUcuda system offered
the missing piece. (See [5] for more information on TAUcuda.)

Figure 2 identifies which performance events are measured by TAU and TAUcuda,
respectively. HMPP is responsible for placing all instrumentation appropriately in the
generated code and in the HMPP runtime system. The application build chain with in-
strumentation included is shown in Figure 3. Notice that TAU’s instrumentation tool can
be used at the start to generate events for (non-HMPP) application-level routines. Mea-
surements of these events are important because they provide an application-level con-
text for HMPP-related and CUDA-related events. We use the term HMPP-TAU to refer
to entire integrated performance tool chain.

Having integrated the different instrumentation and measurement facilities, the goal
for HMPP performance analysis was to track the events unfolding during codelet exe-
cution and reconstruct a high-level view to highlight performance problems. One of the
challenges introduced was HMPP’s support for asynchronous codelet execution as well
as memory transfers. This exposed the need for new mechanisms to be developed in TAU
to correctly maintain performance data from concurrent tasks. A workaround using vir-
tual threads was developed by CAPS Entreprise to deal with problem, but a more robust
solution will be necessary for going forward.



Figure 3. HMPP application build chain with instrumentation enabled.

The issue had to do with HMPP’s model of computation and how its runtime system
maintained the codelet abstraction during execution. Effectively, it uses a single thread
to interface to a GPU device, but manages codelets separately on GPU streams. TAU re-
quires a dinstinguishable thread ID to separate HMPP codelet-specific events. However,
since only one real thread is used, a virtual thread ID needed to be provided for TAU
events when the HMPP runtime is working on behalf of a specific codelet.

3. Case Studies

Two benchmarks were used as case studies to test the functionality of HMPP-TAU. The
first was a implementation of Conway’s Game of Life [3] (GoL) using HMPP. Figure 4
lists the entire HMPP program, showing the codelet callsite in the main routine on the
left panel and the codelet specification with two parallel loop kernels on the right. We
used HMPP-TAU to instrument the GoL application and ran several experiments with
differenent problem sizes (number of cells) to see the performance effects. The results
are shown in Figure 5. Notice there are different TAU events listed representing differ-
ent (CPU-side) HMPP instrumention points. Those prefixed by hmpp correspond to the
HMPP runtime layer, while those prefixed by codelet_ correspond to the codelet inter-
face. Because the HMPP codelet is launched synchronously, the codelet_wait event
effectively contains the execution time of the two kernels. The hmppStartCodelet
event is the HMPP runtime library event encapsulating the codelet_wait. The reults
show how the increasing problem size results in larger kernel execution times, as well as
larger times for data transfer.



Figure 4. Game of Life HMPP source code.

Figure 5. Game of Life scaling results.

The second benchmark is a standard vector matrix multiplication used to demon-
strate the advantage of overlapping GPU kernel computation with data input/output trans-
fers. Consider the two cases portrayed in Figure 6. The Sequential case requires Vin
vector and the Min matrix to be first uploaded to the GPU device (upper part of picture)
before the kernel computation can begin (lower part of picture). Only a single HMPP
codelet would be used. Writing back of results (Vout) can be pipelined with the kernel
execution to a limited extent in the codelet. The Overlapped case breaks up the Min data
transfer into columns and overlaps it with vector-column multiplication and Vout re-
sults transfer. The result is more efficient pipelined execution with greater performance.
However, two HMPP codelets are required to make this happen.



Figure 6. Vector-matrix multiplication benchmark: sequential and overlapped.

Performance analysis for this benchmark focuses on identifying the column block-
ing for most efficient overlap and minimal total execution time. The performance exper-
iments demonstrate the ability of HMPP-TAU to capture events at different levels for
profiling and trace analysis. In Figure 7, we see a display from TAU’s ParaProf [1] tools
listing the exclusive time for all events, including the TAUcuda events. Profile results
allows event time ratios to be compared to determine optimal blocking parameters. Para-
Prof can conduct an analysis across multiple experiments with different parameters and
display the results to the developer.

TAU is also able to capture the HMPP-TAU events in an execution trace. This en-
ables the temporal behavior of the events to be observed in order to highlight event re-
lationships and ordering. However, we needed to do a little hand massaging of the per-
formance data to separate the events into virtual thread traces. Figure 8 uses the Jump-
shot [6] tool to display events from the HMPP runtime and codelet levels for the over-
lapped vector matrix benchmark. One can see the main HMPP thread at the top setting
up the computation and kicking off the codelets. Each codelet executes asynchronously
of the other, but their execution is coordinated by the main HMPP thread. The trace vi-
sualization allows us to see the data transfer of one codelet overlap with the kernel ex-
ecution of the other. Of course, profile and trace analysis tools can be used together in
performance investigation, as shown in Figure 9.

4. Conclusion

We developed the early HMPP-TAU prototype reported on here in just a few weeks of ef-
forts, after the first version of the TAUcuda tool became functional. While the results are
quite encouraging, the integration of the three components – HMPP, TAU, and TAUcuda
– exposed several issues that need more consideration. It is important that the HMPP pro-
gramming abstraction and execution model be reflected in the performance views being
delivered by HMPP-TAU. The support for asynchronous modes in the HMPP runtime
system and codelet execution (not to mention CUDA’s over nuances) was a challenge to
merge with TAU’s way of handling events in a multi-threaded program. We used retrofits
to get things working successfully, but a better designed and more robust solution is re-



Figure 7. Profile of multiplication benchmark showing events from all instrumentation levels.

quired. The good news is that the experience gained in identifying HMPP events, au-
tomating instrumentation, and using TAU’s measurement API will all translate forward
into future developments.

Our plan is to re-engineer HMPP-TAU in the coming months. The TAUcuda tool is
being re-developed presently to use new technology from NVIDIA for access to CUDA
library, driver, and kernels execution events. HMPP-TAU will benefit directly from this
work. Although the benchmarks shown here are basic, HMPP can be used for parallel
applications targeted to large GPU clusters. We intend to HMPP-TAU to be used in such
scenarios.

Acknowledgments

This research was supported by the U.S. Department of Energy, Office of Science, un-
der contract ER25933 and the NVIDIA Professor Partnership grant at the University of
Oregon.

References

[1] R. Bell, A. Malony, and S. Shende. A Portable, Extensible, and Scalable Tool for Parallel Performance
Profile Analysis. In European Conference on Parallel Processing (EuroPar), volume LNCS 2790, pages
17–26, September 2003.



Figure 8. Trace of multiplication benchmark showing temporal events relationships.

Figure 9. Combined HMPP-TAU performance analysis environment.

[2] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A Hybrid Multi-core Parallel Programming Environment.
In Workshop on General Purpose Processing on Graphics Processing Units (GPGPU 2007), 2007.

[3] M. Gardner. Mathematical Games: the Fantastic Combinations of John Conway’s New Solitaire Game
"Life". Scientific American, 223:120–123, October 1970.

[4] A. Malony, S. Shende, A. Morris, S. Biersdorff, W. Spear, K. Huck, and Aroon Nataraj. Evolution of a
Parallel Performance System. In M. Resch, R. Keller, V. Himmler, B. Krammer, and A. Schulz, editors,
2nd International Workshop on Tools for High Performance Computing, pages 169–190. Springer-Verlag,
July 2008.

[5] S. Mayanglambam, A. Malony, and M. Sottile. Performance Measurement of Applications with GPU
cceleration using CUDA. In Parallel Computing (ParCo), September 2009. To appear.

[6] O. Zaki et. al. Toward scalable performance visualization with Jumpshot. The International Journal of
High Performance Computing Applications, 13(3):277–288, Fall 1999.


