
Performance Measurement of
Applications with GPU Acceleration

using CUDA

Shangkar MAYANGLAMBAM1 and Allen D. MALONY and Matthew J. SOTTILE

Dept. of Computer and Information Science, University of Oregon
Eugene, OR 97403

{smeitei,malony,matt}@cs.uoregon.edu

Abstract. Multi-core accelerators offer significant potential to improve the perfor-
mance of parallel applications. However, tools to help the parallel application de-
veloper understand accelerator performance and its impactare scarce. An approach
is presented to measure the performance of GPU computationsprogrammed using
CUDA and integrate this information with application performance data captured
with the TAU Performance System. Test examples are shown to validate the mea-
surement methods. Results for a case study of the GPU-accelerated NAMD molec-
ular dynamics application application are given.

1. Introduction

There is growing interest in the use of multi-core accelerators to improve the perfor-
mance of parallel applications, with GPU computing devicesgaining the most traction.
Achieving the performance potential of accelerators is challenging due to complexity
of the multi-core hardware and their operational/programming interface. In the case of
general purpose GPUs (GPGPUs), CUDA was created to support program development
targeting GPU-based accelerators. However, few tools exist to help the parallel applica-
tion developer measure and understand accelerator performance. Performance analysis
tools for GPGPU developers to date have been largely oriented towards aiding devel-
opers on individual workstation-class machines with limited parallelism present within
the GPU host. When used in large-scale parallel environments, it is important to under-
stand the performance of accelerators (such as with a CUDA measurement library when
GPUs are used) in the context of whole parallel program’s execution. This will require
the integration of accelerator measurements in scalable parallel performance tools.

This paper describes our approach to performance measurement of GPGPU execu-
tion using CUDA in the context of a larger parallel performance measurement environ-
ment. We consider the problem from the point of view of a parallel application where
host (CPU-side) performance measurement already has robust support, in our case from
the TAU Performance System [3]. The goal is to measure the performance of GPU com-

1Corresponding E-Mail: smeitei@cs.uoregon.edu

putational kernels, wherever they are invoked in the application, and integrate the mea-
surements with the TAU parallel performance data. Methods developed for CUDA per-
formance measurement are presented and the TAU CUDA measurement interface is de-
scribed. Test examples are shown to validate the measurement model. Results for a case
study of a GPU-accelerated molecular dynamics applicationare given.

2. CUDA Performance Model and TAUcuda Approach

The CUDA programming environment enables easy developmentof applications with
GPU acceleration of certain components. Computationally intensive parts of applications
can be launched as tasks into the GPU device. Measuring performance of CUDA ap-
plication would appear straightforward for simple usages.However, the concurrent and
asynchronous model of CUDA programs relative to the GPU hostmakes it problematic
to create an accelerator performance view in general with respect to the performance
of the parallel application as a whole. Programmers can use multiple concurrent CUDA
streams to queue independently executable sequences of GPUtasks. Furthermore, dif-
ferent strategies can be used to overlap CPU and GPU execution, as well as CPU-GPU
data transfers. There can also be multiple GPU devices accelerating different parts of
the application for different CPU threads. To understand and optimize GPU-accelerated
parallel applications using CUDA, all these scenarios are of interest and important per-
formance factors should be measured, such as GPU utilization and CPU waiting time,
but standard parallel performance tools can not be applied directly.

There are two general approaches to GPU performance measurement. First, we
could consider making the measurement on the CPU (host) side. If the GPGPU is used
in a synchronousmanner (the CPU immediately waits for GPGPU execution to finish),
we could just place measurement points before and after launching the GPU kernel to
determine performance. If the GPGPU is used in anasynchronous(the CPU does not
immediately wait), the measurements could still be done in this way, but it would be
difficult to determine exactly when the GPGPU completed execution. In CUDA, a GPU
kernelis launched on astreamand multiple kernels on the same stream run sequentially.
However, multiple streams can be concurrently active and multiple GPU devices can be
used. In such cases, the performance measurement becomes even more complex. For
instance, consider the four simple scenarios shown in Figure 1. The top row shows the
synchronous cases for one and two streams. The bottom row shows the asynchronous
cases. Notice in the synchronous case for two streams, it will be difficult to extract the
performance for each stream independently.

We initially considered the use of NVIDIA profiling tools to address the perfor-
mance measurement problems. NVIDIA has a rich performance SDK known asPerfKit
[4] for profiling the GPU driver interface. It provides access to low-level performance
counters inside the driver and hardware counters inside theGPU itself. However, PerfKit
is limited for use with the CUDA programming environment. Weneed different measure-
ment semantics to capture the CUDA program performance and integrate the data with
parallel application performance. NVIDIA also provides the CUDA Profiler [5] which
includes performance measurement in the CUDA runtime system and a visual profile
analysis tool. While the CUDA Profiler provides extensive stream-level measurements, it
collects the data in a trace and does not provide access untilafter the program terminates.

sync

sync

sync

w
ai

t

sync

w
ai

t

Asynchronous

CPU
S2S1

GPU

CPU
S2S1

GPU

CPU
S1

GPUCPU
S1

Synchronous

GPU

Figure 1. Scenarios of Host-GPGPU use.

We want to be able to produce profiles that show the distribution of accelerator perfor-
mance with respect to application events. This performanceview is difficult to produce
with the CUDA Profiler trace data.

On the other hand, CUDA provides aneventinterface that can be used to obtain
performance data for a particular stream’s execution, including each kernel’s precise ter-
mination. The performance data is measured by the CUDA runtime system. We devel-
oped a CUDA performance measurement library based the stream event interface called
TAUcuda. The TAUcuda approach is described below and the library APIis presented in
section §3.

Consider the execution of a single GPU kernel execution on a stream. We can use
a CUDA beginevent andendevent placed around the CUDA statement to measure the
begin time and end time of the kernel’s execution in the GPU. When the begin and end
events are retrieved from the CUDA runtime system, TAUcuda can calculate the kernel’s
elapsed execution time. In addition, TAUcuda can calculatethewaiting time from when
it requested the CUDA events to when they were delivered and the finalize time from
the beginning. The integration with the TAU measurement system occurs with the begin
event when theTAU context(most recent TAU performance event) is sampled and stored.

Of course, many GPU kernels can be executed during an application on multiple
streams and GPU devices. TAUcuda events are kept per stream and per GPU device. In
addition, TAUcuda events can be nested. At the end of execution, the TAUcuda mea-
surement library creates performance profiles for each event showing theevent_name,
tau_context, device_id, stream_id, #_calls, inclusive_time, exclusive_time, wait_time,
andfinalize_time.

3. TAU CUDA Measurement Interface

The TAUcuda measurement library implements a versatile interface for the application
programmer to measure performance for GPGPU computations.A TAUcuda object is
created for each block of CUDA code to be measured. At the coreof the library, CUDA
event objects play a vital role in tracking GPGPU computation time. Internally the TAU-
cuda objects map to two CUDA event objects which recordbeginand end execution
times for the code block, as measured by the GPU clock. The CUDA event objects are
scheduled in the GPGPU by calling thecudaEventRecordinterface and specifying the
corresponding stream of execution. However, it is imperative that the two events are
scheduled immediately before and after the CUDA code block.

CUDA provides both blocking and non-blocking interfaces tocheck the event status.
Correspondingly, TAUcuda also exposes both blocking and non-blocking interfaces to
gather the event data and compute performance profiles. The TAUcuda data structures
are managed for every CPU thread independently in thread local memory. This avoids
the overhead of ensuring thread safety and also works the around limitations of CUDA
event objects. CUDA event objects are not reliably accessible outside the scope of their
originating thread lifetime. Hence, the profile data needs to be processed and written out
before each thread exits.

The TAUcuda library interface shown in Table 1. The initialization interface
tau_cuda_initshould be called at the start of the application. It initializes data struc-
tures and sets up the initialization time for both CPU and GPGPU. To process and
write TAUcuda profiles, each thread must calltau_cuda_exitbefore exiting. TAUcuda
enables programmers to choose the granularity of CUDA code block observation. The
tau_cuda_stream_beginandtau_cuda_stream_endinterfaces are used to mark the begin
and end TAUcuda events in application source code. Theeventname token passed to the
begin call identifies the TAUcuda object associated with theGPGPU computations en-
closed. The library also provides an interface,tau_cuda_update, which returns a vector
of completed event statistics for a single stream or all streams at any time. The call to
this interface returns without blocking. On the other hand,tau_cuda_finalizeperforms
the similar action except that it waits for outstanding events to complete. Both interfaces
free up the CUDA event objects after processing them. Frequent use of these interfaces
is recommended in experiments with large number of profile events.

4. Examples

4.1. Computational Scenarios

We evaluated the TAUcuda measurement library with scenarios of computation varying
the interactions between CPU, CUDA streams, and GPGPU devices. All experiments
were performed on a NVIDIA Tesla S1070 GPU server. The singlestream experiment
in Table 2 illustrates how a TAUcuda profile can detect CPU cycles wasted in waiting
for GPGPU computations to complete. We observe decreases inwait time with more
utilization of CPU in parallel with the GPGPU computation. Similar results are observed
for experiments in Table 3 with two CUDA streams executing ona single GPGPU de-
vice. We can also see the proportional inclusive computation time for variations of the
computation loads in the streams.

void tau_cuda_init(int argc, char **argv)

◦ To be called when the application starts

◦ Initializes data structures and checks GPU status

void tau_cuda_exit()

◦ To be called before any thread exits at end of application

◦ All CUDA profile data is output for each thread of execution

void* tau_cuda_stream_begin(char *event, cudaStream_t stream)

◦ Called before CUDA statements to be measured

◦ Returns handle which should be used in the end call

◦ If event is new or the TAU context is new for the event,

a new CUDA event profile object is created

void tau_cuda_stream_end(void * handle)

◦ Called immediately after CUDA statements to be measured

◦ Handle identifies the stream

◦ Inserts a CUDA event into the stream

vector<Event> tau_cuda_update()

◦ Checks for completed CUDA events on all streams

◦ Non-blocking and returns # completed on each stream

int tau_cuda_update(cudaStream_t stream)

◦ Same as tau_cuda_update() except for a particular stream

◦ Non-blocking and returns # completed on the stream

vector<Event> tau_cuda_finalize()

◦ Waits for all CUDA events to complete on all streams

◦ Blocking and returns # completed on each stream

int tau_cuda_finalize(cudaStream_t stream)

◦ Same as tau_cuda_finalize() except for a particular stream

◦ Blocking and returns # completed on the stream

Table 1. TAUcuda measurement interfaces.

CPU Load GPU Load Event Inclusive Time Wait Time

0 X Interpolate (C-[main|]#D-0#S-0) 75222.4922 75134.7656

0 2X Interpolate (C-[main|]#D-0#S-0) 150097.7031 149995.6094

0 3X Interpolate (C-[main|]#D-0#S-0) 225034.2031 224915.5312

Y X Interpolate (C-[main|]#D-0#S-0) 74985.6953 64097.1680

2Y X Interpolate (C-[main|]#D-0#S-0) 75058.5234 42563.9648

10Y X Interpolate (C-[main|]#D-0#S-0) 75032.9609 0.0000

Table 2. TAUcuda profiles for a single stream (time measured in milliseconds).

In multi-GPU experiments, individual CPU threads launch computations on corre-
sponding devices. Table 4 shows experiments with two GPGPU devices.D-0 andD-1
are device identifiers and are included in the TAUcuda event names to identify the cor-
responding CPU threads using the device. We observe meaningful results for inclusive
time as well as the wait time appropriate to the computational size.

More sophisticated profile results are shown in Table 5, demonstrating how TAU-
cuda can capture the CPU context (from the concurrent TAU measurement layer) in
which the GPGPU computation is launched. The information isagain encoded in the

GPU Load Time Measured (in milliseconds)

CPU Load S-1 S-2 Event Inclusive Time Wait Time

0 2X X Interpolate (C-[main|]#D-0#S-1) 149982.8750 149858.8906

0 2X X Interpolate (C-[main|]#D-0#S-2) 74929.6953 74909.6719

0 X 2X Interpolate (C-[main|]#D-0#S-1) 74993.2188 74869.6250

0 X 2X Interpolate (C-[main|]#D-0#S-2) 150055.8750 150019.0469

Y X X Interpolate (C-[main|]#D-0#S-1) 75054.0156 53687.0117

Y X X Interpolate (C-[main|]#D-0#S-2) 74989.4688 53708.9844

2Y X X Interpolate (C-[main|]#D-0#S-1) 74899.1406 32293.9453

2Y X X Interpolate (C-[main|]#D-0#S-2) 74948.7344 32429.6875

5Y X X Interpolate (C-[main|]#D-0#S-1) 75007.4219 0.0000

5Y X X Interpolate (C-[main|]#D-0#S-2) 75008.5469 0.0000

Table 3. TAUcuda profiles for two streams.

CPU Load GPU Load Time Measured (in milliseconds)

D-0 D-1 D-0 D-1 Event Inclusive Time Wait Time

0 0 X 2X Interpolate (C-[main|]#D-0#S-0) 75068.2500 74855.4688

0 0 X 2X Interpolate (C-[main|]#D-1#S-0) 149795.0156 149698.7344

0 0 2X X Interpolate (C-[main|]#D-0#S-0) 150171.8750 150054.6875

0 0 2X X Interpolate (C-[main|]#D-1#S-0) 74969.5625 74892.5781

2Y Y X X Interpolate (C-[main|]#D-0#S-0) 75121.7266 53530.7617

2Y Y X X Interpolate (C-[main|]#D-1#S-0) 75864.0938 18769.0430

Y 2Y X X Interpolate (C-[main|]#D-0#S-0) 75119.8750 53557.1289

Y 2Y X X Interpolate (C-[main|]#D-1#S-0) 75123.8984 18204.1016

Table 4. TAUcuda profiles for two devices.

Event Calls Inclusive Time Exclusive Time

All-Interpolate (C-[FirstWrapper|]#D-0#S-0) 1 300019.9375 65.3992

InterpolateA (C-[FirstWrapper|]#D-0#S-0) 10 150013.6250 150013.6250

InterpolateB (C-[FirstWrapper|]#D-0#S-0) 10 149940.8750 149940.8750

All-Interpolate (C-[SecondWrapper|]#D-0#S-0) 1 300111.6250 65.0635

InterpolateA (C-[SecondWrapper|]#D-0#S-0) 10 150018.1719 150018.1719

InterpolateB (C-[SecondWrapper|]#D-0#S-0) 10 150028.3750 150028.3750

Table 5. TAUcuda profiles with two tau contexts and nested events.

TAUcuda event name by[FirstWrapper] and[SecondWrapper], representing two differ-
ent CPU function contexts. We also see here the calls field which accounts for the repet-
itive access of the TAUcuda object for the stream, device, and context. Again, CUDA
computation can be profiled at the level of the programmer’s choice of granularity and
nesting of TAUcuda profile events. The exclusive time measure is included only in this
table as it is meaningful with nested events.

To verify the TAUcuda performance values, we turned on theCUDA Runtime Pro-
filer [5] functionality to dump elapsed time measures for all the kernels and other mem-
ory related GPGPU tasks. The profiling feature is integratedin CUDA runtime system

Measurement Scenarios Inclusive Time (in milliseconds)

Event GPU Load TAUcuda CUDA Profiler

Interpolate (C-[main|]#D-0#S-0) X 75065.9844 75045

Interpolate (C-[main|]#D-0#S-0) 2X 150012.6094 150067

Interpolate (C-[main|]#D-0#S-0) 3X 225058.2500 224950

Interpolate (C-[main|]#D-0#S-0) 4X 300173.8438 299928

Interpolate (C-[main|]#D-0#S-0) 5X 374917.5625 374887

Table 6. TAUcuda versus CUDA Runtime Profiler.

and a visual profile analysis tool is provided. Table 6 shows CUDA Profiler values to-
gether with the TAUcuda data. The results are seen to be very close.

4.2. Profiling Inside CUDA Kernels

We have also prototyped measurement interfaces for use inside a CUDA kernel. How-
ever, the performance data managed by these interfaces is not yet fully integrated to the
TAUcuda system. Collecting profile data from device addressspace requires a good ap-
proach to limit the profiler memory usage. Our approach transmits out chunks of per-
formance data from device to the host CPU. The kernel profile data is managed with a
data structure called theTAU Data Unit(TDU) frame. The TDU frame has a header seg-
ment which contains fields to communicate with the device. The host CPU can inform
the device about the frame structure and the device can inform the status of profiling to
the host. Due to the high cost of writing out profile records inthe GPGPU global mem-
ory, we manage a cache buffer of shared memory for manipulating the profile records.
Further details of kernel measurement will be produced after fully integrating it into the
TAUcuda system.

4.3. Application Case Study

To demonstrate TAUcuda with a realistic parallel application that utilizes GPGPU ac-
celeration, we considered the NAMD [2] application. NAMD isa parallel molecular
dynamics simulation built with the Charm++ framework. The TAU measurement sys-
tem has recently been integrated with Charm++ to enable profiling of Charm++ events
[1]. NAMD has been programmed for GPGPU acceleration using CUDA. We use the
tau_cuda_stream_beginandtau_cuda_stream_endinterfaces to capture TAUcuda pro-
files for certain CUDA code in NAMD, namelydev_nonbondedand dev_sum_forces
GPU kernels. We ran NAMD on four MPI processes each using a Tesla GPU on our
S1070 server.

The TAUcuda profiles generated are displayed shown in Figure2 together with the
TAU profile for the four MPI processes. We can see that the GPGPU computation time
for each event is almost uniform across all 4 processes. However,dev_nonbondedinclu-
sive time is much higher than that ofdev_sum_forces. These two events maps to two dif-
ferent CUDA kernels and both kernels are launched from the same CPU function context
WorkDistrib::enqueCUDA. In this experiment, the performance is improved by about 4
times compared to the computation without GPGPU acceleration.

Figure 2. TAUcuda profiles for NAMD.

5. Conclusion

We have developed a profiling system for measuring and integrating performance data on
both the host CPU and the GPU kernel components of a CUDA application. This work
describes and demonstrates performance measurement techniques for parallel programs
using acceleration technologies such as GPUs. With the increased presence of accelera-
tor technologies in conventional parallel computers such as clusters, integration of per-
formance measurement on acceleration devices within the overall parallel application is
critical for maintaining a complete picture of large scale parallel program performance.
Our initial work described in this paper forms the basis for accelerator performance mea-
surement being integrated into current and future versionsof the TAU performance anal-
ysis framework.

References

[1] S. Biersdorff, C.W. Lee, A. Malony, and L. Kale. Integrated Performance Views in Charm++: Projections
Meets TAU. InInternational Conference on Parallel Processing, September 2009. To appear.

[2] J. Phillips el al. Scalable molecular dynamics with namd. In Journal of Computational Chemistry, pages
1781 – 1802, October 2005.

[3] A. Malony, S. Shende, A. Morris, S. Biersdorff, W. Spear,K. Huck, and Aroon Nataraj. Evolution of a
Parallel Performance System. In M. Resch, R. Keller, V. Himmler, B. Krammer, and A. Schulz, editors,
2nd International Workshop on Tools for High Performance Computing, pages 169–190. Springer-Verlag,
July 2008.

[4] NVIDIA Corporation. NVIDIA Performance Toolkit, da-01800-001v03 edition, May 2006.
[5] NVIDIA Corporation. NVIDIA CUDA Visual Profiler, 1.1 edition, 2007.

