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Abstract. Multi-core accelerators offer significant potential to iroye the perfor-
mance of parallel applications. However, tools to help thmftel application de-
veloper understand accelerator performance and its ingpactcarce. An approach
is presented to measure the performance of GPU computgirogsammed using
CUDA and integrate this information with application perfance data captured
with the TAU Performance System. Test examples are showalidate the mea-
surement methods. Results for a case study of the GPU-eateeleNAMD molec-
ular dynamics application application are given.

1. Introduction

There is growing interest in the use of multi-core accete#sato improve the perfor-
mance of parallel applications, with GPU computing devigaiing the most traction.
Achieving the performance potential of accelerators idlehging due to complexity
of the multi-core hardware and their operational/prograngnmnterface. In the case of
general purpose GPUs (GPGPUSs), CUDA was created to suppagntgm development
targeting GPU-based accelerators. However, few tools &xtselp the parallel applica-
tion developer measure and understand accelerator penfmenPerformance analysis
tools for GPGPU developers to date have been largely odetoigards aiding devel-
opers on individual workstation-class machines with lediparallelism present within
the GPU host. When used in large-scale parallel envirorsnérs important to under-
stand the performance of accelerators (such as with a CUD#sutement library when
GPUs are used) in the context of whole parallel program’setxen. This will require
the integration of accelerator measurements in scalalél@igperformance tools.

This paper describes our approach to performance measorefM®PGPU execu-
tion using CUDA in the context of a larger parallel perforrmameasurement environ-
ment. We consider the problem from the point of view of a pafapplication where
host (CPU-side) performance measurement already hastsiqsort, in our case from
the TAU Performance System [3]. The goal is to measure thfemeance of GPU com-
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putational kernels, wherever they are invoked in the appiia, and integrate the mea-
surements with the TAU parallel performance data. Metha®ldped for CUDA per-
formance measurement are presented and the TAU CUDA measaténterface is de-
scribed. Test examples are shown to validate the measutemeeiel. Results for a case
study of a GPU-accelerated molecular dynamics applicatiergiven.

2. CUDA Performance Model and TAUcuda Approach

The CUDA programming environment enables easy developofespplications with
GPU acceleration of certain components. Computationatgnisive parts of applications
can be launched as tasks into the GPU device. Measuringrpeifce of CUDA ap-
plication would appear straightforward for simple usad#®wever, the concurrent and
asynchronous model of CUDA programs relative to the GPU imadtes it problematic
to create an accelerator performance view in general wipe® to the performance
of the parallel application as a whole. Programmers can usgpie concurrent CUDA
streams to queue independently executable sequences otaskR4) Furthermore, dif-
ferent strategies can be used to overlap CPU and GPU execatavell as CPU-GPU
data transfers. There can also be multiple GPU deviceseazetielg different parts of
the application for different CPU threads. To understarti@stimize GPU-accelerated
parallel applications using CUDA, all these scenarios &iaterest and important per-
formance factors should be measured, such as GPU utilizatid CPU waiting time,
but standard parallel performance tools can not be appiredtty.

There are two general approaches to GPU performance mesnireFirst, we
could consider making the measurement on the CPU (host)I§ithe GPGPU is used
in a synchronousnanner (the CPU immediately waits for GPGPU execution tahiyi
we could just place measurement points before and aftechaog the GPU kernel to
determine performance. If the GPGPU is used irmapnchronougthe CPU does not
immediately wait), the measurements could still be donehis way, but it would be
difficult to determine exactly when the GPGPU completed etien. In CUDA, a GPU
kernelis launched on atreamand multiple kernels on the same stream run sequentially.
However, multiple streams can be concurrently active anltlipheiGPU devices can be
used. In such cases, the performance measurement becoememere complex. For
instance, consider the four simple scenarios shown in Eiguirhe top row shows the
synchronous cases for one and two streams. The bottom romsshe asynchronous
cases. Notice in the synchronous case for two streams,libevidlifficult to extract the
performance for each stream independently.

We initially considered the use of NVIDIA profiling tools taldress the perfor-
mance measurement problems. NVIDIA has a rich performab¢€ 8 iown asPerfKit
[4] for profiling the GPU driver interface. It provides aceds low-level performance
counters inside the driver and hardware counters insidéRig itself. However, PerfKit
is limited for use with the CUDA programming environment. Wéed different measure-
ment semantics to capture the CUDA program performancerdadrate the data with
parallel application performance. NVIDIA also provideg tBUDA Profiler [5] which
includes performance measurement in the CUDA runtime systed a visual profile
analysis tool. While the CUDA Profiler provides extensiveatn-level measurements, it
collects the data in a trace and does not provide accesstftetithe program terminates.
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Figure 1. Scenarios of Host-GPGPU use.

We want to be able to produce profiles that show the distobubf accelerator perfor-
mance with respect to application events. This performaree is difficult to produce
with the CUDA Profiler trace data.

On the other hand, CUDA provides @&ventinterface that can be used to obtain
performance data for a particular stream’s executionuitiolg each kernel’'s precise ter-
mination. The performance data is measured by the CUDAmesiystem. We devel-
oped a CUDA performance measurement library based thexseeant interface called
TAUcuda The TAUcuda approach is described below and the libraryi&\Ptesented in
section 8§3.

Consider the execution of a single GPU kernel execution dnearm. We can use
a CUDA beginevent ancendevent placed around the CUDA statement to measure the
begin time and end time of the kernel’s execution in the GPUeWthe begin and end
events are retrieved from the CUDA runtime system, TAUcuataaalculate the kernel's
elapsed execution time. In addition, TAUcuda can calculaevaiting time from when
it requested the CUDA events to when they were delivered hedirtalizetime from
the beginning. The integration with the TAU measurementesgoccurs with the begin
event when th& AU contex{most recent TAU performance event) is sampled and stored.

Of course, many GPU kernels can be executed during an apptican multiple
streams and GPU devices. TAUcuda events are kept per strehpea GPU device. In
addition, TAUcuda events can be nested. At the end of exatuthe TAUcuda mea-
surement library creates performance profiles for eachteslmwing theevent_name
tau_contextdevice_id stream_id # calls inclusive_time exclusive_timewait_time
andfinalize_time



3. TAU CUDA Measurement Interface

The TAUcuda measurement library implements a versatikrfiate for the application
programmer to measure performance for GPGPU computatfoidUcuda object is
created for each block of CUDA code to be measured. At the afottee library, CUDA
event objects play a vital role in tracking GPGPU computatime. Internally the TAU-
cuda objects map to two CUDA event objects which redoedin and end execution
times for the code block, as measured by the GPU clock. TheAC&l@nt objects are
scheduled in the GPGPU by calling thedaEventRecorthterface and specifying the
corresponding stream of execution. However, it is impeeathat the two events are
scheduled immediately before and after the CUDA code block.

CUDA provides both blocking and non-blocking interfaceslteck the event status.
Correspondingly, TAUcuda also exposes both blocking andiocking interfaces to
gather the event data and compute performance profiles. Aleua data structures
are managed for every CPU thread independently in thread foemory. This avoids
the overhead of ensuring thread safety and also works thenddamitations of CUDA
event objects. CUDA event objects are not reliably accéssibitside the scope of their
originating thread lifetime. Hence, the profile data needs processed and written out
before each thread exits.

The TAUcuda library interface shown in Table 1. The inizZalion interface
tau_cuda_initshould be called at the start of the application. It initie$ data struc-
tures and sets up the initialization time for both CPU and 8BGTo process and
write TAUcuda profiles, each thread must dalli_cuda_exibefore exiting. TAUcuda
enables programmers to choose the granularity of CUDA céaoleklmbservation. The
tau_cuda_stream_begamdtau_cuda_stream_enudterfaces are used to mark the begin
and end TAUcuda events in application source code .eMemtname token passed to the
begin call identifies the TAUcuda object associated with@RGPU computations en-
closed. The library also provides an interfatz)_cuda_updatevhich returns a vector
of completed event statistics for a single stream or allastieat any time. The call to
this interface returns without blocking. On the other haad, cuda_finalizgperforms
the similar action except that it waits for outstanding ésé¢a complete. Both interfaces
free up the CUDA event objects after processing them. Freiquse of these interfaces
is recommended in experiments with large number of profiéanes

4. Examples
4.1. Computational Scenarios

We evaluated the TAUcuda measurement library with scesaficomputation varying
the interactions between CPU, CUDA streams, and GPGPU a@gvidl experiments
were performed on a NVIDIA Tesla S1070 GPU server. The sistfleam experiment
in Table 2 illustrates how a TAUcuda profile can detect CPUesy/gvasted in waiting
for GPGPU computations to complete. We observe decreaseaiirtime with more
utilization of CPU in parallel with the GPGPU computatiomm$ar results are observed
for experiments in Table 3 with two CUDA streams executingaasingle GPGPU de-
vice. We can also see the proportional inclusive computdtioe for variations of the
computation loads in the streams.



void tau_cuda_init(int argc, char **argv)
o To be called when the application starts
o Initializes data structures and checks GPU status
void tau_cuda_exit()
o To be called before any thread exits at end of application
o All CUDA profile data is output for each thread of execution
void* tau_cuda_stream_begin(char *event, cudaStream_ttseeam)
o Called before CUDA statements to be measured
o Returns handle which should be used in the end call
o If event is new or the TAU context is new for the event,
a new CUDA event profile object is created
void tau_cuda_stream_end(void * handle)
o Called immediately after CUDA statements to be measured
o Handle identifies the stream

o Inserts a CUDA event into the stream
vector<Event> tau_cuda_update()
o Checks for completed CUDA events on all streams
o Non-blocking and returns # completed on each stream
int tau_cuda_update(cudaStream_t stream)
o Same as tau_cuda_update() except for a particular stream
o Non-blocking and returns # completed on the stream
vector<Event> tau_cuda_finalize()
o Waits for all CUDA events to complete on all streams
o Blocking and returns # completed on each stream
int tau_cuda_finalize(cudaStream_t stream)
o Same as tau_cuda_finalize() except for a particular stream
o Blocking and returns # completed on the stream
Table 1. TAUcuda measurement interfaces.

CPU Load | GPU Load Event Inclusive Time | Wait Time
0 X Interpolate (C-[main|J#D-0#S-0] 75222.4922 | 75134.7656
0 2X Interpolate (C-[main|}#D-0#S-0] 150097.7031 | 149995.6094
0 3X Interpolate (C-[main|J#D-0#S-0] 225034.2031 | 224915.5312
Y X Interpolate (C-[main|J#D-0#S-0] 74985.6953 64097.1680
2Y X Interpolate (C-[main|]J#D-0#S-0) 75058.5234 | 42563.9648
1Y X Interpolate (C-[main|}#D-0#S-0] 75032.9609 0.0000

Table 2. TAUcuda profiles for a single stream (time measured in reitiends).

In multi-GPU experiments, individual CPU threads launcimpatations on corre-
sponding devices. Table 4 shows experiments with two GPG&lites.D-0 andD-1
are device identifiers and are included in the TAUcuda evantias to identify the cor-
responding CPU threads using the device. We observe mdahiegults for inclusive
time as well as the wait time appropriate to the computatisiza.

More sophisticated profile results are shown in Table 5, destmating how TAU-
cuda can capture the CPU context (from the concurrent TAUsmmeanent layer) in
which the GPGPU computation is launched. The informatioagain encoded in the



GPU Load Time Measured (in milliseconds)
CPULoad | S-1 | S-2 Event Inclusive Time | Wait Time
0 2X X Interpolate (C-[main|]#D-0#S-1] 149982.8750 | 149858.8906
0 2X X Interpolate (C-[main|J#D-0#S-2] 74929.6953 74909.6719
0 X 2X | Interpolate (C-[main[[#D-0#S-1] 74993.2188 74869.6250
0 X 2X | Interpolate (C-[main[J#D-0#S-2] 150055.8750 | 150019.0469
Y X X Interpolate (C-[main|}#D-0#S-1) 75054.0156 53687.0117
Y X X Interpolate (C-[main|}#D-0#S-2) 74989.4688 53708.9844
2Y X X Interpolate (C-[main|}#D-0#S-1) 74899.1406 32293.9453
2Y X X Interpolate (C-[main|J#D-0#S-2] 74948.7344 32429.6875
5Y X X Interpolate (C-[main|J#D-0#S-1] 75007.4219 0.0000
5Y X X Interpolate (C-[main|J#D-0#S-2] 75008.5469 0.0000
Table 3. TAUcuda profiles for two streams.

CPU Load | GPU Load Time Measured (in milliseconds)

D-0| D-1 | D-0 | D1 Event Inclusive Time | Wait Time
0 0 X 2X | Interpolate (C-[main[J#D-0#S-0] 75068.2500 74855.4688
0 0 X 2X | Interpolate (C-[main[J#D-1#S-0] 149795.0156 | 149698.7344
0 0 2X X Interpolate (C-[main|]#D-0#S-0] 150171.8750 | 150054.6875
0 0 2X X Interpolate (C-[main|J#D-1#S-0] 74969.5625 | 74892.5781
2Y Y X X Interpolate (C-[main|}#D-0#S-0] 75121.7266 53530.7617
2Y Y X X Interpolate (C-[main|J#D-1#S-0] 75864.0938 18769.0430
Y 2Y X X Interpolate (C-[main|]J#D-0#S-0] 75119.8750 53557.1289
Y 2Y X X Interpolate (C-[main|J#D-1#S-0] 75123.8984 18204.1016

Table 4. TAUcuda profiles for two devices.

Event Calls | Inclusive Time | Exclusive Time
All-Interpolate (C-[FirstWrapper|]#D-0#S-0) 1 300019.9375 65.3992
InterpolateA (C-[FirstWrapper|[#D-0#S-0) 10 150013.6250 | 150013.6250
InterpolateB (C-[FirstWrapper|]#D-0#S-0) 10 149940.8750 | 149940.8750
All-Interpolate (C-[SecondWrapper|[#D-0#S-0) 1 300111.6250 65.0635
InterpolateA (C-[SecondWrapper|[[#D-0#S-0) 10 150018.1719 | 150018.1719
InterpolateB (C-[SecondWrapper|[#D-0#S-0) 10 150028.3750 | 150028.3750

Table 5. TAUcuda profiles with two tau contexts and nested events.

TAUcuda event name bFirstWrapper] and[SecondWrappet]representing two differ-
ent CPU function contexts. We also see here the calls fieldiwdnicounts for the repet-
itive access of the TAUcuda object for the stream, devicd, @ntext. Again, CUDA
computation can be profiled at the level of the programmérsae of granularity and
nesting of TAUcuda profile events. The exclusive time meagimcluded only in this
table as it is meaningful with nested events.

To verify the TAUcuda performance values, we turned onGhHDA Runtime Pro-
filer [5] functionality to dump elapsed time measures for all teenlels and other mem-
ory related GPGPU tasks. The profiling feature is integratedUDA runtime system



Measurement Scenarios Inclusive Time (in milliseconds)
Event GPU Load TAUcuda | CUDA Profiler
Interpolate (C-[main|]#D-0#S-0 X 75065.9844 75045
Interpolate (C-[main|]#D-0#S-0 2X 150012.6094 150067
Interpolate (C-[main|]#D-0#S-0 3X 225058.2500 224950
Interpolate (C-[main|]#D-0#S-0 4X 300173.8438 299928
Interpolate (C-[main|]#D-0#S-0 5X 374917.5625 374887

Table 6. TAUcuda versus CUDA Runtime Profiler.

and a visual profile analysis tool is provided. Table 6 show®& Profiler values to-
gether with the TAUcuda data. The results are seen to be \@sg.c

4.2. Profiling Inside CUDA Kernels

We have also prototyped measurement interfaces for usgeimsCUDA kernel. How-
ever, the performance data managed by these interfacesystfolly integrated to the
TAUcuda system. Collecting profile data from device addspsse requires a good ap-
proach to limit the profiler memory usage. Our approach trarssout chunks of per-
formance data from device to the host CPU. The kernel profita & managed with a
data structure called thBAU Data Unit(TDU) frame. The TDU frame has a header seg-
ment which contains fields to communicate with the devices fibst CPU can inform
the device about the frame structure and the device camintfoe status of profiling to
the host. Due to the high cost of writing out profile recordthie GPGPU global mem-
ory, we manage a cache buffer of shared memory for manipgldtie profile records.
Further details of kernel measurement will be produced &fityy integrating it into the
TAUcuda system.

4.3. Application Case Study

To demonstrate TAUcuda with a realistic parallel applimatihat utilizes GPGPU ac-
celeration, we considered the NAMD [2] application. NAMD dsparallel molecular
dynamics simulation built with the Charm++ framework. Th&UTmeasurement sys-
tem has recently been integrated with Charm++ to enablelipgptif Charm++ events
[1]. NAMD has been programmed for GPGPU acceleration usidp&. We use the
tau_cuda_stream_begandtau_cuda_stream_eridterfaces to capture TAUcuda pro-
files for certain CUDA code in NAMD, namelgev_nonbondednddev_sum_forces
GPU kernels. We ran NAMD on four MPI processes each using B TeBU on our
S1070 server.

The TAUcuda profiles generated are displayed shown in Figuogether with the
TAU profile for the four MPI processes. We can see that the GP&dmputation time
for each event is almost uniform across all 4 processes. awdev_nonbondeiclu-
sive time is much higher than thatdév_sum_force3 hese two events maps to two dif-
ferent CUDA kernels and both kernels are launched from theegaPU function context
WorkDistrib::enqueCUDAInN this experiment, the performance is improved by about 4
times compared to the computation without GPGPU acceterati
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Figure 2. TAUcuda profiles for NAMD.
5. Conclusion

We have developed a profiling system for measuring and iategyperformance data on
both the host CPU and the GPU kernel components of a CUDA@gfan. This work
describes and demonstrates performance measuremerititgehfor parallel programs
using acceleration technologies such as GPUs. With theased presence of accelera-
tor technologies in conventional parallel computers sichlasters, integration of per-
formance measurement on acceleration devices within temathparallel application is
critical for maintaining a complete picture of large scategllel program performance.
Our initial work described in this paper forms the basis forederator performance mea-
surement being integrated into current and future versibtise TAU performance anal-
ysis framework.
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