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ABSTRACT
Workflows are a successful model for building both distributed
and tightly-coupled programs based on a dataflow-oriented
coordination of computations. Multiple programming lan-
guages have been proposed to represent workflow-based pro-
grams in the past. In this paper, we discuss a representa-
tion of workflows based on lazy functional streams imple-
mented in the strongly typed language Haskell. Our intent
is to demonstrate that streams are an expressive intermedi-
ate representation for higher-level workflow languages. By
embedding our stream-based workflow representation in a
language such as Haskell, we also gain with minimal effort
the strong type system provided by the base language, the
rich library of built-in functional primitives, and most re-
cently, rich support for managing concurrency at the lan-
guage level.

1. INTRODUCTION
Workflows have emerged as a successful programming model
for building both tightly-coupled and distributed systems
out of existing software components. There exists a large
and growing ecosystem of programming languages, runtime
systems, and reusable components that support the work-
flow model. There are several languages, such as WOOL [7]
and AGWL [3], that provide a high-level syntax for describ-
ing workflows as a set of activities whose inputs and outputs
are interconnected by channels of data. It is a challenge to
translate this fairly abstract representation down into an
executable program. Here, we describe a general-purpose
executable representation of workflows, based on lazy func-
tional streams. Our intent is to provide a well defined repre-
sentation of workflows based on functional streams, allowing
this representation to be the target of higher level workflow
language compilers.

In particular, we leverage the functional programming lan-
guage Haskell to encode workflows as a composition of func-
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tions on streams. This representation is both concise and
powerful, with well-defined semantics. We get a number of
features from Haskell for free, including sophisticated static
analysis and type checking, an efficient binding to C rou-
tines, and portability to a wide range of platforms. Further-
more, recent additions to the Haskell language for multi-
threaded applications have proven to be useful for managing
side-effects of stream operations while remaining in a purely
functional setting.

We will first introduce (or refresh) the reader to the concept
of lazy functional streams, and describe how computational
activities within workflows can be lifted into the stream-
ing model. A set of stream-based composition and control
primitives will be presented in order to support sophisticated
structures in workflow-based programs. Finally, we will dis-
cuss and demonstrate a few example workflows that can be
concisely represented using streams.

2. RELATED WORK
There are many approaches to encoding workflows as exe-
cutable programs.

Kepler [1, 11] is a system for composing scientific workflows.
Its execution model is taken from Ptolemy II [8]. Ptolemy
II is based on a generalized actor model, where actors rep-
resent computations, and have inputs and outputs that are
connected via uni-directional channels. The semantics of the
workflow are configurable. For example, one workflow may
employ the Process Network model [10], where writes to a
channel are non-blocking, reads from a channel will block
if there is no available data, and an actor will “fire” only
in the event that all inputs are available. Another work-
flow may choose Synchronous Dataflow semantics, where
stronger guarantees of progress are available at the cost of
more specification [9].

Taverna [15] uses a kind of Lambda calculus as its coordi-
nation formalism. The semantics detailed in [16] are strict,
such that that activities must process all incoming elements
before the next activity sees any output. Though simple to
understand, strictness limits pipeline parallelism and expres-
siveness. Streams are the idea that solves these problems.
Taverna is incorporating a notion of streams in their next
software version.

Functional reactive programming is similar to our work, in



that it also deals with using functional concepts to compose
stream-like data types [5]. In FRP, the basic data type is a
“signal,” which is a function from some type representing a
continuous value that varies with time to a type representing
discrete events. Signal functions, then, take a signal as input
and produce another signal as output. Programs are writ-
ten using a minimal set of signal combinators. These com-
binators are equivalent to Hughes’ arrow combinators [6],
and many FRP systems have adopted these are their set of
primitives. We are currently examining the possibility of
a formal connection between arrows and our own workflow
representation.

Dataflow languages like Sisal [4], Id [13], and pH [12] are
related to modern workflow languages. Dataflow languages
view the entire program as combinations of dataflow rela-
tionships, all the way down to fine grained operations such
as arithmetic. Workflow languages employ many of the same
dataflow concepts, but are usually concerned with the coor-
dination of more coarse-grained operations, and the move-
ment of data between them. Workflow languages do not
impose this flow-based programming model on the internal
implementation of these coarse-grained computations. Of
note, Id originally introduced MVars, which are now found
in Haskell, and which we use extensively in our representa-
tion of effectful streams.

In this paper, we give details on how to construct several
workflow primitives. Although we do not make the connec-
tion explicitly for each primitive, they are represented in the
set of workflow patterns described in [17].

We use Haskell because it has convenient features for our
purposes, including simple expression of streams and built-in
MVars. Conceptually, however, our representation is language-
independent. The stream data structure can be encoded in
almost any language. MVars are easy to implement in any
language with concurrency and locking.

Yet another approach to executable workflow representation
is rule-based workflow execution [2]. In this paradigm, ac-
tivity firings are triggered by the fulfillment of declarative
rules, not unlike the rules in a Makefile. Furthermore, all
data is stored into relational database tables, making it easy
to examine the provenance of any particular result, and to
re-run partial sections of a workflow based on updated rules
or activities.

3. LAZY FUNCTIONAL STREAMS
The fundamental primitive in our model is that of a lazy
functional stream. There are two important parts to this
label – the notion of a functional stream and the concept
of lazy evaluation. We will start by discussing functional
streams, and will visit the role of laziness in Section 3.4.
Stream functions can be viewed as higher-order versions of
regular functions. Instead of operating on a single value,
they operate on a sequence of values. For example, consider
this simple function to compute the square of an integer:

square :: Int -> Int

square x = x*x

The stream version of this function is similar, but it con-
sumes values from a potentially unbounded list of inputs,
and produces a potentially unbounded list of outputs. Both
versions, however, employ exactly the same logic. The stream-
ing version of square (using Haskell’s list as a simple kind
of stream data structure) looks like this:

squarestream :: [Int] -> [Int]

squarestream (x:xs) = (x*x):(squarestream xs)

In the stream model, the function is defined to take a list of
inputs (x followed by the remainder of the list, xs), and pro-
duce a list containing the value x squared followed by the
recursive application of the function to the remaining ele-
ments of the input list. Notice the lack of a recursive base
case handling the empty list – this is not a function on fi-
nite lists, but rather on streams with unbounded length. We
can improve this function by making the acquisition of the
head and tail explicit, allowing us to maintain the stream
abstraction while giving us the flexibility change the under-
lying stream representation:

squarestream :: [Int] -> [Int]

squarestream s = (x*x):(squarestream xs)

where x = head s

xs = tail s

Abstracting this pattern to make a higher-order function
representing a stream computation based on a singleton func-
tion is straightforward:

applyToIntStream :: [Int] -> (Int -> Int) -> [Int]

applyToIntStream s f = (f x):

(applyToIntStream xs f)

where x = head s

xs = tail s

In this case, any function that takes a single integer and pro-
duces an integer can be applied to an unbounded stream. We
can abstract the pattern even further by making the argu-
ments polymorphic. This function is a general application
of a singleton function to each element of a stream:

applyToStream :: [a] -> (a -> b) -> [b]

applyToStream s f = (f x):(applyToStream xs f)

where x = head s

xs = tail s

Functional programmers will note that our applyToStream

function is equivalent to the familiar map function over lists.
We create our own version here because, as we show in Sec-
tion 3.1, we want to operate on more complex stream data
structures.

Our applyToStream function is a useful workflow abstraction
because a workflow program is a the composition of compu-
tations that work with single elements. The computations



are executed in a context where a sequence of elements will
be passed through them. A workflow programmer writes
a program by composing primitive functions. The work-
flow system provides a mechanism to move data elements
through the composition. The stream-based workflow ab-
straction neatly reconciles this per-element notion of com-
putational activities with the sequenced nature of the work-
flows.

Along with a method of applying functions to streams, we
will want a set of combinators for composing stream func-
tions together. For example, to sequence two functions f and
g, such that f produces values for g to consume, we can use
function composition (for which Haskell conveniently pro-
vides a built-in operator). We give examples of other useful
combinators in Section 3.3.

Note that this kind of composition can be used effectively to
build reusable sub-workflows. Once two or more activities
are composed, there effectively exists a new activity where
the inputs and outputs are exactly the free inputs and out-
puts of the underlying stream functions.

Thus far, we have limited our stream representation to Haskell
lists. While lists capture the essential interface of a stream,
they are lacking some important features related to work-
flows. We will now consider what properties a more robust
stream representation should have if it is to serve as the
basic data structure in a real-world workflow system.

3.1 Effectful streams
The stream model that we have described so far assumes
that the functions are side-effect free. Indeed, Haskell ex-
plicitly disallows side-effects in this sort of purely functional
code. This is a serious limitation on our ability to represent
real-world workflows. In particular, it is often the case that
we would like the act of reading from a stream to alter the
state of that stream, such that each consumer sees the ef-
fects of all the other consumers. For example, in the purely
functional stream model, if we have a single stream that is
split and handed to two subworkflows, the subworkflows see
the original stream as if the other subworkflow did not exist.
One subworkflow cannot tell if a value intended to be con-
sumed by one and only one subworkflow has been consumed
already or not. This is a consequence of the pass by value
nature of most functional languages. To support this “con-
sume once and only once” behavior, we would require the
consumption to have an effect on the stream. To support
this while remaining in the functional setting, we must take
advantage of concurrency constructs provided by Haskell in
the form of MVars.

An MVar is a concept originally introduced in Id [14, 13]
and used in later derivative languages such as Sisal [4] and
pH [12]. An MVar should be thought of as a slot holding a
value that can be read from and modified. A common use
of MVars is to hold shared counters. If, instead of holding
a singleton value, we create an MVar that contains a pure
stream, we can define an operation that atomically takes the
head of the stream, returns it to an accessor, and replaces
the contents of the MVar with the remainder of the stream.
If we do this, then the act of reading the head of a stream can
have an effect on the stream such that any other consumer

from the stream will see the state of the stream based on
the actions of other consumers.

The choice of pure versus effectful streams is based largely
on the requirements of the workflow — in some cases one is
preferable to the other. Ideally, we would like to make this
choice transparent to computational activities within the
workflow, and supporting primitives provided by the work-
flow representation. To achieve this, we employ Haskell’s
type class facility to define a generic stream type, along with
two instantiations of the class. The first instance provides
pure functional streams, and the second effectful streams.

3.2 Stream type class
In our discussion above, we start with a purely functional
lazy stream and move on to describe streams where the act
of consuming values from them has a side-effect. Both mod-
els of streams are valid and have their place, and often we
want to define functions for composing stream-based func-
tions that apply to both types of stream. One way to achieve
this in Haskell is to use a type class representing a generic
stream, from which we can define instances for both pure
and effectful streams. The key is to make operations such
as head and tail explicit instead of relying on built-in Haskell
operators. This gives the implementors of instances of the
type class freedom to control precisely what happens when
streams are operated on — a very important consideration
when using streams to represent channels in distributed sys-
tems or other contexts out of control of the Haskell language
runtime. We provide a single operation, advance, that given
a stream returns a pair representing the first element avail-
able on the stream and the remainder of the stream.

Our type class is defined as follows:1

class Streamer a b | a -> b where

newStream :: [b] -> a

sAdvance :: a -> (b, a)

sAdvanceN :: Int -> a -> ([b],a)

sEmpty :: a -> Bool

How do we read this? First, we are defining a type class
called Streamer with generic type parameters a and b. We
use the functional dependency notation to denote that the
type b is uniquely determined by the type a. We will see
what this means shortly. Within our type class, we define
four functions that an instance of the type class must pro-
vide.

• newStream: This function takes a list of elements and
returns a stream containing them. We must use this
to lift regular Haskell lists into our stream type so that
the following operators may apply to them.

• sAdvance: Returns a pair containing the element at
the front of the, and the remainder of the stream after
this element has been removed.

1Our definitions take advantage of extensions to the Haskell
language provided by the Glasgow Haskell Compiler.



• sAdvanceN: Given that streams are potentially infinite
structures, we must use this function to take a finite
number of elements from the stream. sAdvanceN is
equivalent to iterating sAdvance to create a list of el-
ements.

• sEmpty: Used to test whether or not a stream con-
tains elements that can be accessed. Whether or not
an empty stream can later acquire additional elements
depends on how the it is implemented.

The simplest instance of our type class is that of a purely
functional stream.

type PStream a = [a]

instance Streamer (PStream a) a where

newStream l = l

sAdvance s = (head s, tail s)

sAdvanceN i s = (take i s, drop i s)

sEmpty = null

As we can see, a PStream (or pure stream) is nothing more
than a Haskell list in disguise. The type PStream a is defined
as a list of elements of type a, and the instance functions
are nothing more than aliases for the built in list primitives.
We can now see why the functional dependency notation
was necessary in the definition of the type class. In our
instance of Streamer, we see that the two parameter types
are PStream a and a. In the type class definition, we saw
that the second type was to be uniquely determined by the
first, and that is shown here in this instance. A PStream is
a list of elements of type a. Making both the stream type
and element type explicit and related is necessary for the
Haskell type checker to validate that the member functions
that require both can be properly type checked (such as
sAdvance).

Our type class becomes more interesting when we consider
streams that are not simply traditional functional lists. Con-
sider the following scenario. Say we wish to have streams
that can be passed to multiple threads of execution with the
requirement that consumption of each element of the stream
may occur once and only once. In other words, operations
on the stream must have a side-effect on the stream. The
notion of “effectful” streams motivates our second instance
of the type class.

type EStream a = MVar (PStream a)

swap :: (a,b) -> (b,a)

swap (x,y) = (y,x)

instance Streamer (EStream a) a where

newStream l = unsafePerformIO $ newMVar l

sAdvanceN n s = unsafePerformIO $

do r <- modifyMVar s

(\i -> do return $ swap $ sAdvanceN n i)

return $ (r, s)

sEmpty s = unsafePerformIO $

withMVar s (\i -> do return $ sEmpty i)

sAdvance s = unsafePerformIO $

do r <- modifyMVar s

(\i -> do return $ swap $ sAdvance i)

return $ (r, s)

As we can see, instead of providing a thin layer above the
built-in list primitives for purely functional lists, each func-
tion operates on the contents of the MVar. The function
modifyMVar takes two arguments: the MVar and a function
to apply when modifying its contents. It first reads the con-
tents of the MVar, applies the provided function, and then
places the updated value back into the MVar. The function
that modifyMVar takes as an argument is provided the con-
tents of the MVar, and then returns a pair with the new
value to be placed in the MVar as the first element, and
the value to return to the caller of modifyMVar as the sec-
ond. The function withMVar operates similarly, but does not
change the content of the MVar — it simply extracts it, ap-
plies the provided function, restores the value into the MVar,
and returns the result of the function that was applied. Our
use of the swap helper function is necessary because our
sAdvance operations define the tuple in the opposite order.
We chose this ordering to better match the relationship of
the front and back of a list.

In the effectful stream instance, the operations are imple-
mented via the unsafePerformIO function. In Haskell, many
imperative features take place within what is known as the
IO monad. Monads are the Haskell mechanism for contain-
ing and controlling side effects, most often related to IO.
Unfortunately, use of features (such as MVars) that reside
within the IO monad requires much of the code to then
be implemented within the IO monad as well. If we re-
quired workflow programs based on effectful streams to re-
side in the IO monad, we would violate the transparency
we are hoping to achieve with the type class — users of
effectful streams would program differently than those us-
ing pure streams. Instead of forcing all code using effectful
streams to reside within the IO monad, we encapsulate the
effectful code necessary to manipulate the MVars within the
unsafePerformIO call that allows us to briefly enter the IO
monad, perform our effectful operations, and escape back to
the pure world.

While convenient, use of unsafePerformIO can have conse-
quences (hence the choice of the Haskell designers to label
this operation as “unsafe”). In general, unsafePerformIO

makes it difficult to reason about the relative ordering of
IO events. This would be a disaster for most programs,
but in the case of most workflow systems the relative order-
ing of effects is only defined up to the constraints imposed
by the data flow dependencies anyway. We do, however,
lean a bit on the implementation provided by the Glasgow
Haskell Compiler (GHC), in particular the way it memo-
izes functions. We are currently exploring ways to reconcile
our stream types with monadic effects, without losing the
polymorphic and lazy characteristics.



3.3 Stream primitives
Given the type class and instances for different types of
streams, we would like to provide a set of primitives that
can be used to build interesting workflows. As we demon-
strated earlier in our explanation of applyToStream, we can
provide generic helper functions that can promote functions
on primitive types to act on streams containing elements of
those types. We currently provide a set of functions called
lifters for this purpose. For example, consider the following
lifter for functions of two arguments:

lifter2 :: (Streamer a b, Streamer a’ b’,

Streamer c d)

=> (b -> b’ -> d)

-> a -> a’ -> c

lifter2 f s1 s2 = newStream (appf2 s1 s2)

where appf2 s1’ s2’ =

let (fr1, r1) = sAdvance s1’

(fr2, r2) = sAdvance s2’ in

(f fr1 fr2):(appf2 r1 r2)

Examination of the type signature shows that the lifter is
provided with a function on two arguments (of potentially
different types) that produces an output of a third type. The
lifter then takes two streams containing elements of types
that match those of the function specified in the first argu-
ment. Finally, what is produced is a stream that contains
the output of the lifted function applied to the two input
streams. Our library of workflow primitives contains sim-
ilarly structured lifters for functions of various numbers of
arguments.

Once we have functions lifted to operate on streams, we
then can use other primitives to connect them together in
interesting ways.

Splitters
Given a stream, we may want to split it into a set of streams
that can be passed into distinct sub-workflows (see Figure 1).
Of course, there are different ways that this can be achieved,
leading to different workflow semantics. Consider the follow-
ing function for splitting a single stream into two streams.

split :: Streamer a b => a -> (a,a)

split s = (left,right)

where left = lifter id s

right = lifter id s

Here a single stream input is passed into the split primitive,
and a pair of streams are created, each of which is the re-
sult of the identity function lifted and applied to the original
stream. An issue arises if we consider what this construct
means with respect to operations on streams. If an element
is consumed from the left stream, does that have an impact
on the contents of the right stream? Even though we have
split the stream, we should notice that the two resulting
streams are defined based on the original. So, if applied to
effectful streams, effects of operations by one stream would
be visible to the other. This primitive is therefore useful

[1,2,3,..] split altmerge

constStream 10

multiply

[1,20,3,40,...]

Figure 1: Effectful split

if we want to allow the two sub-workflows to represent con-
currently executing sub-programs that are consuming values
from a stream in a first-come, first-served manner.

If this is not the desired semantics, and we wish to effec-
tively duplicate the stream being split, we have an alterna-
tive primitive supporting that.

dup :: Streamer a b => a -> (a,a)

dup s =

let (l1,l2) = unzip (dupList s)

in (newStream l1, newStream l2)

where

dupList st = let (hd,tl) = sAdvance st

in (hd,hd) : (dupList tl)

[1,2,3,..] dup altmerge

constStream 10

multiply

[1,10,2,20,3,30,...]

Figure 2: Effectful dup

With this primitive, every element of the input stream is
duplicated and present in both output streams. It is inter-
esting to note that with pure streams, both dup and split
have identical behavior. When applied to effectful streams
though, their behaviors are distinct.

A final splitter of some interest is the alternating splitter,
altsplit. Like the dup splitter, the resulting streams are in-
dependent. Unlike dup, they are not identical. This splitter
represents a binary round robin splitter where the odd el-
ements of the input stream are placed in the first output
stream, and the even numbered elements end up in the sec-
ond.



altsplit :: (Streamer a b) => a -> (a,a)

altsplit s =

let (l1,l2) = unzip(altList s)

in (newStream l1, newStream l2)

where

altList st = let (h1,t1) = sAdvance st in

let (h2,t2) = sAdvance t1

in (h1,h2):(altList t2)

Mergers
Another common pattern in workflows is to integrate mul-
tiple streams into a single stream. A few primitives are
provided to help with this task. Say we have two streams
joining together and we wish to produce a stream of their
values serialized in a specific way. One choice is to alternate
between the two streams.

altmerge :: (Streamer a b) => a -> a -> a

altmerge xs ys = newStream (alt xs ys)

where alt l r = let (lf,lr) = sAdvance l

in lf : (alt r lr)

In another case, we may want to give priority to one stream
over the other. If we assign a “side” to the two streams, we
can call this primitive selectLtR for “select left then right”.
If the left stream has values available, they are emitted on
the output stream. Otherwise, values are taken from the
right stream.

selectLtR :: Streamer a b => a -> a -> a

selectLtR xs ys = newStream (choose xs ys)

where choose l r = if sEmpty l

then let (rf,rr) = sAdvance r

in (rf : choose l rr)

else let (lf,lr) = sAdvance l

in (lf : choose lr r)

We also may not want to serialize the streams, but instead
emit a stream where the values from the streams being
merged are packaged together in a single aggregate entity.
We can use a simple zipper-style primitive for this.

zipper :: (Streamer a b, Streamer a’ b’,

Streamer c (b,b’))

=> a -> a’ -> c

zipper xs ys = newStream (zipped xs ys)

where zipped l r = let (lf,lr) = sAdvance l in

let (rf,rr) = sAdvance r

in (lf,rf) : (zipped lr rr)

Seeders
Often we want the ability to inject special values into work-
flows for the purposes of parameterizing activities or per-
forming tasks like parameter studies. These are easily repre-
sented. For example, if we wish to produce a stream contain-
ing an infinite number of instances of some fixed constant,
we can say:

constantStream :: (Streamer a b) => b -> a

constantStream c = newStream (repeat c)

We may also wish to initialize a stream between two activi-
ties with a finite number of values waiting to be consumed2.
This is useful for seeding workflows with some initial values
necessary to bootstrap them.

seededStream :: (Streamer a b) => [b] -> (a -> a)

seededStream l s = selectLtR (newStream l) s

Counting streams are also easily represented, and can be
used when building generic activities that require a counter
(such as an activity reading a set of numbered data files from
a directory).

counterStream :: (Enum b, Streamer a b) => b -> a

counterStream start = newStream ([start..])

3.4 The virtue of being lazy
We rely on Haskell’s lazy evaluation for our stream repre-
sentation. In particular, many streams are naturally infinite
structures. Lazy evaluation allows us to manipulate these
kinds of infinite streams without having to fully evaluate
them. For example, consider the lifter operations, such as
lifter2, shown earlier. The recursive definition of the stream
in terms of a list where the tail is defined as recursive ap-
plication of the function leads to an infinite list. Clearly
we cannot evaluate the list in its entirety. In a lazy model,
evaluation of the elements will occur only when they are
required – when the elements are actually read from the
outputs of the workflow and evaluated. Both of the exam-
ple workflows shown in Section 5 deal with infinite streams.
The sTake function that is part of the stream type class is a
convenient way to examine a finite number of elements from
these infinite structures.

4. CONCRETE COMPUTATION BINDINGS
Given a stream representation of the workflow in Haskell,
we are still faced with the problem of binding the work-
flow activities to concrete computations. There are two
sub-problems: associating computations defined outside the
Haskell runtime system (e.g. C functions) with our stream
functions, and encoding and moving real data through the
workflow.

4.1 Mapping external computations to activi-
ties

Our workflow representation is intended to coordinate the
execution of real-world computations. To do so, the com-
putations must be bound to workflow activities. As such,
we require a binding mechanism that maps the Haskell rep-
resentation of an activity to the intended implementation.
There are at least two options for this task. The first is
the Haskell foreign function interface (FFI), used to bind

2Strictly speaking, this activity can be seeded with an infi-
nite list, but that would cause the second stream to never
be consumed from. That would not be very useful.



Haskell functions directly to implementations in other lan-
guages. The other is Haskell’s interprocess communication
facilities, where a computation is invoked via a Haskell wrap-
per which reads and writes data from IPC channels.

In practice, we tend to use the FFI for routines that are
coded in C, since we can maintain useful type information.
For other codes, such as those written Matlab, Python, or
other higher-level languages, we use IPC.

4.2 Data representation
All production workflow systems must strive to avoid unnec-
essary movement and replication of data. To this end, we use
a token scheme to represent data within stream-based work-
flows. Tokens are conceptually orthogonal to our workflow
representation, but are an important part of a real runtime-
system implementation.

For reasons of efficiency, our Haskell code performs no inter-
pretation of the data contained within a token – we simply
pass the tokens between activities as dictated by the data-
and control-flow semantics of the workflow. An activity im-
plementer is therefore free to use whatever data encoding
they choose, and is not forced to implement a (possibly
costly) mapping of their data types into a Haskell repre-
sentation.

In practice, we find ourselves using two different strate-
gies for encoding data with tokens. In many cases, the to-
ken’s payload is exactly some primitive data type defined by
Haskell (e.g. 32-bit integers) where little or no mapping is
required between Haskell and the host language. For more
complex data (e.g. images), we use the digest of some suit-
able hash function on the data, such as MD5, as the payload.
The hash digest is passed to the host language and used as
a vector to the real data, often by way of a shared rela-
tional database or the filesystem. Once the data has been
recovered, it is passed to the activity routine. If the routine
produces new data with a hashed representation, the pro-
cess is revered – the hash function is used to produce the
digest, which is stored along with the result if it does not
already exist, and the digest is passed back into Haskell.

Note that our token strategy still allows us to leverage Haskell’s
sophisticated type system to verify workflow connections. In
the case where a token encodes a primitive data type (e.g.
Int), the corresponding token type will simply wrap the
primitive one (e.g. Token Int). In the case where we are
using a hashed representation, we must define a new Haskell
datatype to represent the data as a hash value. For example:

data Image = Image Digest

foo :: Token Image -> Token Image

foo img = externalRoutine img

sFoo :: (Streamer a (Token Image)) => a -> a

sFoo imgs = lifter foo imgs

If some other type of stream is passed to sFoo, the type
system will catch the error.

We are currently exploring other possible benefits of the
hash token strategy such as provenance tracking, memoiza-
tion of functional activities, and distributed execution.

5. DEMONSTRATION
We have established the stream representation as a Haskell
type class and defined a small number of primitive stream
operators. We now examine how these elements can be used
to compose some actual workflows.

5.1 Fibonacci generator
In this example, we show a workflow that produces an infi-
nite sequence of Fibonacci numbers. Clearly, there are more
concise (and efficient) ways of performing the same compu-
tation – we use this example here because it gives a clear ex-
ample of some interesting control flow constructs. The only
“domain” operation in this case is addition, all the other ac-
tivities are drawn from our set of primitives. See Figure 3
for a graphical representation of the workflow.

-- Function to lift primitive addition operator

-- to a stream model.

adder :: (Num b, Streamer a b) => a -> a -> a

adder = lifter2 (+)

-- Define a workflow to produce Fibonacci numbers

fib :: (Num b, Streamer a b) => a

fib = let lr1 = seededStream [0] db1

lr2 = seededStream [1] da2

(db1,db2) = dup lr2

add = adder lr1 db2

(da1,da2) = dup add

in da1

First, we define our activity adder by lifting the binary ad-
dition function to a stream context. The result is a workflow
activity that operates on streams of numbers. The second
function we define is fib, which represents the workflow it-
self. As noted previously, the result is a function that pro-
duces a stream no differently than other primitive activities
like constantStream or counterStream. This means that the
entire workflow can be called from within a larger workflow,
which demonstrates how our workflow representation sup-
ports workflow nesting.

The first control flow construct to notice is the loop. Notice
how lr2 is defined in terms of da2, which itself uses lr2

(by way of add and db2). In our system, loops correspond
to recursive definitions of this kind. Haskell makes defining
this kind of recursion easy; in particular, it does not insist
that symbols be defined in order of use. You are free to use
a symbol in an expression, and define it further down in the
same let block before the corresponding in keyword.

The second control flow construct is the delay. Notice how
lr2 is fed by the result of the workflow, and then moves
its last item into lr1 for the next sequence element. This
kind of order-based sequencing is quite common in scientific
workflows, and is easy to express in our system.
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Figure 3: Fibonacci workflow

5.2 Prime Sieve
This example demonstrates a workflow inspired by the well-
known Sieve of Eratosthenes, an algorithm for finding prime
numbers. The algorithm is intuitive – start with a list of con-
secutive integers, and a list of known primes that is initially
empty. Iterate through each number in the list in ascending
order, and if it is divisible by any of the numbers in the list
of primes encountered so far, ignore it. Otherwise, add it to
the list of primes.

Implementing this algorithm as a workflow results in two
feedback loops. First, the list of primes must be duplicated
and fed back into the list of known primes. Additionally,
when a new prime is found, the known list must be expanded
to include both the new prime number and the old list of
primes that was used to generate it. So, the old known-prime
list must also be fed back into the loop.

See Figure 4 for a graphical representation of the workflow.
The input to the workflow is an infinite sequence of integers
starting at 2, represented by ns. The workflow maps this
input into a stream of type Maybe Int, such that each found
prime is represented by Just n, where n is prime, and all
other integers by Nothing. In a moment, we will see that
this represents a more general pattern of“workflow bubbles.”

In the workflow, the sMemory activity is responsible for keep-
ing track of the list of primes. It takes two inputs – the
current known list of primes, and a Maybe Int. If the sec-
ond input is Just n, it appends n to the current list, and
outputs it. If it is Nothing, it just outputs the current list.
Notice how the list that it outputs is fed back into itself; the
loop effectively acts as a memory bank, using the stream as
storage for the memorized list.

-- "Remember" Just elements and "forget" Nothings

memorize :: [a] -> Maybe a -> [a]

memorize mems (Just x) = x:mems

memorize mems (Nothing) = mems

-- Stream version of memorize

sMemory::(Streamer a [Int],Streamer b (Maybe Int),

Streamer c [Int]) => a -> b -> c

sMemory = lifter2 memorize

The main input to the workflow, the sequence of integers, is
duplicated and fed to sDivides, which checks if the integer
in question is divisible by any of a list of known primes. The
boolean result is negated by sNot, and then sent along with a
copy of the corresponding integer to sAccept. This activity
checks the integer and the boolean, and outputs Just n if
the boolean is true, and Nothing otherwise. This output is
our list of primes.

-- Prime Sieve of Eratosthenes

primes :: (Streamer a Int) => a

primes =

let ns = newStream [2..]

empty = newStream [[]]

(ns1,ns2) = dup ns

mem = sMemory (selectLtR empty mem1) p1

(mem1,mem2) = dup mem

divs = sDivides mem2 ns1

ndivs = sNot divs

accepted = sAccept ns2 ndivs

primes = seededStream [Nothing] accepted

(p1,p2) = dup primes

in sDebubble p2

Notice that the Maybe Int list of primes is fed back to the
memory sub-workflow, and is also copied to an activity we
call the “debubbler”. This activity removes the Nothing ele-
ments from the stream, and unwraps the remaining integers
from the Just data type, leaving a stream of nothing but
prime integers.

sDebubble :: (Streamer a (Maybe b), Streamer c b)

=> a -> c

sDebubble s = newStream (db s)

where db st = let (sf,sr) = sAdvance st

in if (isNothing sf) then (db sr)

else (fromJust sf) : (db sr)

The debubbler is an interesting primitive that we include
with the library of stream primitives as it represents a use-
ful, generic operation. At times, we may wish to allow an
active “null” datum to traverse streams between activities.



Instead of resorting to magic values, like zeros on an integer
stream or empty strings on a string stream, the Maybe type
allows us to extend any type of stream with the notion of a
null, Nothing datum. The debubbler is necessary when we
wish to convert these streams that support bubbles to those
that do not. Our workflow bubbles were inspired by similar
techniques encountered in a variety of pipelined systems.

6. CONCLUSIONS AND FUTURE WORK
We have demonstrated that lazy functional streams are a
clean and useful representation for workflows, along with
a concrete implementation of the types and operators nec-
essary for building stream-based workflows in Haskell. We
have also shown how Haskell’s concurrency control constructs
can be used to implement different stream semantics to re-
flect different ways that side-effects can be handled. Finally,
we have demonstrated manually constructed flow-based pro-
grams that use our set of workflow primitives for programs
with interesting flow-structures such as feedback loops and
stream “bubbles.”

The intent of this work is to provide a language-neutral inter-
mediate representation for higher-level workflow languages
to target. The goal of this is to cleanly decouple the work-
flow description as seen by the user from the runtime support
and coordination layer that actually orchestrates computa-
tions and data movement. Our current activity is focused on
understanding how our work in this paper is related to, and
possibly representable by structures such as Haskell Arrows.
We are also actively investigating a monadic implementation
of our system so that we can replace the undesirable use of
unsafePerformIO within the effectful stream type class in-
stance with a cleaner, but transparent use of the IO monad.
Finally, we will release in the near future a version of the
toolkit implementing the work described in this paper as an
open source package for public consumption.
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Figure 4: Prime sieve workflow with bubbles shown in the output (indicated as _ elements)


