Inductive Types

. .Part 3-1 : o
Generalizations and definitions

Benjamin Werner

INRIA—Rocquencourt

Proofs-as-Programs Summer School
Eugene, Oregon, july 1% 2002



General Form of Inductive Definitions

I : (z;: A;)s the inductive type/predicate

C; : (y,:TH{U a_f) type of each constructor

positivity :

— either I ¢ T, or

— T = (z: U))(I b) with I ¢ U,

Examples :

cons: A —list —» list, left: A — (or A B)

2



Beyond data-types

Inductive ord : Set :=
Oo : ord
| So : ord -> ord
| 1im : (nat->ord) -> ord.
(1im f) is a canonical “ordinal’.
For any n:nat, (f n) is structuraly smaller
than (1im f).
T hese are infinitely branching trees,

they cannot be (finitely) printed.

3



Even further

Inductive Ens : Type :=
sup : (A:Type) (A->Ens)->Ens.

Here we even branch w.r.t. an arbitrary
typel
Not very intuitive. ..

Very powerful : this type encodes sets of
Zermelo set theory

Wait for Alexandre’'s lectures

4



Restrictions w.r.t. sorts
Consider :

Inductive capture : Set :=

c_1 : Set -> capture.

T his definition is correct

But if we allow projection :
proj : capture -> Set with
(proj (c_i A))>A

then we can “encode’ Set:Set

5



The reason is that c_1 quantifies over Sets.

= elimination towards Set is forbidden for
such types.



The real typing of Ens :

Inductive Ens : Type(i+l):=
sup : (A:Type(i)) (A->Ens)->Ens.



The sorts Set and Prop

ney are “‘twins’”

ne “Prop part” can be erased for a
realisability interpretation.

For example, Harrop formulas should be of
type Prop.

We should not use Prop terms to compute
Set terms.



Program extraction 1 : dividing by two

Fixpoint D [n:nat] : nat :=
Cases n of 0 => 0
| (8 p) => (S(S(D p)))
end.
Inductive even : nat -> Prop :=
e0 : (even 0)

| eS : (n:nat) (even n)->(even (S(S n))).



Two existentials

(EX p:nat | n=(D p)) : Prop
{ p:inat | n = (D p)} : Set

(n:nat) (Even n)->(EX p:nat | n=(D p)) : Prop
(n:nat) (Even n)->{ p:nat | n = (D p)} : Set

First one can be proved by induction over
the proof of (even n), the second one
cannot.

10



let rec 1ns 1 a x =
match 1 with
nil -> cons (a, nil)
| cons (n, 10) ->
(match Compare_dec.le_ge_dec a n with
left -> cons (a, (cons (n, 10)))
| right -> cons (n, (ins 10 a prop)))

11



