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Abstract. Logic programming can be given a foundation in sequent calculus, view-

ing computation as the process of building a cut-free sequent proof from the bottom-up.

Earliest accounts of logic programming were based in classical logic and then later in in-

tuitionistic logic. The use of linear logic to design new logic programming languages was

inevitable given that it allows for more dynamics in the way sequents change during the

search for a proof and since it can account for logic programming in these other logics.

We overview how linear logic has been used to design new logic programming languages

and describe some applications and implementation issues for such languages.

§1. Introduction. It is now common place to recognize the important role
of logic in the foundations of computer science in general and programming
languages more specifically. For this reason, when a major new advance is made
in our understanding of logic, we can expect to see that advance ripple into other
areas of computer science. Such rippling has been observed during the years
since the first introduction of linear logic [30]. Linear logic not only embraces
computational themes directly in its design and foundation but also extends and
enriches classical and intuitionistic logic, thus providing possibly new insights
into the many computational systems built on those two logics.

There are two broad ways in which proof theory and computation can be re-
lated [64]. One relies on proof reduction and can be seen as a foundation for
functional programming. Here, programs are viewed as natural deduction or
sequent calculus proofs and computation is modeled using proof normalization.
Sequents are used to type a functional program: a program fragment is associated
with the single-conclusion sequent ∆ −→ G, if the code has the type declared
in G when all its free variables have types declared for them in the set of type
judgments ∆. Abramsky [1] has extended this interpretation of computation to
multiple-conclusion sequents, ∆ −→ Γ, where ∆ and Γ are both multi-sets of
propositions. In that setting, cut-elimination can be seen as a general form of
computation and the programs specified are concurrent in nature. In particu-
lar, Abramsky presents a method for “realizing” the computational content of
multiple-conclusion proofs in linear logic that yields programs in various concur-
rency formalisms. See also [14, 53, 54] for related uses of concurrency in proof
normalization in linear logic. The more expressive types made possible by linear
logic have been used to help provide static analysis of such things as run-time
garbage, aliases, reference counters, and single-threadedness [36, 57, 75, 93].
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The other way that proof theory provides a foundation to computation relies
on proof search: this view of computation can be seen as a foundation for logic
programming. This topic is the focus of this paper.

§2. Computation as proof search. When logic programming is considered
abstractly, sequents directly encode the state of a computation and the changes
that occur to sequents during bottom-up search for cut-free proofs encode the
dynamics of computation.

In particular, following the framework described in [68], sequents can be seen
as containing two kinds of formulas: program clauses describing the meaning of
non-logical constants and goals describing the desired conclusion of the program
for which a search is being made. A sequent ∆ −→ Γ represents the state of an
idealized logic programming interpreter in which the current logic program is ∆
and the goal is Γ, both of which might be sets or multisets of formulas. These
two classes are duals of each other in the sense that a negative subformula of a
goal is a program clause and the negative subformula of a program clause is a
goal formula.

2.1. Goal-directed search and uniform proofs. Since proof search can
contain a great deal of non-deterministic than does not seem computationally
important, a normal form for proof search is generally imposed. One approach
to presenting a normal form is based on a notion of goal-directed search using
the technical notion of uniform proofs. In the single-conclusion setting, where
Γ contains one formula, uniform proofs have a particularly simple definition
[68]: a uniform proof is a cut-free proof where every sequent with a non-atomic
right-hand side is the conclusion of a right-introduction rule. An interpreter
attempting to find a uniform proof of a sequent would directly reflect the logical
structure of the right-hand side (the goal) into the proof being constructed. Left-
introduction rules can only be used when the goal formula is atomic and, in this
way, goal-reduction is done without any reference to the logic program. In the
multiple-conclusion setting, goal-reduction should continue to be independent
not only from the logic program but also from other goals, i.e., multiple goals
should be reducible simultaneously. Although the sequent calculus does not
directly allow for simultaneous rule application, it can be simulated easily by
referring to permutations of inference rules [50]. In particular, we can require
that if two or more right-introduction rules can be used to derive a given sequent,
then all possible orders of applying those right-introduction rules can be obtained
from any other order simply by permuting right-introduction inferences. It is
easy to see that the following definition of uniform proofs for multiple-conclusion
sequents generalizes that for single-conclusion sequents: a cut-free, sequent proof
Ξ is uniform if for every subproof Ψ of Ξ and for every non-atomic formula
occurrence B in the right-hand side of the end-sequent of Ψ, there is a proof
Ψ′ that is equal to Ψ up to permutation of inference rules and is such that the
last inference rule in Ψ′ introduces the top-level logical connective occurring in
B [64, 66].

A given logic and proof system is called an abstract logic programming language
if a sequent has a proof if and only if it has a uniform proof. First-order and
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higher-order variants of Horn clauses paired with classical logic [72] and hered-
itary Harrop formulas paired with intuitionistic logic [68] are two examples of
abstract logic programming languages. The cut rule and cut-elimination can play
various meta-theoretic roles, such as guarantor of completeness and of canonical
models [45, 63] and as a tool for reasoning about encoded computations.

The notion of uniform proofs, however, does not fully illuminate what goes on
in proof search in abstract logic programming languages. While the definition
of uniform proofs capture the fact that goals can be reduced without referring
to context, that definition say nothing about proving atomic goal formulas. In
that case, the context (the logic program) must play a role. In particular, in the
various examples of abstract logic programming languages that have been studied
(e.g., [72, 68, 44]) atomic goals were all proved using a suitable generalization of
backchaining. Backchaining turned out to be a phase in proof construction that
used left-introduction rules in a focused decomposition of a program clause that
yielded not only a matching atomic formula occurrence to one in the goal but
also possibly new goals formulas for which additional proofs are needed.

2.2. Focusing proof search. In studying normal forms of proof search for
linear logic, Andreoli was able to complete and generalize the picture above in
two directions. First, he referred to goal-decomposition as described above as
asynchronous proof construction and backchaining as synchronous proof con-
struction and observed that the logical connectives responsible for these two
phases of search were duals of each other. For example, & (additive conjunc-
tion) on the right is asynchronous while & on the left is synchronous. If a single-
sided sequent is used (no formulas on the left of the sequent arrow), then this
is equivalent to saying that & is asynchronous and ⊕ is synchronous. Secondly,
Andreoli showed that a suitable interleaving of asynchronous and synchronous,
similar to that for goal-decomposition and backchaining, was complete for all of
linear logic [6, 7]. In other words, all of linear logic can be viewed as an abstract
logic programming language.

Because linear logic can be seen as the logic behind classical and intuitionistic
logic, it is possible to translate Horn clauses and hereditary Harrop formulas
into linear logic and to apply Andreoli’s focused proofs to their translations:
indeed, the first-order logic results of those systems can be seen as consequences
of Andreoli’s completeness theorem for linear logic.

§3. Logic programming in classical and intuitionistic logics. We first
consider the design of logic programming languages within classical and intu-
itionistic logic, where the logical constants are taken to be true, ∧, ∨, ⊃, ∀, and
∃ (false and negation are not part of the first logic programs we consider).

In the beginning of the logic programming literature, there was one example of
logic programming, namely, first-order Horn clauses, which was the logic basis
of the popular programming language Prolog. No general framework for the
connection between logic and logic programming was available. The operational
semantics of logic programs was presented as resolution [10], an inference rule
optimized for classical reasoning: variations of resolution to other logical settings
were complex and generally artificial. Miller and Nadathur [67, 72, 73] were
probably the first to use the sequent calculus to explain design and correctness
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issues for a logic programming language (in particular, a higher-order version of
Horn clauses). The sequent calculus seemed to have more explanatory powers
and allowed the separation of language design and implementation details that
were not allowed with resolution, where inference rules and unification were
merged.

Horn clauses can be defined simply as those formulas built from true, ∧, ⊃,
and ∀ with the proviso that no implication or universal quantifier is to the left
of an implication. A goal in this setting would then be any negative subformula
of a Horn clause: more specifically, they would be either true or a conjunction
of atomic formulas. It is shown in [72] that a proof system similar to the one
in Figure 1 is complete for the classical logic theory of Horn clauses and their
associated goal formulas. It then follows immediately that Horn clauses are an
abstract logic programming language. Notice that sequents in this and other
proof systems contain a signature Σ as its first element: this signature contains
type declarations for all the non-logical constants in the sequent. Notice also that
there are two different kinds of sequent judgments: one with and one without a
formula on top of the sequent arrow.

Σ : ∆ −→ true

Σ : ∆ −→ G1 Σ : ∆ −→ G2

Σ : ∆ −→ G1 ∧G2

Σ : ∆ D−→ A
Σ : ∆ −→ A

decide Σ : ∆ A−→ A
initial

Σ : ∆ Di−→ A

Σ : ∆ D1∧D2−→ A

Σ : ∆ −→ G Σ : ∆ D−→ A

Σ : ∆ G⊃D−→ A

Σ : ∆
D[t/x]−→ A

Σ : ∆ ∀τ x.D−→ A

Figure 1. In the decide rule, D ∈ ∆; in the left rule for ∧,
i ∈ {1, 2}, and in the left rule for ∀, t is a Σ-term of type τ .

Σ : ∆, D −→ G

Σ : ∆ −→ D ⊃ G

Σ, c : τ : ∆ −→ G[c/x]
Σ : ∆ −→ ∀τx.G

Figure 2. The rule for universal quantification has the proviso
that c is not declared in Σ.

Inference rules in Figure 1, and those that we shall show in subsequent proof
systems, can be divided into four categories. The right-introduction rules (goal-
reduction) and left-introduction rules (backchaining) form two classes. The re-
maining two classes do not contain instances of logical connectives. The third
class of rules is that of the “initial” rules: these rules have an empty premise
and their conclusion has a repeated occurrence of a schema variable. The final
class is that of the “decide” rules: in these rules, formulas are moved from one
part of a context to another part. In Figure 1, there is one such decide rule in
which a formula from the left-hand side of the sequent arrow is moved to on top
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of the sequent arrow. The cut rule, which does not interest us in this discussion,
would comprise a fifth class of inference rule.

In this proof system, left-introductions are now focused only on the formula
annotating the sequent arrow. The usual notion of backchaining can be seen
as an instance of a decide rule, which places a formula from the program (the
left-hand context) on top of the sequent arrow, and then a sequence of left-
introductions work on that distinguished formula. Backchaining ultimately per-
forms a synchronization between a goal formula and a program clause via the
repeated schema variable in the initial rule. In Figure 1, there is one decide
rule and one initial rule: in a subsequent inference system, there are more of
each class. Also, proofs in this system involving Horn clauses have a simple
structure: all sequents in a given proof have identical left hand sides: signatures
and programs are fixed and global during the search for a proof. If changes in
sequents are meant to be used to encode dynamics of computation, then Horn
clauses provide a weak start: the only dynamics are changes in goals which rel-
egates such dynamics entirely to the non-logical domain of atomic formulas. As
we illustrate with an example in Section 6, if one can use a logic programming
language where sequents have more dynamics, then one can reason about some
aspects of logic programs directly using logical tools.

Hereditary Harrop formulas can be presented simply as those formulas built
from true, ∧, ⊃, and ∀ with no restrictions. Goal formulas, i.e., negative sub-
formulas of such formulas, would thus have the same structure. It is shown in
[68] that a proof system similar to the one formed by adding to the inference
rules in Figure 1 the rules in Figure 2 is complete for the intuitionistic logic
theory of hereditary Harrop formulas and their associated goal formulas. It
then follows immediately that hereditary Harrop formulas are an abstract logic
programming language. The classical logic theory of hereditary Harrop formu-
las is not, however, an abstract logic programming language: Peirce’s formula
((p ⊃ q) ⊃ p) ⊃ p, for example, is classically provable but has no uniform proof.

Notice that sequents in this new proof system have a slightly greater ability
to change during proof search: in particular, both signatures and programs can
increase as proof search moves upward. Thus, not all constants and program
clauses need to be available at the beginning of a computation: instead they
can be made available as search continues. For this reason, the hereditary Har-
rop formulas have been used to provide logic programming with approaches to
modular programming [62] and abstract datatypes [61].

Full first-order intuitionistic logic is not an abstract logic programming lan-
guage since both ∨ and ∃ can cause incompleteness of uniform proofs. For
example, both p ∨ q −→ q ∨ p and ∃x.B −→ ∃x.B have intuitionistic proofs but
neither sequent has a uniform proof. Positive occurrences of ∨ and ∃ in goals
formulas (and in negative occurrences of program clauses) can be allowed and
without lossing the completeness of uniform proofs. (When such occurrences
of ∨ and ∃ are allowed, these formulas can be seen as a restriction on Harrop
formulas [41].) As is well known, higher-order quantification allows one to pick a
different set of primitive logical connectives for intuitionistic logic. For example,
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the intuitionistic disjunction B ∨ C can be defined as

∀p((B ⊃ p) ⊃ (C ⊃ p) ⊃ p).

In that case, the sequent corresponding to p ∨ q −→ q ∨ p would, in fact, have
a uniform proof. Felty has shown that higher-order intuitionistic logic based on
true, ∧, ⊃, and ∀ for all higher-order types is an abstract logic programming
language [26].

§4. Logic programming in linear logic. While higher-order quantification
does have important roles to play in logic programming, it does not seem to offer
a direct way to get at the computational foundation of proof search: following
the work of Andreoli on focused proofs, linear logic certainly has great promise
for expanding such a foundation.

4.1. The Forum presentation of linear logic. In the classical and intu-
itionistic logics considered in the previous section, logic programming languages
were based on the connectives true, ∧, ⊃, and ∀, and the proof systems used two
sequent, Σ : ∆ −→ G and Σ : ∆ D−→ A, where ∆ is a set of formulas. We shall
now consider a presentation of linear logic using the connectives >, &, ⊥, .................................................

............
.................................. , ⇒,

−◦, ?, and ∀. This collection of connectives yields a presentation of all of linear
logic since it contains a complete set of connectives. The missing connectives are
directly definable using the following logical equivalences.

B⊥ ≡ B −◦ ⊥ 0 ≡ >−◦ ⊥ 1 ≡ ⊥−◦ ⊥ ∃x.B ≡ (∀x.B⊥)⊥

! B ≡ (B ⇒ ⊥)−◦ ⊥ B ⊕ C ≡ (B⊥ & C⊥)⊥ B ⊗ C ≡ (B⊥ .................................................
............
.................................. C⊥)⊥

This collection of connectives is not minimal. For example, ? and .................................................
............
.................................. , can be

defined in terms of the remaining connectives.
?B ≡ (B −◦ ⊥) ⇒ ⊥ and B

.................................................
............
.................................. C ≡ (B −◦ ⊥)−◦ C

Unlike many treatments of linear logic, we shall treat B ⇒ C as a logical con-
nective (which corresponds to ! B −◦ C). From the proof search point-of-view,
the four intuitionistic connectives true, ∧, ⊃, and ∀ correspond naturally with
the four linear logic connectives >, &, ⇒, and ∀ (in fact, the correspondence is
so strong for the quantifiers that we write them the same in both settings). We
shall call this particular presentation of linear logic the Forum presentation or
simply Forum.

The two sequent judgments, for goal-reduction (right-introductions) and back-
chaining (left-introductions), used in this presentation of linear logic are written
as Σ : Ψ;∆ −→ Γ;Υ and Σ : Ψ; ∆ D−→ A; Υ, where Ψ and Υ are sets of formulas
(classical maintenance), ∆ and Γ are multisets of formulas (linear maintenance),
A is a multiset of atomic formulas, and D is a formula. Notice that placement of
the linear context next to the sequent arrow and classical context away from the
arrow is standard notation in the literature of linear logic programming. This
is, unfortunately, the opposite convention used by Girard’s LU proof system
[32] where sequents have similarly divided contexts on the left and right of the
sequent arrow.

The focusing result of Andreoli [7] can be formulated [66] as the completeness
of the proof system for linear logic using the proof system in Figure 3. This proof
system appears rather complicated at first glance, so it is worth noting that all
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Σ : Ψ;∆ −→ >,Γ; Υ
Σ : Ψ; ∆ −→ B, Γ;Υ Σ : Ψ;∆ −→ C, Γ;Υ

Σ : Ψ; ∆ −→ B & C, Γ;Υ
Σ : Ψ; ∆ −→ Γ;Υ

Σ : Ψ;∆ −→ ⊥, Γ;Υ
Σ : Ψ; ∆ −→ B,C, Γ;Υ

Σ : Ψ;∆ −→ B
.................................................

............
.................................. C, Γ; Υ

Σ : Ψ; B, ∆ −→ C, Γ;Υ
Σ : Ψ;∆ −→ B −◦ C, Γ;Υ

Σ : B, Ψ;∆ −→ C, Γ;Υ
Σ : Ψ; ∆ −→ B ⇒ C, Γ;Υ

y : τ, Σ : Ψ;∆ −→ B[y/x], Γ;Υ
Σ : Ψ; ∆ −→ ∀τx.B, Γ; Υ

Σ : Ψ;∆ −→ Γ;B, Υ
Σ : Ψ;∆ −→ ?B, Γ;Υ

Σ : B, Ψ;∆ B−→ A; Υ
Σ : B, Ψ;∆ −→ A; Υ

Σ : Ψ; ∆ B−→ A; Υ
Σ : Ψ; B, ∆ −→ A; Υ

Σ : Ψ; ∆ −→ A, B; B, Υ
Σ : Ψ; ∆ −→ A; B, Υ

Σ : Ψ; · A−→ A; Υ Σ : Ψ; · A−→ ·; A, Υ

Σ : Ψ; · ⊥−→ ·; Υ
Σ : Ψ;∆ Gi−→ A; Υ

Σ : Ψ; ∆ G1&G2−→ A; Υ

Σ : Ψ; B −→ ·; Υ
Σ : Ψ; · ? B−→ ·; Υ

Σ : Ψ; ∆1
B−→ A1; Υ Σ : Ψ; ∆2

C−→ A2; Υ

Σ : Ψ; ∆1, ∆2
B

.................................................
............
.................................. C−→ A1,A2; Υ

Σ : Ψ; ∆
B[t/x]−→ A; Υ

Σ : Ψ;∆ ∀τ x.B−→ A; Υ

Σ : Ψ;∆1 −→ A1, B; Υ Σ : Ψ; ∆2
C−→ A2; Υ

Σ : Ψ; ∆1,∆2
B−◦C−→ A1,A2; Υ

Σ : Ψ; · −→ B; Υ Σ : Ψ; ∆ C−→ A; Υ

Σ : Ψ; ∆ B⇒C−→ A; Υ

Figure 3. A proof system for Forum presentation of linear
logic. The right-introduction rule for ∀ has the proviso that
y is not declared in the signature Σ, and the left-introduction
rule for ∀ has the proviso that t is a Σ-term of type τ . In left-
introduction rule for &, i ∈ {1, 2}.

its inference rules fit into the four classes mentioned before: there are 8 right
rules, 7 left rules, 2 initial rules, and 3 decide rules. Notice that 2 of the decide
rules place a formula on the sequent arrow while the third copies of formula from
the bounded right context to the bounded right context. This third decide rule
is a combination of contraction and dereliction rule for ? and is used to “decide”
on a new goal formula on which to do reductions.

Forum is a recently proposed linear logic programming languages. Below we
overview various other subsets of linear logic that have been proposed as speci-
fication languages and as abstract logic programming languages.

4.2. Lolli. The connectives ⊥, .................................................
............
.................................. , and ? force the genuinely classical feel of

linear logic. Without these three connectives, the multiple-conclusion sequent
calculus given for Forum in Figure 3 can be replaced by one with only single-
conclusion sequents.

The collection of connectives one gets from dropping these three connectives
from Forum, namely >, &, ⇒, −◦, and ∀, form the Lolli logic programming
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Σ : Ψ; ∆ −→ >
Σ : Ψ;∆ −→ G1 Σ : Ψ; ∆ −→ G2

Σ : Ψ; ∆ −→ G1 & G2

Σ : Ψ, G1;∆ −→ G2

Σ : Ψ; ∆ −→ G1 ⇒ G2

Σ : Ψ; ∆, G1 −→ G2

Σ : Ψ;∆ −→ G1 −◦G2

c : τ, Σ : Ψ; ∆ −→ B[c/x]
Σ : Ψ;∆ −→ ∀τx.B

Σ : Ψ, D;∆ D−→ A

Σ : Ψ, D;∆ −→ A

Σ : Ψ; ∆ D−→ A

Σ : Ψ; ∆, D −→ A Σ : Ψ; · A−→ A

Σ : Ψ;∆ Di−→ A

Σ : Ψ; ∆ D1∧D2−→ A

Σ : Ψ; · −→ G Σ : Ψ;∆ D−→ A

Σ : Ψ; ∆ G⇒D−→ A

Σ : Ψ;∆1 −→ G Σ : Ψ; ∆2
D−→ A

Σ : Ψ; ∆1, ∆2
G−◦D−→ A

Σ : Ψ; ∆
D[t/x]−→ A

Σ : Ψ; ∆ ∀τ x.D−→ A

Figure 4. The proof system Lolli. The rule for universal quan-
tification has the proviso that c is not declared in Σ. In the ∀-left
rule, t is a Σ-term of type τ .

language. Presenting a sequent calculus for Lolli is a simple matter. First,
remove any inference rule in Figure 3 involving ⊥, .................................................

............
.................................. , and ?. Second, abbreviate

the sequents Σ : Ψ; ∆ −→ G; · and Σ : Ψ; ∆ D−→ A; · as Σ : Ψ; ∆ −→ G and
Σ : Ψ; ∆ D−→ A. The resulting proof system for Lolli is given in Figure 4. The
completeness of this proof system for Lolli was given by Hodas and Miller in [45].
Given the completeness of the Forum proof system, the correctness of the Lolli
proof system is a simple consequence.

4.3. Uncurrying program clauses. Frequently it is convenient to view a
program clause, such as

∀x̄[G1 ⇒ G2 −◦A],

which contains two goals, as a program clause containing one goal: the formula

∀x̄[(!G1 ⊗G2)−◦A].

is logically equivalent to the formula above and brings the two goals into the
one expression !G1 ⊗G2. Such a rewriting of a formula to a logically equivalent
formula is essentially the uncurrying of the formula, where uncurrying is the
rewriting of formulas using the following equivalences in the forward direction.

H ≡ 1−◦H
B −◦ C −◦H ≡ (B ⊗ C)−◦H

B ⇒ H ≡ ! B −◦H
(B −◦H) & (C −◦H) ≡ (B ⊕ C)−◦H

∀x.(B(x)−◦H) ≡ (∃x.B(x))−◦H

(The last equivalence assumes that x is not free in H.) Allowing occurrences of
1, ⊗, !, ⊕, and ∃ into goals does not cause any problems with the completeness of
uniform provability and some presentations of linear logic programming language
[45, 66, 84] allow for such occurrences.
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4.4. Other subsets of linear logic. Although all of linear logic can be seen
as abstract logic programming, it is still of interest to examine subsets of linear
logic for use as specification languages. These subsets are often motivated by
picking a small subset of linear logic that is expressive enough to specify problems
of a certain application domain. Below we list some subsets of linear logic that
have been identified in the literature.

If one maps true to >, ∧ to &, and ⊃ to ⇒, then both Horn clauses and
hereditary Harrop formulas can be identified with linear logic formulas. Proofs
given for these two sets of formulas in Figures 1 and 2 are essentially the same as
those for the corresponding proofs in Figure 4. Thus, viewing these two classes of
formulas as being based on linear instead of intuitionistic logic does not change
their expressiveness. In this sense, Lolli can be identified as being hereditary
Harrop formulas extended with linear implication. When one is only interested
in cut-free proofs, a second translation of Horn clauses and hereditary Harrop
formulas into linear logic is possible. In particular, if negative occurrences of true,
∧, and ⊃ are translated to 1, ⊗, and −◦, respectively, while positive occurrences
of true, ∧, and ⊃ are translated to >, &, and ⇒, respectively, then the resulting
proofs in Figure 4 of the linear logic formulas yield proofs identical to those in
Figures 1 and 2. (The notion here of positive and negative occurrences are with
respect to occurrences within a cut-free proof: for example, a positive occurrence
in a formula on the left of a sequent arrow is judged to be a negative occurrence
for this translation.) Thus, the program clause

∀x̄[A1 ∧ (A2 ⊃ A3) ∧A4 ⊃ A0]

can be translated as either

∀x̄[A1 & (A2 ⇒ A3) & A4 ⇒ A0]

using the first of these translations or as

∀x̄[A1 ⊗ (A2 ⇒ A3)⊗A4 −◦A0]

using the second (assuming it is to appear on the left of the sequent arrow). This
latter formula is, of course, the uncurried form of the formula

∀x̄[A1 −◦ (A2 ⇒ A3)−◦A4 −◦A0].

Historically speaking, the first proposal for a linear logic programming lan-
guage was LO (Linear Objects) by Andreoli and Pareschi [5, 9]. LO is an exten-
sion to the Horn clause paradigm in which atomic formulas are generalized to be
multisets of atomic formulas connected by .................................................

............
.................................. (the multiplicative disjunctions).

In LO, backchaining becomes multiset rewriting, which was used by the authors
to specify object-oriented programming and the coordination of processes. LO
is a subset of the LinLog [6, 7], where formulas are of the form

∀ȳ(G1 ↪→ · · · ↪→ Gm ↪→ (A1
.................................................

............
.................................. · · · .................................................

............
.................................. Ap)).

Here p > 0 and m ≥ 0; occurrences of ↪→ are either occurrences of −◦ or ⇒;
G1, . . . Gm are built from ⊥, .................................................

............
.................................. , ?, >, &, and ∀; and A1, . . . Am are atomic

formulas. In other words, these are formula in Forum where the “head” of
the formula is not empty (i.e., p > 0) and where the goals G1, . . . Gm do not
contain implications. Andreoli argues that arbitrary linear logic formulas can
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be “skolemize” (by introducing new non-logical constants) to yield only LinLog
formulas, such that proof search involving the original and the skolemize formulas
are isomorphic. By applying uncurrying, the displayed formula above can be
written in the form

∀ȳ(G−◦ (A1
.................................................

............
.................................. · · · .................................................

............
.................................. Ap))

where G is composed of the top-level synchronous connectives and of the sub-
formulas G1, . . . , Gm, which are all composed of asynchronous connectives.

4.5. Other uses of linear logic in proof search. Harland and Pym have
analyzed proof search in linear logic [84] and proposed a subset of linear logic they
call Lygon [39] as a logic programming language. Since they chose a different
definition for uniform proofs and goal-directed search than what is presented
here, Lygon is not an abstract logic programming language in the sense given
here. Since its motivations lie within proof search and since it is a subset of linear
logic and, hence, of Forum, examples and applications of Lygon can generally be
translated into either Lolli or Forum rather directly.

Let G and H be formulas composed of ⊥, .................................................
............
.................................. , and ∀. Closed formulas of the

form ∀x̄[G−◦H] where H is not ⊥ have been called process clauses in [64] and
were used there to encode a calculus similar to the π-calculus: the universal
quantifier in goals were used to encode name restriction. These clauses written
in the contrapositive (replacing, for example, .................................................

............
.................................. with ⊗) have been called linear

Horn clauses by Kanovich and has used them to model computation via multiset
rewriting [48].

Various other specification logics have also been developed, often designed di-
rectly to deal with particular application areas. In particular, the language ACL
by Kobayashi and Yonezawa [51, 52] captures simple notions of asynchronous
communication by identifying the send and read primitives with two comple-
mentary linear logic connectives. Lincoln and Saraswat have developed a linear
logic version of concurrent constraint programming and used linear logic connec-
tives to extend previous languages in this paradigm [56, 89].

Some aspects of dependent typed λ-calculi overlap with notions of abstract
logic programming languages. Within the setting of intuitionistic, single-side
sequents, uniform proofs are similar to βη-long normal forms in natural deduction
and typed λ-calculus. The LF logical framework [40] can be mapped naturally
[25] into a higher-order extension of hereditary Harrop formulas [68]. Inspired
by a subset of linear logic similar to Lolli, Cervesato and Pfenning developed an
extension to LF called Linear LF [19].

§5. Applications of linear logic programming. One theme that occurs
often in applications of linear logic programming is that of multiset rewriting, a
simple paradigm that has wide applications in computational specifications. To
see how such rewriting can be captured in proof search, consider the rewriting
rule

a, a, b ⇒ c, d, e

that specifies that a multiset should be rewritten by first removing two occur-
rences of a and one occurrence of b and then have one occurrence each of c,
d, and e added. Since the left-hand of sequents in Figure 4 and the left- and
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right-hand sides of sequents in Figure 3 have multisets of formulas, it is an easy
matter to write clauses in linear logic which can rewrite these multisets when
they are used in backchaining.

To rewrite the right-hand multiset following the rule above, simply backchain
over the clause c

.................................................
............
.................................. d

.................................................
............
.................................. e −◦ a

.................................................
............
.................................. a

.................................................
............
.................................. b. To illustrate such rewriting directly via

Forum, consider the sequent Σ : Ψ; ∆ −→ a, a, b, Γ;Υ where the above clause is
a member of Ψ. A proof for this sequent can then look like the following (where
the signature Σ is suppressed in sequents).

Ψ;∆ −→ c, d, e, Γ;Υ
Ψ; ∆ −→ c

.................................................
............
.................................. d

.................................................
............
.................................. e, Γ;Υ

Ψ; · a−→ a; Υ Ψ; · a−→ a; Υ Ψ; · b−→ b; Υ

Ψ; · a
.................................................

............
.................................. a
.................................................

............
.................................. b−→ a, a, b; Υ

Ψ;∆ c
.................................................

............
.................................. d
.................................................

............
.................................. e−◦a.................................................

............
.................................. a
.................................................

............
.................................. b−→ a, a, b, Γ;Υ

Ψ; ∆ −→ a, a, b,Γ;Υ

We can interpret this fragment of a proof as a rewriting of the multiset a, a, b,Γ
to the multiset c, d, e, Γ by backchaining on the clause displayed above.

To rewrite the left-hand context instead, a clause such as

a−◦ a−◦ b−◦ (c−◦ d−◦ e−◦A1)−◦A0

or (using the uncurried form)

(a⊗ a⊗ b)⊗ ((c⊗ d⊗ e)−◦A1)−◦A0

can be used in backchaining. Operationally this clause would mean something
like: to prove the atomic goal A0, first remove two occurrence of a and one of
b from the left-hand multiset, then add one occurrence each of c, d, and e, and
then proceed to attempt a proof of A1.

Of course, there are additional features of linear logic than can be used to
enhance this primitive notion of multiset rewriting. For examples, the ? modal
on the right and the ! modal on the left can be used to place items in multisets
than cannot be deleted and the additive conjunction & can be used to copy
multisets.

Listed below are some application areas where proof search and linear logic
have been used. A few representative references for each area are listed.

Object-oriented programming: Capturing inheritance was an early goal
of the LO system [9] and capturing state encapsulation was a motivation
[43] for the design of Lolli. State encapsulation was also addressed using
Forum in [23, 65].

Concurrency: Linear logic has often been seen as providing a possible declar-
ative foundation for concurrent specification and programming languages.
Via reductions to multiset rewriting, several people have found encodings
of Petri nets into linear logic [29, 11, 15, 24]. The specification logic ACL
of Kobayashi and Yonezawa is an asynchronous calculus in which the send
and read primitives were essentially identified to two complementary linear
logic connectives [51, 52]. Miller [64] describe how features of the π-calculus
[69] can be modeled in linear logic and Bruscoli and Guglielmi [16] showed
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how specifications in the Gamma language [12] can be related to linear
logic.

Operational semantics: Forum has been successfully used to specify the
operational semantics of imperative features such as those in Algol [65]
and ML [21] and the concurrency features of Concurrent ML [66]. Forum
was also used by Chirimar to specify the operational semantics of a pipe-
lined, RISC processor [21] and by Manuel Chakravarty [20] to specify the
operational semantics of a parallel programming language that combines
functional and logic programming paradigms. Cervesato et.al. [17] use
linear logic to express the operational semantics of security protocols and
used that framework to reason about those protocols. A similar approach
to using linear logic was also applied to specifying real-time finite-state
systems [49].

Object-logic proof systems: Both Lolli and Linear LF have been used to
refine the usual, intuitionistic specifications of object-level natural deduc-
tion systems and to allow for the specification of natural deduction systems
for a wider collection of object-logics than were possible with either hered-
itary Harrop formulas or LF [45, 19]. Forum shows promise for providing
a framework for the specification of a wide range of sequent calculus proof
systems much as single-conclusion systems have been used for the specifi-
cation of natural deduction systems. Some examples of specifying sequent
proof systems in Forum are given in [65, 87].

Natural language parsing: Lambek’s precursor to linear logic [55] was mo-
tivated in part to deal with natural language syntax. An early motivation
for Lolli [45, 42] came from the fact that it improved on the declarative
approach to gap threading within English relative clauses first proposed
by Pareschi [77, 78]. Researchers in natural language syntax are generally
quick to look closely at most advances in proof theory, and linear logic has
not been an exception: for just a few references, see [22, 71, 70].

§6. Examples of reasoning about a linear logic program. One of the
reasons to use logic as the source code for a programming languages is that the
actual artifact that is the program should be ammenable to direct manipulation
and analysis in ways that might be hard or impossible in more conventional
programming languages. We consider here two examples of how the meta-theory
of linear logic can be used to prove properties of logic programs.

While much of the motivation for designing logic programming languages
based on linear logic has been to add expressiveness to such languages, linear
logic can also help shed some light on conventional programs. In this section we
consider the linear logic specification for the reverse of lists and formally show
it is symmetric.

Let the constants nil and (· :: ·) denote the two constructors for lists. Consider
specifying the binary relation reverse that relates two lists if one is the reverse
of each other. First, consider how to compute the reverse of a list. Make a place
for two piles on a table. Initialize one pile to the list you wish to reverse and
initialize the other pile to be empty. Next, repeatedly move the top element
from the first pile to the top of the second pile. When the first pile is empty,
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the second pile is the reverse of the original list. For example, the following is a
trace of such a computation.

(a :: b :: c :: nil) nil
(b :: c :: nil) (a :: nil)
(c :: nil) (b :: a :: nil)

nil (c :: b :: a :: nil)

In more general terms: if we wish to reverse the list L to get K, first pick a binary
relation rv to denote the pairing of lists above (this predicate will not denote
the reverse); then start with the atom (rv L nil) and do a series of backchaining
over the clause

rv P (X ::Q)−◦ rv (X :: P ) Q

to get to the formula (rv nil K). Once this is done, K is the result of reversing L.
The entire specification of reverse can be written as the following single formula.

∀L∀K[ ∀rv ( (∀X∀P∀Q(rv P (X ::Q)−◦ rv (X :: P ) Q)) ⇒
rv nil K −◦ rv L nil)−◦ reverse L K ]

Notice that the clause used for repeatedly moving the top elements of lists is to
the left of an intuitionistic implication (so it can be used any number of times)
while the formula (rv nil K), the base case of the recursion, is to the left of a
linear implication (must be used once).

Now consider proving that reverse is symmetric: that is, if (reverse L K) is
proved from the above clause, then so is (reverse K L). The informal proof of
this is simple: in the trace table above, flip the rows and the columns. What
is left is a correct computation of reversing again, but the start and final lists
have exchanged roles. This informal proof is easily made formal by exploiting
the meta-theory of linear logic. A more formal proof proceeds as follows. As-
sume that (reverse L K) can be proved. There is only one way to prove this
(backchaining on the above clause for reverse). Thus the formula

∀rv((∀X∀P∀Q(rv P (X ::Q)−◦ rv (X ::P ) Q)) ⇒ rv nil K −◦ rv L nil)

is provable. Since we are using logic, we can instantiate this quantifier with
any binary predicate expression and the result is still provable. So we choose to
instantiate it with the λ-expression λxλy(rv y x)⊥. The resulting formula

(∀X∀P∀Q(rv (X ::Q) P )⊥ −◦ (rv Q (X :: P )⊥)) ⇒ (rv K nil)⊥ −◦ (rv nil L)⊥

can be simplified by using the contrapositive rule for negation and linear impli-
cation, and hence yields

(∀X∀P∀Q(rv Q (X ::P )−◦ rv (X ::Q) P ) ⇒ rv nil L−◦ rv K nil)

If we now universally generalize on rv we again have proved the body of the
reverse clause, but this time with L and K switched. Notice that we have suc-
ceeded in proving this fact about reverse without explicit reference to induction.

For another example (taken from [66]) of using linear logic’s meta-theory con-
sider the three specification of how evaluation of a counter might be added to
the specification of evaluation for a functional or imperative language [66]. The
counter is global and the formula (r n) declares that the counter contains value
n. Evaluation of get causes the counter’s value to be returned while evaluation
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E1 = ∃r[ (r 0)⊥ ⊗
! ∀K∀V (eval get V K

.................................................
............
.................................. r V ◦− eval K

.................................................
............
.................................. r V ))⊗

! ∀K∀V (eval inc V K
.................................................

............
.................................. r V ◦− K

.................................................
............
.................................. r (V + 1))]

E2 = ∃r[ (r 0)⊥ ⊗
! ∀K∀V (eval get (−V ) K

.................................................
............
.................................. r V ◦− K

.................................................
............
.................................. r V )⊗

! ∀K∀V (eval inc (−V ) K
.................................................

............
.................................. r V ◦− K

.................................................
............
.................................. r (V − 1))]

E3 = ∃r[ (r 0)⊗
!∀K∀V (eval get V K ◦− r V ⊗ (r V −◦K))⊗
!∀K∀V (eval inc V K ◦− r V ⊗ (r (V + 1)−◦K))]

Figure 5. Three specifications of a global counter.

of inc causes the counter’s value to be incremented. Figure 5 contains three
specifications, E1, E2, and E3, of such a counter: all three specifications store
the counter’s value in an atomic formula as the argument of the predicate r. In
these three specifications, the predicate r is existentially quantified over the spec-
ification in which it is used so that the atomic formula that stores the counter’s
value is itself local to the counter’s specification (such existential quantification
of predicates is a familiar technique for implementing abstract data types in logic
programming [61]). The first two specifications store the counter’s value on the
right of the sequent arrow, and reading and incrementing the counter occurs via a
synchronization between an eval-atom and an r-atom. In the third specification,
the counter is stored as a linear assumption on the left of the sequent arrow, and
synchronization is not used: instead, the linear assumption is “destructively”
read and then rewritten in order to specify the get and inc functions (counters
such as these are described in [45]). Finally, in the first and third specifications,
evaluating the inc symbol causes 1 to be added to the counter’s value. In the
second specification, evaluating the inc symbol causes 1 to be subtracted from
the counter’s value: to compensate for this unusual implementation of inc, read-
ing a counter in the second specification returns the negative of the counter’s
value.

The use of ⊗, !, ∃, and negation in Figure 5 is for convenience in displaying
these abstract data types. The curry/uncurry equivalence

∃r(R⊥1 ⊗ ! R2 ⊗ ! R3)−◦G ≡ ∀r(R2 ⇒ R3 ⇒ G
.................................................

............
.................................. R1)

directly converts a use of such a specification into a formula of Forum (given
α-conversion, we may assume that r is not free in G).

Although these three specifications of a global counter are different, they
should be equivalent in the sense that evaluation cannot tell them apart. Al-
though there are several ways that the equivalence of such counters can be proved
(for example, operational equivalence), the specifications of these counters are, in
fact, logically equivalent. In particular, the three entailments E1 ` E2, E2 ` E3,
and E3 ` E1 are provable in linear logic. The proof of each of these entail-
ments proceeds (in a bottom-up fashion) by choosing an eigen-variable to in-
stantiate the existential quantifier on the left-hand specification and then in-
stantiating the right-hand existential quantifier with some term involving that



AN OVERVIEW OF LINEAR LOGIC PROGRAMMING 15

eigen-variable. Assume that in all three cases, the eigen-variable selected is the
predicate symbol s. Then the first entailment is proved by instantiating the
right-hand existential with λx.s (−x); the second entailment is proved using the
substitution λx.(s (−x))⊥; and the third entailment is proved using the sub-
stitution λx.(s x)⊥. The proof of the first two entailments must also use the
equations

{−0 = 0,−(x + 1) = −x− 1,−(x− 1) = −x + 1}.
The proof of the third entailment requires no such equations.

Clearly, logical equivalence is a strong equivalence: it immediately implies that
evaluation cannot tell the difference between any of these different specifications
of a counter. For example, assume E1 ` eval M V >. Then by cut and the
above proposition, we have E2 ` eval M V >.

§7. Effective implementations of proof search. There are many several
challenges facing the implementers of linear logic programming languages. One
easily observed problem is that of splitting multiset contexts when proving a
tensor or backchaining over linear implications. If the multiset contexts of a
sequent have n ≥ 0 formula in them, then there are 2n ways that a context can
be partitioned into two multisets. Often, however, very few of these splits will
lead to a successful proof. An obvious approach to address the problem of split-
ting context would be to do the split lazily. One approach to such lazy splitting
was presented in [45] where proof search was seen to be a kind of input/output
process. When proving one part of a tensor, all formulas were given to that
attempt. If the proof process is successful, any formulas remaining would then
be output from that attempt and handed to the remaining part of the tensor. A
rather simple interpreter for such a model of resource consumption and its Prolog
implementation were given in [45]. Experience with this interpreter showed that
the presence of the additive connectives – > and & – caused significant prob-
lems with efficient interpretation. Several researchers have developed significant
variations to the model of lazy splitting. See for example, [18, 47, 76]. Similar
implementation issues concerning the Lygon logic programming language are de-
scribed in [94]. More recent approaches to accounting for resource consumption
in linear logic programming uses constraint solving to treat the different aspects
of resources sharing and consumption in different parts of the search for a proof
[8, 38].

Based on such approaches to lazy splitting, various interpreters of linear logic
programming languages have been implemented. To date, however, only one
compiling effort has been made. Tamura and Kaneda [92] have developed an
extension to the Warren abstract machine (a commonly used machine model
for logic programming) and a compiler for a subset of Lolli. This compiler
was shown in [46] to perform surprisingly well for a certain theorem proving
application where linear logic provided a particularly elegant specification.

§8. Research in sequent calculus proof search. Since the majority of lin-
ear logic programming is described using sequent calculus proof systems, a great
deal of work in understanding and implementing these languages has focused on
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properties of proofs, rather than on model theoretic considerations. Besides the
work mentioned already concerning refinements to proof search, there is the re-
lated work Galmiche, Boudinet, and Perrier [27, 28], Tammet [91], and Guglielmi
[34]. And, of course, there is also the recent monograph of Girard’s on Locus
solum [33].

Below is briefly described three areas certainly deserving additional consider-
ation and which should significantly expand our understanding and application
of proof search and logic programming.
Polarity and proof search. Andreoli observed the critical role of polarity in
proof search: the notion of asynchronous behavior (goal-reduction) and synchro-
nous behavior (backchaining) are de Morgan duals of each other. There have
been other uses of polarity in proof systems and proof search. In [32], Girard in-
troduced the LU system in which classical, intuitionistic, and linear logics share
a common proof system. Central to their abilities to live together is a notion of
polarity: positive, negative, and neutral. As we have shown in this paper, lin-
ear logic enhances the expressiveness of logic programming languages presented
in classical and intuitionistic logic, but this comparison is made after they have
been translated into linear logic. It would be interesting to see if there is one logic
programming language that contains, for example, a classical, intuitionistic, and
linear implication.
Non-commutativity. Having a non-commutative conjunction or disjunction
within a logic programming language should significantly enhance the expres-
siveness of the language. Lambek’s early calculus [55] was non-commutative but
it was also weak in that it did not have modals and additive connectives. In
recent years, a number of different proposals for non-commutative versions of
linear logic have been considered. Abruzzi [2] and later Ruet and Abruzzi [3, 88]
have developed one such approach. Remi Baudot [13] and Andreoli and Maieli
[4] developed focusing strategies for this logic and hence design abstract logic
programming languages based on the proposal of Abruzzi and Ruet. Alessio
Guglielmi has proposed a new approach to representing proofs via the calcu-
lus of structures and presents a non-commutative connective which is self-dual
[35]. Christian Retoré has also proposed a non-commutative, self dual connective
within the context of proof nets [85, 86]. Finally, Pfenning and Polakow have de-
veloped a non-commutative version of intuitionistic linear logic with a sequential
operator and have demonstrated its uses in several applications [79, 82, 80, 81].
Currently, non-commutativity has the appearance of being rather complicated
and no single proposal seems to be canonical at this point.
Reasoning about specifications. One of the reasons for using logic to make
specifications in the first place must surely be that the meta-theory of logic
should help in establishing properties of logic programs: cut and cut-elimination
will have a central role here. While this was illustrated in Section 6, very little
of this kind of reasoning has been done for logic programs written in logics
stronger than Horn clauses. The examples in Section 6 are also not typical: most
reasoning about logic specifications will certainly involve induction. Also, many
properties of computational specifications involve being able to reason about all
paths that a computation may take: simulation and bisimulation are examples
of such properties. The proof theoretical notion of fixpoint [31] and of definition
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[37, 90] has been used to help capture such notions. See, for example, the work
on integrating inductions and definitions into intuitionistic logic [58, 60, 59].
Extending such work to incorporate co-induction and to embrace logics other
than intuitionistic logic should certainly be considered.

Of course, there are many other avenues that work in proof search and logic
programming design can take. For example, one can investigate rather different
logics, for example, the logic of bunched implications [74, 83], for their suitability
as logic programming languages. Also, several application areas of linear logic
programming seems convincing enough that work on improving the effectiveness
of interpreters and compilers certainly seems appropriate.
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