Proofs as Programs Summer School Eugene Oregon June - July 2002

Type Systems
Herman Geuvers
Nijmegen University, NL

Lecture 1: Simple Type Theory

1

Simplest system: $\lambda \rightarrow$ just arrow types

$$\mathsf{Typ} := \mathsf{TVar} \mid (\mathsf{Typ} {\rightarrow} \mathsf{Typ})$$

- Examples: $(\alpha \rightarrow \beta) \rightarrow \alpha$, $(\alpha \rightarrow \beta) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma))$
- Brackets associate to the right and outside brackets are omitted:

$$(\alpha \rightarrow \beta) \rightarrow (\beta \rightarrow \gamma) \rightarrow \alpha \rightarrow \gamma$$

• Types are denoted by σ, τ, \ldots

Terms:

- typed variables $x_1^{\sigma}, x_2^{\sigma}, \ldots$, countably many for every σ .
- ullet application: if $M:\sigma{ o} au$ and $N:\sigma$, then (MN): au
- ullet abstraction: if P: au, then $(\lambda x^{\sigma}.P): \sigma {\rightarrow} au$

Examples:

$$\lambda x^{\sigma}.\lambda y^{\tau}.x : \sigma \to \tau \to \sigma$$

$$\lambda x^{\alpha \to \beta}.\lambda y^{\beta \to \gamma}.\lambda z^{\alpha}.y(xz) : (\alpha \to \beta) \to (\beta \to \gamma) \to \alpha \to \gamma$$

$$\lambda x^{\alpha}.\lambda y^{(\beta \to \alpha) \to \alpha}.y(\lambda z^{\beta}.x)) : \alpha \to ((\beta \to \alpha)\alpha) \to \alpha$$

For every type there is a term of that type:

$$x^{\sigma}:\sigma$$

Not for every type there is a closed term of that type:

$$(\alpha \rightarrow \alpha) \rightarrow \alpha$$
 is not inhabited

Typed Terms versus Type Assignment:

- With typed terms also called typing à la Church, we have terms with type information in the λ -abstraction As a consequence:
 - Terms have unique types,
 - The type is directly computed from the type info in the variables.
- ullet With typed assignment also called typing \dot{a} la Curry, we assign types to untyped λ -terms
 - As a consequence:
 - Terms do not have unique types,
 - A principal type can be computed using unification.

Examples:

• Typed Terms:

$$\lambda x^{\alpha}.\lambda y^{(\beta \to \alpha) \to \alpha}.y(\lambda z^{\beta}.x)$$

has only the type $\alpha \rightarrow ((\beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \alpha$

Type Assignment:

$$\lambda x.\lambda y.y(\lambda z.x)$$

can be given the types

$$-\alpha \rightarrow ((\beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \alpha$$

$$-\alpha \rightarrow ((\beta \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$$

$$-(\alpha \rightarrow \alpha) \rightarrow ((\beta \rightarrow \alpha \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$$

$$-\dots$$

with $\alpha \rightarrow ((\beta \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$ being the principal type

$$\lambda x.\lambda y.y(\lambda z.yx)$$

$$\lambda x.\lambda y.y(\lambda z.yx)$$

1. Assign a type variable to all variables: $x : \alpha, y : \beta, z : \gamma$.

$$\lambda x^{\alpha}.\lambda y^{\beta}.y^{\beta}(\lambda z^{\gamma}.y^{\beta}x^{\alpha})$$

- 1. Assign a type variable to all variables: $x : \alpha, y : \beta, z : \gamma$.
- 2. Generate equations between types, necessary for the term to be typable:

$$\lambda x^{\alpha}.\lambda y^{\beta}.y^{\beta}(\lambda z^{\gamma}.y^{\beta}x^{\alpha})$$

- 1. Assign a type variable to all variables: $x : \alpha, y : \beta, z : \gamma$.
- 2. Generate equations between types, necessary for the term to be typable:
 - $\beta = \alpha \rightarrow \delta$

$$\lambda x^{\alpha}.\lambda y^{\beta}.y^{\beta}(\lambda z^{\gamma}.y^{\beta}x^{\alpha})$$

- 1. Assign a type variable to all variables: $x : \alpha, y : \beta, z : \gamma$.
- 2. Generate equations between types, necessary for the term to be typable:
 - $\bullet \beta = \alpha \rightarrow \delta$
 - $\bullet \ \beta = (\gamma \rightarrow \delta) \rightarrow \epsilon$

$$\lambda x^{\alpha}.\lambda y^{\beta}.y^{\beta}(\lambda z^{\gamma}.y^{\beta}x^{\alpha})$$

- 1. Assign a type variable to all variables: $x : \alpha, y : \beta, z : \gamma$.
- 2. Generate equations between types, necessary for the term to be typable:
 - $\bullet \beta = \alpha \rightarrow \delta$
 - $\bullet \ \beta = (\gamma \rightarrow \delta) \rightarrow \epsilon$
- 3. Find a most general substitution for the type variables that solves the equations:

$$\alpha := \gamma \rightarrow \delta, \beta := (\gamma \rightarrow \delta) \rightarrow \epsilon, \delta := \epsilon$$

$$\lambda x^{\alpha}.\lambda y^{\beta}.y^{\beta}(\lambda z^{\gamma}.y^{\beta}x^{\alpha})$$

- 1. Assign a type variable to all variables: $x : \alpha, y : \beta, z : \gamma$.
- 2. Generate equations between types, necessary for the term to be typable:
 - $\bullet \beta = \alpha \rightarrow \delta$
 - $\bullet \beta = (\gamma \rightarrow \delta) \rightarrow \epsilon$
- 3. Find a most general substitution for the type variables that solves the equation:

$$\alpha := \gamma \rightarrow \delta, \beta := (\gamma \rightarrow \delta) \rightarrow \epsilon, \delta := \epsilon$$

4. The principal type of $\lambda x.\lambda y.y(\lambda z.yx)$ is now

$$(\gamma \rightarrow \epsilon) \rightarrow ((\gamma \rightarrow \epsilon) \rightarrow \epsilon) \rightarrow \epsilon$$

Typical problems one would like to have an algorithm for:

 $M: \sigma$? Type Checking Problem TCP

M: ? Type Synthesis Problem TSP

?: σ Type Inhabitation Problem (by a closed term) TIP

Typical problems one would like to have an algorithm for:

 $M:\sigma$? Type Checking Problem TCP

M: ? Type Synthesis Problem TSP

?: σ Type Inhabitation Problem (by a closed term) TIP

For $\lambda \rightarrow$, all these problems are decidable, both for the Curry style as for the Church style presentation.

Typical problems one would like to have an algorithm for:

 $M:\sigma$? Type Checking Problem TCP

M: ? Type Synthesis Problem TSP

?: σ Type Inhabitation Problem (by a closed term) TIP

For $\lambda \rightarrow$, all these problems are decidable, both for the Curry style as for the Church style presentation. Remarks:

- TCP and TSP are (usually) equivalent: To solve $MN : \sigma$, one has to solve N : ? (and if this gives answer τ , solve $M : \tau \rightarrow \sigma$).
- ullet For Curry systems, TCP and TSP soon become undecidable if we go beyond $\lambda \rightarrow$.
- TIP is undecidable for most extensions of $\lambda \rightarrow$, as it corresponds to provability in some logic.

From now on we focus on the Church formulation of simple type theory:

terms with type information.

Formulation with contexts to declare the free variables:

$$x_1:\sigma_1,x_2:\sigma_2,\ldots,x_n:\sigma_n$$

is a context, usually denoted by Γ .

Derivation rules of $\lambda \rightarrow$:

 $\Gamma \vdash_{\lambda \to} M$: σ if there is a derivation using these rules with conclusion $\Gamma \vdash M$: σ

Formulas-as-Types (Curry, Howard):

There are two readings of a judgement $M:\sigma$

- 1. term as algorithm/program, type as specification: M is a function of type σ
- 2. type as a proposition, term as its proof: M is a proof of the proposition σ

Formulas-as-Types (Curry, Howard):

There are two readings of a judgement $M:\sigma$

- 1. term as algorithm/program, type as specification: M is a function of type σ
- 2. type as a proposition, term as its proof: M is a proof of the proposition σ
- There is a one-to-one correspondence between
 - typable terms in $\lambda \rightarrow$
 - derivations in minimal proposition logic
- The judgement

$$x_1 : \tau_1, x_2 : \tau_2, \dots, x_n : \tau_n \vdash M : \sigma$$

can be read as

M is a proof of σ from the assumptions $\tau_1, \tau_2, \ldots, \tau_n$.

Example

$$\frac{[\alpha \to \beta \to \gamma]^{3} [\alpha]^{1}}{\beta \to \gamma} \frac{[\alpha \to \beta]^{2} [\alpha]^{1}}{\beta}$$

$$\frac{\beta \to \gamma}{\alpha \to \gamma} \frac{\beta}{1}$$

$$\frac{(\alpha \to \beta) \to \alpha \to \gamma}{(\alpha \to \beta) \to \alpha \to \gamma} \frac{\beta}{3}$$

$$\frac{(\alpha \to \beta) \to \alpha \to \gamma}{(\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma} 3$$

Example

$$\frac{[\alpha \to \beta \to \gamma]^{3} [\alpha]^{1}}{\beta \to \gamma} \frac{[\alpha \to \beta]^{2} [\alpha]^{1}}{\beta}$$

$$\frac{\beta \to \gamma}{\alpha \to \gamma} \frac{\beta}{1}$$

$$\frac{(\alpha \to \beta) \to \alpha}{(\alpha \to \beta) \to \alpha \to \gamma} \frac{\beta}{3}$$

$$\frac{(\alpha \to \beta) \to \alpha \to \gamma}{(\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma}$$

$$\frac{(\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma}{(\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma}$$

Computation:

- β -reduction: $(\lambda x : \sigma.M)P \longrightarrow_{\beta} M[P/x]$
- η -reduction: $\lambda x : \sigma. Mx \longrightarrow_{\eta} M$ if $x \notin \mathsf{FV}(M)$

Cut-elimination in minimal logic = β -reduction in $\lambda \rightarrow$.

Properties of $\lambda \rightarrow$.

Uniqueness of types

If $\Gamma \vdash M : \sigma$ and $\Gamma \vdash M : \tau$, then $\sigma = \tau$.

Subject Reduction

If $\Gamma \vdash M : \sigma$ and $M \longrightarrow_{\beta\eta} N$, then $\Gamma \vdash N : \sigma$.

Strong Normalization

If $\Gamma \vdash M : \sigma$, then all $\beta \eta$ -reductions from M terminate.

Properties of $\lambda \rightarrow$.

- Uniqueness of types
 - If $\Gamma \vdash M : \sigma$ and $\Gamma \vdash M : \tau$, then $\sigma = \tau$.
- Subject Reduction

If $\Gamma \vdash M : \sigma$ and $M \longrightarrow_{\beta\eta} N$, then $\Gamma \vdash N : \sigma$.

Strong Normalization

If $\Gamma \vdash M : \sigma$, then all $\beta \eta$ -reductions from M terminate.

Substitution property

If
$$\Gamma, x : \tau, \Delta \vdash M : \sigma$$
, $\Gamma \vdash P : \tau$, then $\Gamma, \Delta \vdash M[P/x] : \sigma$.

Thinning

If
$$\Gamma \vdash M : \sigma$$
 and $\Gamma \subseteq \Delta$, then $\Delta \vdash M : \sigma$.

Strengthening

If
$$\Gamma, x : \tau \vdash M : \sigma$$
 and $x \notin FV(M)$, then $\Gamma \vdash M : \sigma$.

Strong Normalization of β for $\lambda \rightarrow$. Note:

- Terms may get larger under reduction
- Redexes may get multiplied under reduction.

Definition

- $\llbracket \alpha \rrbracket := \mathsf{Term}(\alpha) \cap \mathsf{SN}$.
- $\bullet \llbracket \sigma \rightarrow \tau \rrbracket := \{ M : \sigma \rightarrow \tau | \forall N \in \llbracket \sigma \rrbracket (MN \in \llbracket \tau \rrbracket) \}.$

Lemma (all by induction on σ)

- $\bullet \ \llbracket \sigma \rrbracket \subseteq \mathsf{SN}$
- $\bullet \ x^{\sigma} \in \llbracket \sigma \rrbracket$
- If $M \in \llbracket \sigma \rrbracket$, $N \in \llbracket \tau \rrbracket$, $M[N/x] \in \mathsf{SN}$, then $M[N/x] \in \llbracket \sigma \rrbracket$.

Proposition

$$M: \sigma \Rightarrow M \in \llbracket \sigma \rrbracket$$

Corollary $\lambda \rightarrow$ is SN