Proofs as Programs Summer School
Eugene Oregon June - July 2002

Type Systems
Herman Geuvers
Nijmegen University, NL

Lecture 1: Simple Type Theory

Simplest system: A\— just arrow types

Typ := TVar | (Typ—Typ)

e Examples: (a—()—a, (a—8)—=((6—y)—=(a—7))

e Brackets associate to the right and outside brackets are omit-
ted:

(a=B)=(8—7)—a—

e Types are denoted by o, 7,

Terms:
e typed variables 7, x5, ..., countably many for every o.
e application: if M : o—7 and N : o, then (MN) : 7

e abstraction: if P : 7, then (Az?.P) : 0—7

Examples:

A Ny .x s o—=T—0
Az AP N y(22) ¢ (a—=B)—(B—)—a—y
)\:CO‘.)\y(B_)O‘)_)O‘.y()\zﬁ.x)) - a—=((f—a)a)—a
For every type there is a term of that type:

1 ;o
Not for every type there is a closed term of that type:

(a—a)—>a is not inhabited

Typed Terms versus Type Assignment:

e With typed terms also called typing a la Church, we have
terms with type information in the A-abstraction
As a consequence:
— Terms have unique types,
— The type is directly computed from the type info in the
variables.

e With typed assignment also called typing a la Curry, we assign
types to untyped A-terms
As a consequence:
— Terms do not have unique types,

— A principal type can be computed using unification.

Examples:

e Typed Terms:
)\xo‘.)\y(ﬁéo‘)_)a.y(/\zﬁ.x))
has only the type a—((f—a)—a)—a

e Type Assignment:
ALY y(Az.x))

can be given the types
—a—((f—a)—a)—a
—a—((8—a)—=y)—

— (a—=a) = ((—a—a)—y)—y

with a—((8—a)—y)—y being the principal type

=

Example of computing a principle type:

A Ay y(Az.yx)

Example of computing a principle type:
A Ay y(Az.yx)

1. Assign a type variable to all variables: x : o,y : 5,2 : 7.

Example of computing a principle type:
)\xo‘.)\yﬁ.yﬁ()\zv.yﬂxa)
1. Assign a type variable to all variables: x : o,y : 5,2 : 7.

2. Generate equations between types, necessary for the term to
be typable:

Example of computing a principle type:
)\xo‘.)\yﬁ.yﬁ()\zv.yﬁxo‘)
1. Assign a type variable to all variables: x : o,y : 5,2 : 7.

2. Generate equations between types, necessary for the term to
be typable:

o 3 =a—0

Example of computing a principle type:
)\xo‘.)\yﬁ.yﬁ()\zﬁy.yﬁxa)
1. Assign a type variable to all variables: x : o,y : 5,2 : 7.

2. Generate equations between types, necessary for the term to
be typable:

o 3 =a—0
o = (y—0)—e

1N

Example of computing a principle type:
)\xo‘.)\yﬁ.yﬁ()\zv.yﬂxa)
1. Assign a type variable to all variables: x : o,y : 5,2 : 7.

2. Generate equations between types, necessary for the term to
be typable:

o 3 =a—0
o = (y—0)—e

3. Find a most general substitution for the type variables that
solves the equations:

a:=y—0,0 = (y—=d0)—€,0 :=¢

11

Example of computing a principle type:
/\xo‘./\yﬁ.yﬁ()\ﬂ.yﬂxo‘)
1. Assign a type variable to all variables: x : o,y : 5,2 : 7.

2. Generate equations between types, necessary for the term to
be typable:

e 0 =a—0
o 3= (’7—)5)—)6

3. Find a most general substitution for the type variables that
solves the equation:

a:=v—0,3 = (y—=0)—€,6 =€
4. The principal type of Az.A\y.y(Az.yz) is now
(v—€) = ((7y—€)—e)—e

19

Typical problems one would like to have an algorithm for:

M : o? Type Checking Problem TCP
M 7 Type Synthesis Problem TSP
?:0 Type Inhabitation Problem (by a closed term) TIP

19

Typical problems one would like to have an algorithm for:

M : o? Type Checking Problem TCP
M 7 Type Synthesis Problem TSP
?:0 Type Inhabitation Problem (by a closed term) TIP

For A—, all these problems are decidable,
both for the Curry style as for the Church style presentation.

1A

Typical problems one would like to have an algorithm for:

M : o7 Type Checking Problem TCP
M 7 Type Synthesis Problem TSP
?: o0 Type Inhabitation Problem (by a closed term) TIP

For A—, all these problems are decidable,

both for the Curry style as for the Church style presentation.
Remarks:

e TCP and TSP are (usually) equivalent:
To solve M N : o, one has to solve NV :7 (and if this gives
answer T, solve M : 7—0).

e For Curry systems, TCP and TSP soon become undecidable
if we go beyond A\—.

e TIP is undecidable for most extensions of A—, as it corre-
sponds to provability in some logic.

1K

From now on we focus on the Church formulation of simple type
theory:

terms with type information.

Formulation with contexts to declare the free variables:
X1:01,L9:09,...,Tn . Op

Is a context, usually denoted by I'.

Derivation rules of \—:

o€l T'EM:057TT'EN:0o z:oEP:T1
I'Fx:0 I'-MN 71 ' AvioP:o—r

[' =_s M : o if there is a derivation using these rules with
conclusion I' = M : o

1R

Formulas-as-Types (Curry, Howard):

There are two readings of a judgement M : o

1. term as algorithm/program, type as specification:
M is a function of type o

2. type as a proposition, term as its proof:
M is a proof of the proposition o

17

Formulas-as-Types (Curry, Howard):

There are two readings of a judgement M : o

1. term as algorithm /program, type as specification:
M is a function of type o

2. type as a proposition, term as its proof:
M is a proof of the proposition o

e There is a one-to-one correspondence between
— typable terms in A—
— derivations in minimal proposition logic

e The judgement

x1:T1,L9:T9 ..., T T M:0o

can be read as

M is a proof of o from the assumptions 71, 19, ...

1Q

Example

0=6=1 o' [a=B] [of"
5—Wi1 0 _ Ania—=f—=y A yia—B A za.xz(yz)
o—>"y 9 o :(a > >”y) >(a >5) rO—>7Y
(a—B)—a—y 3

\\é

(a—=p—=7) = (a—8)—a

10

Example

a=B=1]° [o]' [a=p]* [o]
f—y p
7 _Ana—= =y ya—B A za.xz(yz)
a—7y 9 o (a—=fB—=y) = (a—=B)—a—y
(a—=08)—=a—y 3

(a—=B—v)—=(a—F)—a—y

2 a—)ﬁ—w]g EX a]l IE a—)ﬁ]z Ex a]l

h Tz Bd—wh d h Yz I Bh J
rz(yz) i vy 1
MNaxz(yz) » a—y 9
\Nya—B) \za.xz(yz) : (a—=B)—=a—sy 3

Ar.a— By \ya—B) za.xz(yz) - (a—0

N

Computation:
e (-reduction: (Ax:0.M)P — g M|P/z]
o n-reduction: Az:o. Mz —y M if x ¢ FV(M)

Cut-elimination in minimal logic = [3-reduction in A—.

[%]1 Do
1 o o
T | 22 Dl
o—T o -
T
[z o]!
D, PD?
M T D, ~ -9
1 Do D,

Properties of A\—.

e Uniqueness of types
fI'-M:0cand ' M : 7, then 0 = 7.

e Subject Reduction
IfFI—M:JandM—wnN,thenFl—N:a.

e Strong Normalization
It I' = M : o, then all 8n-reductions from M terminate.

D)

Properties of A\—.

e Uniqueness of types
fI'-M:0cand ' M : 7, then 0 = 7.

e Subject Reduction
IfFI—M:JandM—wnN,thenFl—N:a.

e Strong Normalization
It I' = M : o, then all 8n-reductions from M terminate.

e Substitution property
f 'z .7, A-M:0, ' P:7,then ', A M|P/x]: 0.

e Thinning
fI'FM:0and' C A, then AF M : 0.

e Strengthening
fT,z:7-M:0and z ¢ FV(M), then ' M : 0.

99

Strong Normalization of 3 for A—.
Note:

e Terms may get larger under reduction

e Redexes may get multiplied under reduction.

Definition

e [a] := Term(a) N SN.

o [oc—7]:={M :0—7|VN € [o](MN € |[1])}.

Lemma (all by induction on o)

e [c] CSN

e 27 € 0]

olf M € [o], N € [r], M[N/x] € SN, then M[N/z] € [o].
Proposition

M: o= M € |o]

A

Corollary A— is SN

[>]=4

