Proofs as Programs Summer School
Eugene Oregon June - July 2002

Type Systems
Herman Geuvers
Nijmegen University, NL

Lecture 3: Dependent Type Theory / Logical Framework

For A— and A\2:
Direct encoding (deep embedding) of logic in type theory.

e Connectives each have a counterpart in the type theory:
implication ~ arrow type

e logical rules have their direct counterpart in type theory
A-abstraction ~ implication introduction
application ~ implication elimination

e Context declares assumptions

Second way of interpreting logic in type theory De Bruijn:

Logical framework encoding or shallow embedding of logic
in type theory.

e Type theory used as a meta system for encoding ones own
logic.

e Choose an appropriate context I'7,, in which the logic L (in-
cluding its proof rules) is declared.

e Context used as a signature for the logic.

e Use the type system as the ‘meta’ calculus for dealing with
substitution and binding.

Direct encoding Shallow encoding

One type system : One logic One type system : Many logics
Logical rules ~ type theoretic rules Logical rules ~ context declarations

Direct encoding Shallow encoding

One type system : One logic One type system : Many logics
Logical rules ~ type theoretic rules Logical rules ~ context declarations

Plan:

e First show examples of logics in a logical framework

e Then define precisely the type theory of the logical framework

Use type to denote the universe of types.

Direct encoding Shallow encoding

One type system : One logic One type system : Many logics
Logical rules ~ type theoretic rules Logical rules ~ context declarations

Plan:
e First show examples of logics in a logical framework
e Then define precisely the type theory of the logical framework

Use type to denote the universe of types.

The encoding of logics in a logical framework is shown by three
examples:

1. Minimal proposition logic
2. Minimal predicate logic (just {D,V})
3. Untyped A-calculus

Minimal propositional logic
Fix the signature (context) of minimal propositional logic.

prop : type
Imp : prop—prop—prop

Notation:
AD BforimpAB

The type prop is the type of ‘names’ of propositions:
NB: A term of type prop can not be inhabited (proved), as it is
not a type.

Minimal propositional logic
Fix the signature (context) of minimal propositional logic.

prop : type
Imp : prop—prop—prop

Notation:
AD BforimpAB

The type prop is the type of ‘names’ of propositions.

We ‘lift" a name p : prop to the type of its proofs by introducing
the following map:

T : prop—type.
Intended meaning of Tp is ‘the type of proofs of p'.

We interpret ‘p is valid’ by “Tp is inhabited'.

Q

To derive Tp we also encode the logical derivation rules

imp_intr : IIp, q : prop.(Tp—Tq)—T(p D q),
imp_el : IIp,q : prop.T(p D q)—Tp—Tq.

New phenomenon: [I-type:

[Tx:A.B(x) ~ the type of functions f such that
fa: B(a) forall a:A

imp_intr takes two (names of) propositions p and ¢ and a term
f: Tp—Tq and returns a term of type T(p D q)

Indeed A D A, becomes valid:
imp_intrA A(\z:T A.z) : T(AD A)

Define
2 pROP to be the signature for minimal proposition logic, PROP.

Desired properties of the encoding:

e Adequacy (soundness) of the encoding:
~prOP A = XpROP; @1:Prop, . .., ap:prop = p : T A for some p.

{a....,ap} is the set of proposition variables in A.
Proof by induction on the derivation of Fprop A.

e Faithfulness (or completeness) is the converse. It also holds,
but more involved to prove.

1N

Minimal predicate logic over one domain A (just D and V
Signature:

prop : type,
A : type,
c: A,
f: A=A,
R : A—A—prop,

2 I prop—prop—prop,
imp_intr : IIp, q : prop.(Tp—Tq)—T(p D q),
imp_el : IIp,q : prop.T(p D q)—Tp—Tgq.

Now encode V:
V takes a P : A—prop and returns a proposition, so:
V . (A—prop)—prop

11

Minimal predicate logic over one domain A (just D and V
Signature: XpREp

prop : type,
A : type,

D ! prop—prop—prop,
imp_intr : IIp, q : prop.(Tp—Tq)—T(p D q),
imp_el : IIp,q : prop.T(p D q)—Tp—Tgq.

Now encode V:
V takes a P : A—prop and returns a proposition, so:
V : (A—prop)—prop
Universal quantification is translated as follows.

Va:A.(Px) — forall(A\z:A.(Px))

19

Intro and elim rules for V:

forall : (A—prop)—prop,
forall intr : ITP:A—prop.(Ilz:A.T(Px))—T(forall P),
forall elim : ITP:A—prop.T (forall P)—Ilz:A.T(Px).

The proof of
Vz:A(Vz,y:A.Rxy) D Rzz

is now mirrored by the proof-term

forall intr[|(Az:A.imp intr[][J(Ah:T(Vz, y:A.Rzy).
forall elim|_|(forall elim|_]hz)))

We have replaced the instantiations of the II-type by | |.
This term is of type

forall(Az:A.imp(forall(Az:A.(forall(Ay:A.Rxy))))(Rzz2))

19

Again one can prove adequacy
I_PRED © = 2XPRED; 1A, ...,z Al p Ty, for some p,

where {x1,...,xp} is the set of free variables in ¢.

Faithfulness can be proved as well.

1A

Untyped A-calculus
Signature 2|, mbda:

D : type;
app : D—(D—D);
abs : (D—D)—D.

Encoding of A-terms as terms of type D.

e A variable z in A-calculus becomes x : D in the type system.
e The translation |[—] : A — Term(D) is defined as follows.
7] = ;

PQ] = app [P] [Q);
[Ax.P|] = abs (Az:D.|P]).

Examples: [A\z.zz] := abs(Ax:D.app x x)
[(Az.xx)(Ay.y)] := app(abs(Az:D.app z z))(abs(Ay:D.y)).

1K

Introducing [3-equality in X3mbda :

eq:D—D—type.

Notation P = () for eq P Q).

Rules for proving equalities.

refl :
sym :
trans :
mon :
i 2 IIf, g:D—D.(Ilx:D.(fz) = (gx))—(abs f) = (abs g),
beta :

Xl

[Iz:D.x = x,

[z, y:D.x = y—y =z,

llx,y,zD.x = y—y = z—x = 2,

M,z 2,2 Da=a"—>2=2—(app 2) = (app 2’ '),

[1f:D—D.Ilz:D.(app(abs f)x) = (fx).

1R

Adequacy:
P =3Q = Yjambda» 71:D; .. . ;an:D = p : [P] = [Q)], for some p.

Here, x1, ...,z are the free variables in P()

Faithfulness also holds.

17

Logical Framework, LF, or AP
Derive judgements of the form

I'=M:B

e |’ Is a context

e /[and B are terms
taken from the set of pseudoterms

T = Var|type |kind | TT | A\x:T.T | [Tz:T.T,

Auxiliary judgement
[

denoting that I' is a correct context.

1Q

Derivation rules of LF. (s ranges over {type, kind}.)

'FA:s . . [" =
(base) D F (ctxt) CoAF if x notinT (aX)Fl—type:kind

(H>F,£E2A|—BIS ' A:type

T
fe:Ael
(proj) Tra e DEMzAB ;s

I['Fx: A

() o AEM:BTI'FIlxz:A.B : s
' M w:A.M : 1lax:A.B

I'EFM:Ilz:ABT'EN:A
@PP) L N BN

I'FM:BTFA:s
I'EM: A

Notation: write A— B for [lz:A.B if x ¢ FV(B).

(conv)

A=g, B

10

e The contexts XpRrop. LPRED aNd Z|ambda are well-formed.

e The II rule allows to form two forms of function types.

(H>F,:1::AI—B:S ' A:type
['F1Ilz:A.B :s
— With s = type, we can form D—D and [Iz:D.x = z, etc.

— With s = kind, we can form D—D—type and prop—type.

N

Properties of AP.

e Uniqueness of types
fI'FM:0and ' = M : 7, then 0=3yT.

e Subject Reduction
IfFI—M:UandM—wnN,thenFl—N:a.

e Strong Normalization
It I' = M : o, then all 8n-reductions from M terminate.

Proof of SN is by defining a reduction preserving map from AP
to A—.

91

Decidability Questions:

I'EM:0? TCP
I'=M:7 TSP
['F?: 0o TIP

For \P:
e TIP is undecidable
e TCP/TSP: simultaneously with Context checking

D)

Type Checking

Define algorithms Ok(—) and Type (—) simultaneously:
e Ok(—) takes a context and returns ‘true’ or ‘false’

e Type (—) takes a context and a term and returns a term or
‘false’.

The type synthesis algorithm Type_(—) is sound if
Typer(M)=A = TTFM:A
for all I' and M.

The type synthesis algorithm Type_(—) is complete if
'-M:A = Typer(M)=g, A
for all I', M and A.

99

Ok(<>) = 'true’
Ok(I',z:A) = Typer(A) € {type, kind},

Typer(x) = if Ok(I') and z:A € T then A else ‘false’,
Typer(type) = if Ok(I')then kind else ‘false’,
Typer(MN) = if Typep(M) = C and Typerp(N) =D

then if C' »gllz:A.Band A=5 D

then B|N/z| else ‘false’
else ‘false’,

A

Typer(Az:A.M) = if Typer 4.4(M) =B
then if Typep(Ilx:A.B) € {type, kind}
then Ilz:A.B else ‘false’
else ‘false’,

Typerp(Illz:A.B) = if Typep(A) = type and Typer ;. 4(B) = s
then s else ‘false’

[>]=4

Soundness
Typer(M)=A = TTFM:A

Completeness

'-M:A = Typer(M)=g, A

This implies that, if Typep(M) = ‘false’, then M is not typable
in I'.

Completeness only makes sense if we have uniqueness of types
(Otherwise: let Type_(—) generate a set of possible types)

R

Termination
We want Type (—) to terminate on all inputs.
(Not guaranteed by soundness and completness)

Interesting cases: A-abstraction and application:

Typer(Ax:A.M) = if Typer z.4(M) =B

then if Typep(Ilz:A.B) € {type, kind}
then I1z:A.B else ‘false’
else ‘false’,

Replace the side condition
if Typer(Ilz:A.B) € {type, kind}
by
if Typer(A) € {type}

[lvd

Termination
We want Type (—) to terminate on all inputs.
(Not guaranteed by soundness and completness)

Interesting cases: A-abstraction and application:

Typer(MN) = if Typep(M) = C and Typep(N) =D
then if C' —»gllz:A.Band A=5 D
then B|N/x| else ‘false’
else ‘false’,

For this case, termination follows from the decidability of equality
on well-typed terms (using SN and CR).

OQ

