Summer School on the Foundations of Security, University of Oregon, June 16—26 2003

Cryptographic Protocols

Cédric Fournet
Microsoft Research

Contents

Main subject:
cryptographic protocols
for distributed communications

Tools from concurrent programming theory:
the applied pi calculus

Detailed applications and examples:
private authentication
key-exchange for IPSEC (JFK)
web services security

secure implementations

The applied pi calculus

ure communication. In 28th ACM Symposium on Principles of

F/I. Abadi and C. Fournet. Mobile values, new names, and se-
Programming Languages (POPL’01), pages 104—115, 2001.

A case for impurity

= In foundational calculi (pi, lambda),
purity often comes before convenience & faithfulness.

= In applications, ad hoc extensions are often required:
integers, strings,... , I/0,... , cryptography,...

= Extensions can sometimes be encoded, at some cost
(complicated reasoning, ugly properties).

= Many results are first stated and proved in a pure setting,
then proved again and again for extensions.

Security in the pi calculus ?

= Domain: security protocols,
with interactions between cryptographic computations,
controlled usage of secrets, and communications.

= Process calculi are useful for such protocols, e.g.,
= pi calculus, to reason on high-level security properties.
= spi calculus [Abadi&Gordon], to tackle some cryptography.

= Still, there is a gap between typical security specifications
(e.g. RFCs) and what can be represented in those calculi.

An applied pi calculus

Can we get a robust & uniform extension
of the pi calculus, and still use our favorite tools?

= Parameterise the pi calculus with computations on values.
= Keep communications and scopes!

= Uniformly develop equivalences and proof techniques.

An applied pi calculus

Syntax, semantics, ...

Simple examples: cryptographic primitives and protocols.
Some technical issues:
1. How to communicate opaque values? Active substitutions

2. How to relate equations on values and observational
equivalence for protocols? Static Equivalence

5. How to establish equivalences? Labeled semantics

=

N

w

Application: a Diffie-Hellman key exchange

s

Syntax for processes

PQ,R .= Processes
0 null process
P|Q parallel composition
| P replication
vn.P name restriction (“new"”)
if M = N then P else Q conditional
u(x).P message input
w(N).P message output

Processes are those of the plain pi calculus.
Communicated values are terms, rather than names.
The calculus is parameterized by an equational theory for terms.

Syntax for terms

M, N .= Terms
a,b,c,....k,....m,n,...,s name
T, Y, 2 variable
f(Mq,...,M;) function application

We assume given:

= a signature: a set of function symbols with an arity;
= a sort system;

= an equational theory:

= an equivalence relation (=) on terms;
= closed by substitutions of terms for variables;
= closed by one-to-one substitutions on names.

We distinguish three similar notions: constants, names, variables.

Example: pairs

= A constructor function “cons”, written (M,N)
= Two selector functions, written fst(M) and snd(M)
= The equations

fst((z,9))
snd((, %))

+ all equations obtained by reflexivity, symmetry,
transitivity, and substitutions.

X

Y

Similarly, we can model tuples, arrays, lists, ...

Shared-key cryptography

= To model shared-key cryptography,
we can use two binary functions related with:

dec(enc(z,y),y) = =

= We can use restricted names as keys (or not)
= This is much as the spi calculus.

For each variant of the spi calculus, one can select an equational
theory that yields an applied pi calculus with the same reductions.

Operational semantics

We use a standard chemical-style semantics:

= reduction step (—) contains the rules

Comm a(M).P|a(z).Q — P|Q[M]

Then of M = M then P else Q — P

Else if M = N then P else Q — Q@
when M = N not in the theory and fuv(M,N) =0

closed by structural equivalence
& application of evaluation contexts.

= structural equivalence (=) is defined as usual,
and also closed by equality on terms.

Token-based authentication

A
B

a((M, s))
a(x).if snd(x) = s then b{fst(zx))

= The name s in the pair acts as a capability for the forwarding.

= Expected behaviour:
vs.(A| B) —— b(M)

using the equations fst((z,y))

snd((z,y))

|
< 8

Token-based authentication ?

A = a((M,s))
B = a(x).if snd(x) = s then b{fst(x))
I = a(z).a{(N,snd(z)))

= The name s in the pair acts as a capability for the forwarding.

= Expected behaviour:
vs.(A| B) —— b(M)

= The token is not protected; we can represent
an (obvious) interception attack as the context /:

I | vs.(A|B)Y ——— b(N)

Cryptographic hash

= A one-way, collision-free hash function
is modelled as a constructor “h” with no equation.

= Example: message authentication code (MAC)
A = a((M,|h(s,M)|))
B = a(x).if h(s,fst(z)) = snd(z) then b{fst(x))

vs.(A | B) —— b(M)

= A sends a hash code that depends on the secret.
(The secret is not communicated.)

= B checks the authenticity of the received message
by recomputing its hash code.

» Attackers cannot produce another valid hash code.

Scope restriction for terms

= In the plain pi calculus,
= new restricted names can be created;

= Scope restrictions nicely disappear when those names are
passed to the environment (“scope extrusion”).

VS.(G(S) | B) ﬂ B

Scope restriction for terms

= In the plain pi calculus,
VS.(G(S) | B) ﬂ B

= With terms instead of names,
scope restriction gets more interesting:

= How to represent the result of sending an opaque term?

_ a’ B
VS.(CL(I‘I(S,M)) | B) B L3 77

= The environment can accumulate partial knowledge
on restricted names, and use it later.

= The problem already occurs in the spi calculus,
when sending messages encrypted with a restricted key.
[Abadi Gordon, Boreale deNicola Pugliese]

Scope restriction for terms

= In the plain pi calculus,

VS.(G(S) | B) ﬂ B

= With terms instead of names,
scope restriction gets more interesting:

= How to represent the result of sending an opaque term?
_ a(z)
vs.(alh(s, M)) | B) — vs.({"=M)}]| B)

= We extend processes with active substitutions that
keep track of the values passed to the environment.

Substitutions as processes

A B C .= Extended processes
P plain process
Al|B parallel composition
vn.A name restriction
ver.A variable restriction
(M active substitution

= Active substitutions map distinct variables to terms
= They may appear under restrictions (not under guards)
= They operate on the environment.
= They represent terms passed to the environment
“by reference”, much as a floating let x = M in ...

(There are well-formed conditions for extended processes.)

Operational semantics

= Structural equivalence = is extended with rules
for active substitutions (reduction is defined as before).

Subst {M/1| A
Alias veAM/)
Rewrite (M1

{M/} | AlMe)
0
(N3 when M =N

Par-0 A= A0
Par-A Al(B|C) = (A|B)|C
Par-C A|B = B|A

Repl P = P|IP
New-0 vn.0 0

New-C vu.vv. A vo.rvu. A

New-Par A|vu.B vu.(A | B) when u &€ fu(A) U fn(A)

Substitutions as processes (2)

= Locally, active substitutions and ordinary substitutions
on terms are related by structural equivalence:

A[M/] AML1 10 by Par-0
0| A[M/] by Par-C
(ve ML) | A[M/:] by Alias
ve. ({M/L.} | A[M/,]) by New-Par
ve.({M/:) | A) by Subst

Substitutions as processes (3)

= Every closed extended process can be put in a normal
form that separates its static and dynamic parts

N fu(P) =10
A = va.({MEHIP) where fu(M)=10
{n} C fn(M)

= The static part operates only on the environment

= The dynamic part P is an ordinary process
that describes communications

= These two parts can share some restricted names

(However, “flattening” processes is not necessarily a good idea.)

Cryptographic hash, again

= Using active substitutions, we can represent a process
that has MACed several messages using the secret s:

{(M,h(s,M))/m} | {(N,h(s,N))/y} .

a(x).if h(s,fst(x)) = snd(z) then b{fst(x))

UVS.

= What an attacker can effectively do with x and y
depends on the equational theory being considered.

More encryption primitives

= 10 model shared-key cryptography,
we used two binary functions related with:

dec(enc(z,y),y) = =

= There are many variants of encryption primitives,
with diverse properties

= Symmetric or not?
= Detection of decryption errors?
= Which-key concealing?

= We can select equations accordingly

Asymmetric encryption

= To model public-key cryptography,
we generate public- and private-keys from a seed:

dec(enc(z, pk(y)),sk(y)) = =

= Using active substitutions, we can write a process that
exports the public key and keeps the private key secret:

ys.({Pk<S>/pk} | a(z).b(dec(z, sk(s))))

= We can add “troublesome” equations for security protocols,
for instance reflecting a typical weakness of RSA encryption:

dec(enc(z,y), z) = enc(dec(z,z),y)

Non-deterministic encryption

= 10 model probabilistic cryptography,
we may add a third argument to the encryption function:

dec(enc(z, pk(y), z),sk(y)) = =

= With this variant, consider the protocol:
(l/m.5<enc(M, pk, m)))
(l/n.E(enc(N, pk, n)))
vs.({P)pi} | R)

Without access to the decryption key, an attacker cannot
detect whether the underlying plaintexts are identical

Observational Equivalence

How to compare applied pi processes?

Contexts and Barbs

= Evaluation contexts are environments for running processes

El]::= Evaluation contexts
[] placeholder
Al E[] parallel composition
vn. B[] name restriction
ve. B[] variable restriction

They may contain processes, active substitutions...
We will use them to represent classes of attackers

o Our basic observation predicate, or barb, tests whether
the process A can send a message on the free channel a.

A g when A= El[a(M)]
and FE[_] does not bind «

Observational equivalence

= Observational equivalence (=) is the largest symmetric

relation between closed extended processes defining
the same variables such that A ~ B implies:

. if Al then BY,,
. fA—-"A"thenB—-"Band A"~ B’
3. for all evaluation contexts E£[_], we have E[A] ~ E[B]

= Examples (in plain pi calculus)

ar() # az() va.a(M)
bla1) % blas) va.(a() | a(z).P)

Q
-

Q

va.P

= How to prove observational equivalence?

Secrecy by equivalence

= With symmetric encryption,
consider the simplistic protocol

def

A vs.b{enc(M, s))

The attacker observes a fresh, opaque message,
apparently unrelated to the term M

A = vn.b{n)

The process on the right is simpler & more abstract

Secrecy by equivalence (2)

= With asymmetric encryption, this doesn’t work!

A E vs Y | Blenc(M, pk))

A % Vs.{pk(s)/pk} | vn.b{n)

Iy < b(x).if x = enc(M,pk) then a()

The attacker can guess the term M/, then verify it

If M is a “weak secret”, such as a password,
then this inequation reflects a dictionary attack

Secrecy by equivalence (3)

= With non-deterministic encryption,
we do have strong secrecy properties, e.g.

A def VS'{pk(S)/pk'} | Vm.{enc(M,pk,m)/x}

A = vn{"pr} | vm A"z}

The attacker observes two unrelated fresh values

The attacker learns nothing on 14,
and cannot detect that x is an encryption

Equivalence for frames ?

= Frames are extended processes that only consist of
active substitutions and restrictions.
What is observational equivalence for frames?

= Consider two functions f and g, no equations, and frames:

o = vkvs. {) | {f{B)
p1 = vk {8RLY R
oo = vk %) {4

@y and @y have the same observable behaviour:
they provide two fresh, apparently independent values

(5 is visibly different: we have y = f(x) with @, only

Static equivalence (definition)

= We write (M = N)¢ when the terms A/ and N are
equal in the theory after alpha-conversion and substitution.

(o =vh.o
(M = N)o when 3n,0.{ Mo = No

At (fn(M) U fn(N)) =10

= Two frames are statically equivalent
when they agree on all term comparisons:

o ~s 1 when VM, N.(M = N)y iff (M = N)

Two extended processes are statically equivalent
when their frames are equivalent.

Static equivalence (properties)

= Static equivalence is closed by =, —, E[_].

= For extended processes,
observational equivalence is finer than static equivalence.

= For frames,
static equivalence and observational equivalence coincide.

Hence, we can uniformly lift equational properties
from (restricted) terms to (extended) processes.

We use special evaluation contexts instead of frame comparisons:
((if M =N then a(s)) | A) L a iff (M = N) p(A)

Static equivalence (example)

= Letusprove wvs.blenc(M,s)) =~ wvn.b{(n)

1. Using structural equivalence, we have
vs.blenc(M, s)) ve.(b{z) | Vs.{enC(M’S)/x})
vn.b(n) ve.(b(z) | vn.{"z})
2. We prove l/s.{enc(M’S)/m}) ~s vn.{"/z})

thatis, VM,N |n,s¢& fn(M,N),
(M = N){eM:8))) o (M = N){"e}

. We apply the context vz.(b(z) | []

Labelled semantics

= Can we characterize observational semantics
using labelled transitions?

= A good technical test for the calculus
= Standard, effective proof techniques
= No quantification over all contexts.
= Proofs “up to active substitutions”

= We have two such labelled semantics
that refine static equivalence.

= Theorem: for any equational theory,
the labelled and observational semantics coincide.

However, the generalization of the pi calculus LTS with scope extrusion
(exporting terms instead of nhames) yields a labelled semantics that
“sees through” all term constructors and discriminates too much.

A labelled semantics

In addition to — and =, we use the rules

M
In a(x).P M P{M/
Out-Atom alu).P 5<“>}
A g g
Open-Atom)
vu. A —4 Al
A Al uw does not occur in «
Scope .
vu. A — vu. A
. AL A bw(a)n fu(B) = bn(a) N fi(B) =0
A|B% A'|B
A=B B % B B = A
Struct

A S A

Example transitions

= Labelled transitions systematically pass values
by aliasing them to fresh variables

= The environment can use these values indirectly,
by forming terms that contain these variables

ve.a(zr)

\
[4

vy.a{y)

a,(dec(ac,y))>

vk. alenc(M, k)).alk).a(z).if z = M then ¢{oops!)

vk ({enc(M,k)/x}
e ({enc(M,k)/x}

a(k).a(z).if z = M then ¢{oops! >)
{k/y} | a(z).1f z = M then ¢(oops'!))

{k/y} | if dec(x,y) = M then ¢(oops!))
{*/y}) | & oops !

Labelled bisimilarity

= Labelled bisimilarity (=) is defined almost as usual:
the largest symmetric relation such that A ~ , B implies
1. A~ B
. ifA—="A",then B—" B and A’ =, B’ for some B’;

3. ifA-o= A and o has free variables in dom(A),
and o has no bound names that are free in B,

then B -0~ —"B"and A’ ~ , B’ for some B'.

= Labelled bisimilarity is observational equivalence: ~=;, = ~

= Labelled bisimilarity has nice technical properties
(e.g. proofs up to frame simplification).

Symbolic bisimulations

= Labelled bisimulations make proofs easier by dealing
abstractly with message outputs (active substitutions)

= Message inputs may also be troublesome:

= The environment can supply arbitrary terms
(infinite-branching transition system)

= There is an infinite number of names
= There is no bound on the nesting of functions in terms

In contrast, many different terms are uniformly
handled by security protocols (few tests)

= Symbolic transitions (and symbolic bisimulations)
use abstract “environment” variables for inputs
[Huimin & Hennessy; Boreale]

Symbolic bisimulations (example)

def

P if © = mac(k, M) then Q

a(x).P M P

— x=mac(k,M) | Q

= Symbolic transitions (and symbolic bisimulations)
use abstract “environment” variables for inputs

= Symbolic reductions introduce constraints on those variables.
=« Equality between open terms
= Occur-checks on output variables (no causality loop)

= Constraints must be solvable to obtain concrete reductions.

Diffie-Hellman key exchange

VW. Diffie and M. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory,
[T-22(6):644—654, November 1976.

Diffie-Hellman

= A cryptographic protocol for creating a shared secret
between two parties, e.qg. establishing a session key.

= The two parties communicate over a public network,
in the presence of a passive attacker

= The protocol relies on large exponentials,
with the commutative equation:

(6°z)'y = (g’y)'r modp

Can’t extract « from g«

Diffie-Hellman exchange

i r

generate d; generate d,
T, = g d; | Ty = g'dy
exponentials
send z; send z;
receive >< receive x;
k = xrAdZ‘ k= 5qu’\d7“
forget d; ST forget d;
use k£ messages use k

A

We get “perfect forward secrecy”:
the values =x;, x,, k seem unrelated

Diffie-Hellman in applied pi

i r

def
T — Vdi- generate d, generate d,
v =g d exponentials Tr = g dr
Cilg d;). send x; send =,
Cr (377“)- receive x; >< receive x,
S == A =T
p. — d; forget d; seies forget d,
’L{ /k} use k messages use k

A

Ay, IS defined symmetrically

Diffie-Hellman in applied pi

= Processes A, A, represent the initial state.

= Processes P, P represent the final state
with free variable z for the shared key.

def _
A; = vdi(Gi(wio) | or(zr).Pidyi)

= Auxiliary substitutions account for the messages «;
being exchanged and the shared key .

{0 it}
A

i

®;

Diffie-Hellman in applied pi

= A normal run consists of two reduction steps:

Ag | Aq

vror1ngony- ¢01(%o) | c1o(r1).Podo |
c10(z1) | co1(xo).P1¢1 | o0 | 01

vroringoni. Pogo | P11 | oo | 01

veorinoniy. Po | P1¢1 | ¢o | oo | o1

veorinoniy. Po | P1 | ¢o | oo | o1

vy.Po | Py | veg,z1. (vng. ¢o | 00) | vny. o1

vy.Po | P1 | veg,z1. ¢

Diffie-Hellman in applied pi

= A normal run consists of two reduction steps:

A | Ay —— vz.(P;| Pr| vz, xr. p)

= A passive attacker intercepts both messages and
forwards those messages unchanged, leading to
the final state:

vz.(P | Pr| ¢).

= We used an auxiliary frame to record messages
and computations:

e = (vdp (¢i|02) | (vdyr. o7)

A correctness property

= Specification:
1. The final processes share a “pure secret” = a fresh name

vk.(P; | Pr){":}

2. Intercepted messages are “pure noise” = fresh nhames

vsi {5} | vrd{*7/u)

= [Theorem:
vz.(P; | Pr|)

vk.(P; | Pr){k/z} | VSi'{Si/iUi} | vsr e,)

Q

Perfect forward secrecy

vz.(P; | Pr|)
vk.(F; | Pr){k/z} | vsi {7} | vse Ay}

Q

= We can forget about the key establishment protocol:
the key freshness & secrecy do not depend on its use

= Examples:
= Send a first message P, — a{{Fugene})
P = a(z).Q
= Reveal the key B
to the environment P, = a({Fugene};)
P = ¢{z)

A correctness property (3/3)

vz.(B; | Pr| o)
vk.(F; | Pr){k/z} | vsi e} | vse AT e }

Q

= Sketch of the proof:
1. Static equivalence (not so easy: for all M and N...)

© Ris VS;, Sry k5w, fr," [}
>. Hence the process equivalence
o % iy 5oLV fey VL)

3. Apply an evaluation context + structural equivalence

E[1 £ vz (P | P | [1])

Summary (on applied pi)

= We studied a pi calculus parameterised by
an equational theory for values.

= We obtained an expressive and flexible framework
for reasoning on security protocols, which typically mix:

= creations of “fresh” values : "new” & scope extrusions
= various cryptographic operations : various equational theories
= communications : pi calculus

= We uniformly built tools to state and prove their properties
(inspired by concurrency theory)

Questions?

See also http://research.microsoft.com/~fournet/

