Private Authentication
Hiding Name in the Applied Pi Calculus

Martin Abadi. Private authentication. In Proceedings of the
Workshop on Privacy Enhancing Technologies (PET 2002), LNCS.
Springer-Verlag, 2002.

M. Abadi and C. Fournet. Hiding names: Private authentica-
tion in the applied pi calculus. In M. Okada, B. Pierce, A. Sce-
drov, H. Tokuda, and A. Yonezawa, editors, Software Security —
T heories and Systems. Mext-NSF-JSPS International Symposium,
Tokyo, Nov. 2002 (ISSS’'02), volume 2609 of LNCS, pages 317—
338. Springer, 2003.

Session Establishment

= Two parties want to open a secure session; they need to
= Generate a shared secret (the “session key")
= Agree on parameters
= Verify each other’s identity

= Attackers may eavesdrop, delete, and insert messages,
may impersonate principals,... in order to

= gain information
= confuse or hinder the participants

= This is a classical setting for cryptographic protocols

R. Needham and M. Schroeder. Using encryption for authentica-

tion in large networks of computers. Commun. ACM, 21(12):993—
999, 1978.

D. Dolev and A. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, IT—29(2):198-208, 1983.

Session Establishment

= Protocol design and verification is still (surprisingly) active
= Core secrecy and authentication now well-understood
= New settings, e.g. mobility

= New “secondary” requirements
= Efficiency, DOS attacks
= Privacy: a delicate concern, with no clear specification

= We discuss privacy issues in session establishment
= we present a simple protocol for private authentication
= we develop its model in the applied pi calculus

= We express its properties using process equivalences
for secrecy, authentication, and identity protection

Private Communication

= Two or more principals wish to communicate securely,
protecting their identities, movements, behaviours,
communication patterns,... from third parties

= Mobile telephony
= Mobile computing
=« UPnP, home network
= IPSEC, mobile IP

= Third parties? Other users + infrastructure

= Privacy may coexist with communication, but not by default
« Effective communication requires routing

« Traffic analysis reveals a lot of information, even if all traffic
is encrypted (e.g. key identifiers linked to principals)

=« With some care, one can hide origin/destination of messages

Private Authentication

= Protocols may help, but they are also part of the problem

= Principal A may demand that B prove its identity before
revealing anything

= Protocols often pass names and credentials in cleartext
= Protocols often provide evidence of session establishment

= Who should reveal one’s identity first?

=« What is a good trade-off between authentication,
performance, and anonymity?

= In client-server systems, the server is seldom protected

« In fluid, symmetric, peer-to-peer systems, privacy is more
desirable and more problematic

= Privacy should be an explicit goal of the protocol

The Problem

= Within a location (physical building, wireless LAN),
A tries to contact B
B is willing to respond (and prove his identity) to any A € Sg

= The network and other participants are untrusted
= A and B do not share a long-term secret

= A and B should be able to establish authenticated, private
communication channels

= A and B should not have to indicate their identity, presence,
or willingness to communicate (S,,Sg) to anyone else

Assumptions

Network

Each participant can broadcast messages
Message headers don't reveal identity information

Cryptography

We rely on public-key encryption
A and B each have a public/private key pair
A and B know each other’s public key (offline PKI, SPKI,...)

Only a principals that knowns the private key can recover an
encrypted message encrypted with the public key

The success or failure of a decryption is evident
Encryption is which-key concealing

The Protocol (informally)

1. A generates a fresh nonce N, and sends

“hello”, {“hello”, N4, KA}k,

2. B receives "hello” message, tries to decrypt,
checks that A € S;, generates Ng, then sends

“ack”, {“ack”, NA: NB? KB}KA

...or, in all other cases, sends a decoy

“aCk”, {NB }K

3. A receives B’s message, decrypts, checks, gets N
Afterwards, A and B use (N,,Ng) as shared secrets

Properties and Limitations

“hello”, {“hello”, N4, K4},
“ack”, {“aCk”a NA) NB) KB}KA
“aCk”, { NB }K

= Secrecy: (N,,Ng) become shared secrets
For instance, A and B can use h(N,,Ng) as shared key

= Responder authentication:
A has evidence that it shares (N,,Ng) with B
B has no evidence so far, but it shares (N,,Ng) at most with A

= Identity protection: without K, or Kz,
the messages look the same for any sessions

Extensions

= Efficiency

= The protocol is quite inefficient, leading to potential DOS
(messages, bandwidth, public-key decryptions)

= The protocol does not scale well

= We can include some (partial) principal identifier

= We can include a session identifier,
so that the second message can be routed

= We can send a first message to numerous potential
participants, sharing some message and encryption costs

= Groups

= A and B don’t know each other, but are member of some
group, e.g. "network printers” or “Italians”

Private Authentication
(now in applied pi)

M,N .:= Terms
a,b,c,....k,....m,n,..., S name
T,Y, 2 variable
f(Mq,..., M) function application
PQ,R::= Processes
0 null process
PlQ parallel composition
P replication
vn.P name restriction (“new”)
of M = N then P else Q conditional
u(x).P message input

w(N).P message output

Formatted Messages

= The protocol uses two messages, “hello” and “ack”

= We use an equational theory with
= functions hello(_,_) and ack(_,_,) as constructors
= function hello.0(), hello.1(), ..., ack.2(_) as selectors

= equations
hello.0 (hello(zg,z1)) = =z
hello.1 (hello(xg,z1)) = =z1
ack.0 (ack(yo,y1,¥2)) = Yo
ack.1 (ack(yo,y1,92)) = u1
ack.2 (ack(yo,¥y1,92)) = 2

Public-key Encryption

The protocol relies on public-key encryption

= We use function symbols for decryption, encryption,
and public-key derivation, with a single equation:

decrypt(encrypt(x, pk(y)),y) = =

= There is no inverse for pk(_), so one can reveal a derived
public key and keep the private key secret.

= We model a “signing” principal using a context and
an active substitution

Pgl] € vs.({Kg=pk(s)}|[])

Equational Theory (Signature)

T.U,V, Vg, 1= terms
A, B,xq1,x0,... variable
c1, o, INity, accepty, connecty, ... name (channel)
N,Ny, K 1. .. name (crypto)
h(U,V) cryptographic hash
pk(U) public-key derivation
{T}y public-key encryption

decrypt(W, U)

hello(Ug, U1), ack(Vp, V1, Vo)
hello.0 (U),...,ack.2 (V)

0
U.v

private-key decryption

protocol message
field selector

empty set
set extension

Equational Theory (Axioms)

decrypt({z}pi(2),2) = @
hello.j Chello(zp, 1)) = x;
ack.j (ack(zp,z1,22)) = =z,
(0.2).x = 0.z
(z.y).z = (x.2).y

= Encryption is implicitly which-key concealing;
alternatively, we can add equations for the attacker:

get-key({7}z) = 2
test-key({z}:, 2)

true

Then, we retain secrecy and authentication, but not privacy

Roles and Principals

The protocol has two roles:
= The initiator (A) sending the “hello” message
= The responder (B) sending “ack” messages upon request

Each principal, X, consists of
= An instance of the protocol, Py

= An (abstract) user process U,
representing the application

It is essential to make explicit any interactions
between protocols and users. We rely on control channels

Roles and Principals (2)

An “API"” for our private authentication protocol:

initiator

inita(B)

connect 4({ B,

A

local

responder

ether

willing to talk
with any X € Sp

acceptp (A, K)

local

Network and Attacker (broadcast)

= Communication on public channels models broadcast
with an attacker that controls the network

= The attacker is the context; it may combine
= Low-level attacks on the network
= High-level attacks with any number of principals

= We sometimes represent passive attackers (eavesdroppers)
A vu.[M] u (M) (M)

. A’ abbreviates A — > Al

P v [M]

> A'implies A — v A’

The protocol (messages)

01

02

OK

def

def

def

def

{z1 = {hello(N4, A)} g}
{ro = {ack(N4, N, B)} 4}
{vo = Np}

{K =h(Ny, Np)}

The protocol (processes)

def

Iq| Ry

linit4(B).vN 4. (ﬁ(xwﬁ | If4)

co(z2).

if 15 = {ack(N4,vNp, B)} 4 using K3
then connect (B, Ko)

lc1(z1 \ D).if x1 fresh

and x1 = {hello(vN 4,vA)} g using Kgl
and A € Sp

then vNpg. (®<x202> | acceptp(A, KO'K>)
else UNp.co(x203)

The protocol (syntactic sugar)

For decryption, we use pattern matching, and write
if © = {ack(N4,vNp, B)} 4 using Kgl then P else QQ
for the process
— —1
N, {NB — ack.1 (decrypt(aj, K))} |
if © = {ack(Ny4, Np, B)} 4 then P else Q

For filtering duplicate messages, we write
ey (x \ V).af x fresh then P else () for the process
ve. (V) | lep(x).c(s).(¢{(s.z) | if « € s then Q else P))

Compliant configurations

= We need to make hypothesis on users

= A principal is compliant when it uses its decryption key
only according to our protocol

= Access to the control channels is restricted to that principal

= A single compliant principal is of the form

def
Qa = vWa.(Un| PKy[PA])

with V4 & {initx , accepty , connecty }

Compliant configurations

= We need to make hypothesis on users

= A principal is compliant when it uses its decryption key
only according to our protocol

= Access to the control channels is restricted to that principal

= A single compliant principal is of the form

def
Qa = vWa.(Un| PKy[PA])

= An assembly of compliant principals with a single compound
user protocol is of the form

Q & I/V.(U|P)

def
P = T[lacc PKs[PA]

Authentication and Secrecy

Theorem 1 [Complete runs]
Let A B e C.
f P L P'and A € S, then P’—>P’l | .

f P2 P'and A ¢ Sg, then P! “— P! | ¢~
Conversely,
if P = P then A€ Sgand P = P,y | ¢

def vxi.cqlx vxro.colx
def 1-c1l 1]/_>* 2.co[2]/

exch
w, def /n/tA(B) eacch vK.acceptg(A, K) connect 4(B, K)

w™ def II’NTA(B) eajch

W, g
o = N (01| vNp.(o2| oK)
o~ £ (vNao1) | (WNp.o3)
0° £ (vN4.09) | (vNp.o3)

P,1 is P with the message = in Rp’s filter.

Authentication and Secrecy

Theorem 2 [Key fr
Forany A, B € C, if

Py

An “ideal result” with no IDs:
two fresh unrelated messages
+ a fresh session key

~; P'|¢° | vN{K = N}
~ P |y |vNA{K = N}

The result of a

“successful run”:

The result of a “failed runi

@o intercepted messages

two intercepted messagej
+ a computed session key
N

Authentication and Secrecy

= We can reformulate these results for two principals,
using transitions only for the network:

_ mhat can be observed
Py | Pg | inity(B) by a passive attacker

_vzy.cilza],

[4 [4

« vT2.c2[z2],

7 >zl

\
4

Pyl Pgle°|
vN.(connects(B, N) | acceptg(A, N)) when A € Sp

0 otherwise
One of the two outcomes
for the protocol run

Authentication and Secrecy

Theorem 3 [Responder authentication]
Let P 2 P’ such that (1) p has no internal communica-
tion on ¢; or ¢o; (2) P’ has no output on channel accepts.

If connect 4(B, K) occurs in p,
then P <%y P’ for some permutation wn of p.

= Intuitively, we have a correspondence assertion on control
actions: whenever U, receives a connect, message...

= A initiated the session with B

= B accepted the session with A

= Both parties are sharing a key as good as a fresh name
= Intercepted messages x,, X, are unrelated to A, B and K.

Privacy Properties?

= Previous results provide privacy guarantees
for each run of the protocol

= We want to reason about the observational equivalence
of arbitrary compliant user processes, running multiple
sessions with compliant and non-compliant principals

def
P = [lacc PK4[PA]

Q € w.(U|P)

= Overall, identity protection depends on both U and P
= A can contact E (or accepts E’s session) on its own
« If A contacts B then E, E can infer the presence of B

= How to characterize the behaviour of U in this special context?

Blinded Transitions (1)

We capture the “information leaks” of the protocol
using abstract states and ad hoc transitions

= We write p:U for the user process U in state p
= We let p range over finite maps from integers to sessions:

A B: an offer from A not yet considered by B.

A B K;: an offer accepted by B with key K; (A € Sp).
A B — : an offer rejected by B (A & Sp).

A FE: an offer from A to some non-compliant E.

Blinded Transitions (2)

INIT —

o
pIU nit v

nment
detects a new
“opaque” session
attempt (no A,B).
N

CONNECT

p[iI%ABKi]Z
pli— AB —]:

o a(B) o The user protocol attempts
a session from A to B. -
pli— A B]: U’

/T he enviro/\

cel The session details are recorded |)if A ¢ Sp
into the abstract state. it A¢Z Sp

p:U | vN.acceptg(A,N)if A € Sp
p:U IfA%SB

connect 1 .
I4

U
U

p:vE;. (U | connecta(B, K;))

connect
»p:U

Blinded Transitiopsz

The environment enables
some progress on session i

A

ACCEPT
pli — AB]:U

ACCEPT-FAKE
acceptB(A)\

CONNECT
pli— ABK;]:U

pli—+AB—]:U

accept i {
=

p:U|v
p:U

connect 1 .
I4

connect i
4

The session details are upda
in the session state

™\

Actual progress depends on
the hidden A and B, and may
yield a new key & an accept

message (or not)

.

7

pli — A B K;]:U | acceptg(A, K;) if A€ Sp
pli— AB—]:U

if A g Sp

t@

p:vE;. (U | connecta(B, K;))
p:U

An Equivalence for User Processes

Private bisimilarity (=) is the largest symmetric
relation R on extended processes with control state
such that, whenever 7'y R T with Ty = py: Uy:

1. vV, Uy =5 vV).Uo,
2.if T — Ty, then Tp, —* TS and T R T%
3.if Ty L 71 and fu(vy) ... then

Ty —*L—*Thand T} R T}

a standard definition of labelled
bisimilarity, for blinded transitions

An Equivalence for User Processes (2)

Lemma [Privacy] If U; ~} Us, then Q(U1) ~; Q(Us).

= The hypothesis deals with arbitrary user processes
It does not depend on the protocol (just its interface)
and does not (necessarily) involve cryptography

= The resulting equivalence states that the compliant
configurations are undistinguishable, for all contexts

Some Derived Privacy Properties

= Consider user processes U,, U,
that consist only of init messages.

Informally, these user protocols attempt to open many sessions
in parallel, and do nothing visible after key establishment.

Such processes are (privately) equivalent when...
1. They have the same number of messages
>. They have the same messages to non-compliant principals
. They have the same non-compliant principals in Sg

= Two session attempts are privately equivalent as soon as their
triggered processes are privately equivalent (optimal)

= We can add or remove silent compliant participants

Private Authentication (Summary)

= Protocol designers define message formats, rather than
protocol properties. Writing down precise statements for their
intended properties is quite hard, but often reveals problems.

= There is a tension between privacy and authentication,
with useful trade-offs in protocol design

= Privacy is more “global” than authentication and secrecy;
it requires a fine model of user behaviour

= We studied a simple protocol with strong privacy properties
= We used an applied pi calculus model
= We relied on contexts & equivalences to reason on privacy

= We related any user behaviours to their visible effect
for the attacker using blinded transitions

Questions on Privacy ?

