Summer School on the Foundations of Security, University of Oregon, June 16—26 2003

Cryptographic Protocols

Cédric Fournet
Microsoft Research

Contents

Main subject: cryptographic protocols for distributed communications

Tools from concurrent programming theory: the applied pi calculus

Detailed applications and examples: private authentication key-exchange for IPSEC (JFK) web services security secure implementations

Just Fast Keying?

W. Aiello, S.M. Bellovin, M. Blaze, R. Canetti, J. Ionnidis, A.D Keromytis, and O. Reingold. Efficient, DoS Resistant, Secure Key Exchange for Internet Protocols. In *ACM Conference on Computer and Communications Security (CCS'02)*, November 2002.

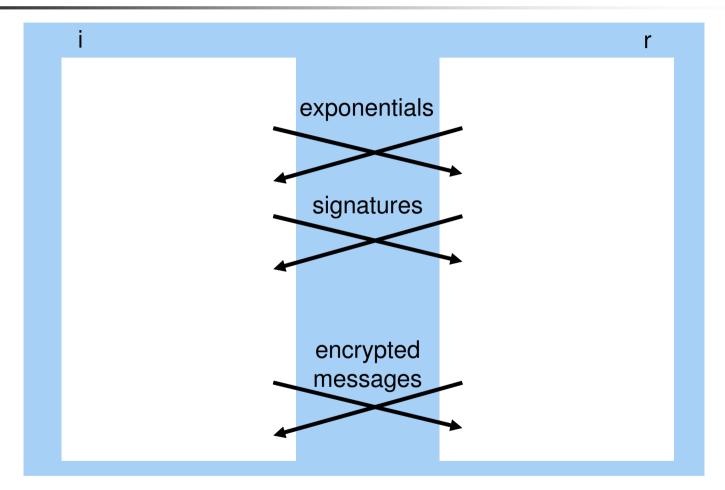
Session establishment (again)

- Two parties want to open a secure session
 - Telnet (SSH)
 - Web connection (SSL, TLS)
 - IP tunnel (VPN)
 - Wireless network
- They need to
 - Generate a shared secret (the "session key")
 - Agree on many parameters
 - Verify each other's identity
- Attackers might eavesdrop, delete, and insert messages, may impersonate principals,... in order to
 - gain information
 - confuse or hinder the participants

Building blocks

- Shared-key encryption
- Cryptographic hash (HMAC)
- Tokens (or cookies)
- Diffie-Hellman computation
- Public-key signature

Two-round Diffie-Hellman



Against active attackers,
 first create a shared key, then authenticate

Complications

- Configuration
 - Different security needs according to the application
 - Many cryptographic algorithms to choose from
 - Many flavours of authentication (PKIs)
 - Different modes
- Concurrency
 - Parallel sessions
 - Various principals using several shared proxies
- Efficiency concerns
 - Round-trips are expensive
 - Cryptography can be expensive
- Session management
 - Key derivation
 - Rekeying
 - Dead peer detection

IKE and its successors

- IKE (Internet Key Exchange)
 - Session management for IPSEC
 - Quite secure
 - Some concerns
 - Too complicated
 - Inefficient (too many messages & expensive operations)
 - Poor resistance against denial of service
- The IETF is considering a successor for IKE, (now merging the different proposals into IKEv2)
- JFK (Just Fast Keying) is a simple proposal that incorporates several new mechanisms. http://www.ietf.org/internet-drafts/draft-ietf-ipsec-jfk-04.txt

Design goals for JFK

Security

"The key should be cryptographically secure, according to standard measures of cryptographic security for key exchange"

- Simplicity
- Resistance to Memory DoS
- Resistance to CPU DoS
- Privacy

Identity protection for some parties, against some classes of attacks

- Efficiency
- Non-negotiated
- "Flexible" perfect forward secrecy
 With reuse of exponentials
- Plausible deniability

These goals are (sometimes) contradictory.

Using JFK



The JFKr protocol

```
Msg 1 i \rightarrow r: n_i, g \hat{d}_i
 Msg 2 r \rightarrow i: n_i, n_r, g^{\dagger}d_r, p_r, h_t
 Msg 3 i \rightarrow r: n_i, n_r, g \hat{d}_i, g \hat{d}_r, h_t, e_i, Hmac\{k_a\}(i', e_i)
 Msg 4 r \rightarrow i: n_i, n_r, e_r, \text{Hmac}\{k_a\} ('r', e_r)
where h_t = \operatorname{Hmac}\{k_t\}(q^{\hat{}}d_r, n_r, n_i, \operatorname{IP}_i)
             e_i = \text{Encrypt}\{k_e\}(\mathsf{id}_i,\mathsf{id}'_r,sa_i,s_i)
             e_r = \operatorname{Encrypt}\{k_e\}(\operatorname{id}_r, sa', s_r)
             s_i = Sign\{i\}(n_i, n_r, g^{\dagger}d_i, g^{\dagger}d_r, p_r)
             s_r = \operatorname{Sign}\{r\}(g\hat{d}_r, n_r, g\hat{d}_i, n_i)
            k_u = \operatorname{Hmac}\{g(d_i d_r)\}(n_i, n_r, u') \text{ for } u = a, e, v'
```

The JFKr protocol: flexible PFS

```
Msg 1 i \rightarrow r: n_i, g \hat{d}_i
 Msg 2 r \rightarrow i: n_i, n_r, g^{\dagger}d_r, p_r, h_t
 Msg 3 i \rightarrow r: n_i, n_r, g \hat{d}_i, g \hat{d}_r, h_t, e_i, Hmac\{k_a\}(i', e_i)
 Msg 4 r \rightarrow i: n_i, n_r, e_r, \text{Hmac}\{k_a\} ('r', e_r)
                                    (q^{\hat{}}d_r, n_r, n_i, \mathsf{IP}_i)
wher
        The pair of nonces is
       unique to this session (id_i, id'_r, sa_i, s_i)
            e_r = \text{Encrypt}\{\kappa_e\}(\text{id}_r, s) Many keys can be derived
           s_i = \operatorname{Sign}\{i\}(n_i, n_r, g) from the same exponentials s_r = \operatorname{Sign}\{r\}(g\hat{\,}d_r, n_r, g) for different usages
            k_u = \operatorname{Hmac}\{g(d_i d_r)\}(n_i, n_r, u') \text{ for } u = a, e, v'
```

The JFKr protocol: DoS

```
The responder uses an
                                                                authenticator against DoS
 Msg 1 i \rightarrow r: n_i, g \hat{d}_i
 Msg 2 r \rightarrow i: n_i, n_r, g^{\dagger}d_r, p_r, h_t
 Msg 3 i \rightarrow r: n_i, n_r, g^{\hat{}}d_i, g^{\hat{}}d_r, h_t, e_i, Hmac\{k_a\}('i', e_i)
 Msg 4 r \rightarrow i: n_i, n_r, e_r, \text{Hmac}\{k_a\} ('r', e_r)
where h_t = \operatorname{Hmac}\{k_t\}(g\hat{d}_r, n_r, n_i, \operatorname{IP}_i)
            e_i = \operatorname{Encrypt}\{k\}'', \operatorname{id}'_r, sa_i, s_i\}
     The responder can check that
    the contents of msg 3 matches the contents of msg 1 & 2 (i, g \hat{d}_r, p_r)
            k_u = \operatorname{Hmac} \{g(\mathbf{d_i} d_r)\}(\mathbf{n_i}, n_r, \mathbf{u'}) \text{ for } u = a, e, v
```

The JFKr protocol: Privacy

```
Msg 1 i \rightarrow r: n_i, g \hat{d}_i
 Msg 2 r \rightarrow i: n_i, n_r, g^{\dagger}d_r, p_r, h_t
 Msg 3 i \rightarrow r: n_i, n_r, g \hat{d}_i, g \hat{d}_r, h_t, e_i, Hmac\{k_a\}('i', e_i)
 Msg 4 r \rightarrow i: n_i, n_r, e_r, Hma Identities are always
                                                                         encrypted
where h_t = \text{Hmac}\{k_t\}(g\hat{d}_r, n_r, n_i, \mathbb{F}_{t})
            e_i = \text{Encrypt}\{k_e\}(\text{id}_i, \text{id}'_r, sa_i, s_i)
            e_r = \operatorname{Encrypt}\{k_e\}(\operatorname{id}_r, sa', s_r)
            s_i = Sign\{i\}(n_i, n_r, q^{\dagger}d_i, q^{\dagger}d_r, p_r)
            s_r = \operatorname{Sign}\{r\}(\hat{q} d_r, n_r, \hat{q} d_i, n_i)
           k_u = \operatorname{Hmac}\{g(d_i d_r)\}(r)
                                                         Identities are never signed
```

The JFKr protocol

```
Msg 1 i \rightarrow r: n_i, g \hat{d}_i
 Msg 2 r \rightarrow i: n_i, n_r, g^{\dagger}d_r, p_r, h_t
 Msg 3 i \rightarrow r: n_i, n_r, g \hat{d}_i, g \hat{d}_r, h_t, e_i, Hmac\{k_a\}(i', e_i)
 Msg 4 r \rightarrow i: n_i, n_r, e_r, \text{Hmac}\{k_a\} ('r', e_r)
where h_t = \operatorname{Hmac}\{k_t\}(q^{\hat{}}d_r, n_r, n_i, \operatorname{IP}_i)
             e_i = \text{Encrypt}\{k_e\}(\mathsf{id}_i,\mathsf{id}'_r,sa_i,s_i)
             e_r = \operatorname{Encrypt}\{k_e\}(\operatorname{id}_r, sa', s_r)
             s_i = Sign\{i\}(n_i, n_r, g^{\dagger}d_i, g^{\dagger}d_r, p_r)
             s_r = \operatorname{Sign}\{r\}(g\hat{d}_r, n_r, g\hat{d}_i, n_i)
            k_u = \operatorname{Hmac}\{g(d_i d_r)\}(n_i, n_r, u') \text{ for } u = a, e, v'
```

Some minor problems

Identity protection?

- Two variants with different trade-offs
 - "JFKi protects id_i against active attacks"
 - "JFKr protects id_r against active attacks and protects id_i against passive attacks"
- What is guaranteed? Does it make sense for the responder? This depends on relations between principals and roles
- Various leaks:
 - An attacker can perform traffic analysis using nonces, IP addresses, and insider knowledge (cf. private authentication)
 - A passive attacker can observe shared exponentials
 - if exponentials are re-used by a single principal, all these sessions involve the same principal
 - an active attacker (or an insider) may obtain the identity for one of these sessions

. . .

Identity protection in JFKr?

```
\begin{array}{lll} \operatorname{Msg} & 1 & i \rightarrow r : & n_i, g \hat{} d_i \\ \operatorname{Msg} & 2 & r \rightarrow i : & n_i, n_r, g \hat{} d_r, p_r, h_t \\ \operatorname{Msg} & 3 & i \rightarrow r : & n_i, n_r, g \hat{} d_i, g \hat{} d_r, h_t, e_i, \operatorname{Hmac}\{k_a\}(\text{'i'}, e_i) \\ \operatorname{Msg} & 4 & r \rightarrow i : & n_i, n_r, e_r, \operatorname{Hmac}\{k_a\}(\text{'r'}, e_r) \\ \end{array} where h_t = \operatorname{Hmac}\{k_t\}(g \hat{} d_r, n_r, n_i, \operatorname{IP}_i)
```

An attacker E can

- 1. Intercept message 2
- 2. Initiate its own session with R with the same nonce n_i and its exponential
- 3. Swap the two messages 2
- 4. Guess id_r and proceed as usual
- 5. Observe messages 4

The responder accepts two sessions (I,R) and (E,R) only if E's guess is right

Fix: MAC the initiator exponential too

Non-negotiated?

- Usually, the cryptographic algorithms are negotiated: hash, encryption, certificates, compression, ...
 Some algorithms are weak (legacy, legal...), or even nil.
- The protocol must (at least) authenticate the negotiation, and also relies on these operations for authentication! Cf. SSL
- "JFK is non-negotiated": the responder demands specific algorithms, the initiator takes it or leaves it. Still...
 - If the responder demands weak algorithms, there is no guarantees at all.
 - What if the attacker modifies the responder's demands?
 - Recent fix in JFKi: sign the algorithm demands

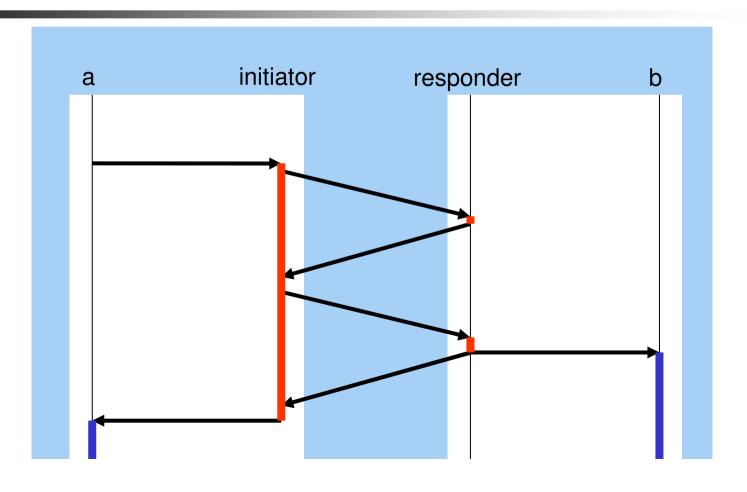
Caching message 3?

- "The responder caches answers to identical messages 3"
- More precisely, the responder should answer just once for every valid token received in a message 3.
- Otherwise, several attacks appear

Caching message 3?

```
Msg 1 i \rightarrow r: n_i, g \hat{d}_i
 Msg 2 r \rightarrow i: n_i, n_r, g^{\dagger}d_r, p_r, h_t
 Msg 3 i \rightarrow r: n_i, n_r, g \hat{d}_i, g \hat{d}_r, h_t, e_i, Hmac\{k_a\}(i', e_i)
 Msg 4 r \rightarrow i: n_i, n_r, e_r, \text{Hmac}\{k_a\} ('r', e_r)
where h_t = \operatorname{Hmac}\{k_t\}(g\hat{d}_r, n_r, n_i, \operatorname{IP}_i)
           e_r = \begin{cases} e_i = \\ e_r = \end{cases} An active attaclar ould trick R sions with
           s_i = the same key
           s_r = \log_{10}
                                        An attacker E could obtain a valid
           k_u = \operatorname{Hmac}\{
                                             message 3 and modify eg the
                                             exponential
                                             (an easy, "blind" DoS attack
                                             against R)
```

A model of JFK in applied pi



Public key signature

To model public-key signature, we construct the public verification key form the private signing key:

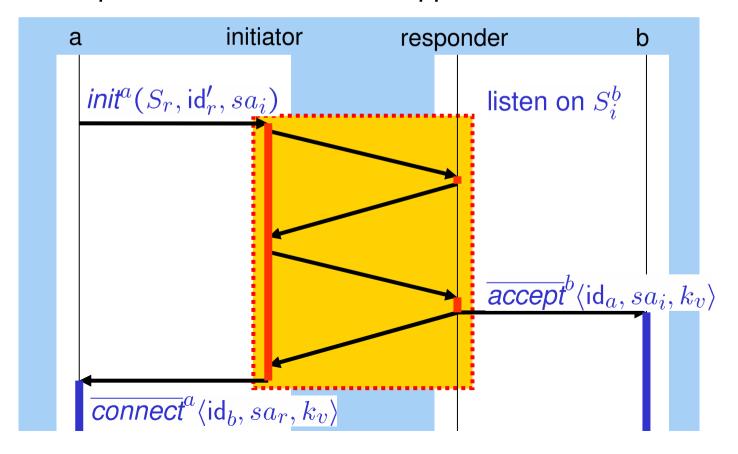
$$Verify{Pk(k), Sign{k}(v)}(v) = True$$

 Using active substitutions, we can write a process that exports the public key, and keeps the signing key secret.

$$\nu s. \Big(\{ pk = \mathsf{Pk}(s) \} \mid \overline{a} \langle \mathsf{Sign}\{s\}(M) \rangle \Big)$$

Control actions

- We distinguish between
 - principals (signers)
 - JFK roles: initiator, responder (exponentials)
- We provide an API between applications & JFK



Grammar for terms

```
M, N ::=
                         terms
                              variable
    x, y, z
    m, n, s, t
                              name
    B^{\hat{}}X
                              exponential
    Pk(K)
                              public key (and identity)
    S\{K\}(T)
                              public-key signature
    V\{K,S\}(D)
                              public-key signature verification
    H\{K\}(T)
                              keyed crypto hash function
    \mathsf{E}\{K\}(T)
                              shared-key encryption
    \mathsf{D}\{K\}(T)
                              shared-key decryption
    \mathsf{T}_e, \mathsf{T}_a, \mathsf{T}_v
                             constant tags for key derivation
    1(-,-), 2(-,-,-,-), \dots constructors for JFK messages
    F_1^1(_-), \ldots, F_4^2(_-) selectors for JFK messages
                             sets (for authorized identities)
    K \in S
```

Equations for terms

$$(g\hat{\ }y)\hat{\ }z = (g\hat{\ }z)\hat{\ }y \quad \text{Diffie-Hellman exponentials}$$

$$\text{V}\{\mathsf{Pk}(k),\mathsf{S}\{k\}(v)\}(v) = \mathsf{True} \quad \mathsf{Public key signature verification}$$

$$\mathsf{D}\{k\}(\mathsf{E}\{k\}(v)) = v \quad \mathsf{Shared-key decryption}$$

$$\mathsf{F}_n^i(n(v_1,\ldots,v_i,\ldots)) = v_i \quad \mathsf{Selection of message fields}$$

$$K \in \{\ldots,K,\ldots\} = \mathsf{True} \quad \mathsf{Set membership (authorization)}$$

$$\mathsf{RecoverKey}(\mathsf{S}\{k\}(v)) = \mathsf{Pk}(k) \quad \mathsf{Public key recovery *}$$

$$\mathsf{RecoverText}(\mathsf{S}\{k\}(v)) = v \quad \mathsf{Signed text recovery *}$$

JFK configuration initiator responder

$$JFK = \prod_{a \in \mathcal{L}} PK^a[I^a|R^a] \qquad \qquad JFK \text{ for principals } a \in \mathcal{L}$$

$$PK^a[_] = \nu a.\{id^a = Pk(a)\} \mid [_] \qquad \qquad \text{Signing key } a \text{ and identity } id^a$$

$$D_z[_] = \nu d_z.\{x_z = g\hat{}\ d_z\} \mid [_] \qquad \qquad \text{DH secret and exponential}$$

$$C_z = \nu h.\{h = x_{\overline{z}}\hat{}\ d_z\} \mid \prod_{u = a, e, v} K_u \qquad \text{DH computation}$$

$$K_u = \{k_u = H\{h\}(n_i, n_r, T_u)\} \qquad \text{derivation of key } k_u$$

Only a specific subset of principals appear in \mathcal{L} These are "compliant principals".

JFK configuration initiator responder

$$\begin{array}{lll} I &=& \prod_{\widetilde{x_i}} D_i \left[! \mathit{init}^a(S_r, id'_r, sa_i).I_1 \right] & \text{init handler (for a)} \\ I_1 &=& \nu n_i.\langle 1(n_i, x_i) \rangle \, | & \text{send message 1} \\ & (2(n'_i, n_r, x_r, p_r, h_t)).I_3 & \text{wait for message 2} \\ I_3 &=& \nu k_e \, k_a \, k_v.C_i \, | & \text{compute the keys} \\ & \nu s_i \, e_i \, h_i. & \text{build message 3} \\ & \{ s_i = \mathsf{S} \{a\} (n_i, n_r, x_i, x_r, p_r) \} \, | \\ & \{ e_i = \mathsf{E} \{p_r, k_e\} (id_a, id'_r, sa_i, s_i) \} \, | \\ & \{ h_i = \mathsf{H} \{k_a\} (\mathsf{T}_i, e_i) \} \, | & \text{send message 3} \\ & \{ 3(n_i, n_r, x_i, x_r, h_t, e_i, h_i) \rangle & \text{send message 3} \\ & \{ 4(e_r, h_r)).I_5 & \text{wait for message 4} \\ \end{array}$$

JFK configuration initiator responder

$$R = \prod_{\widetilde{x_r}} \nu c_t \, k_t. D_r \left[\begin{array}{l} !(1(n_i, x_i)).R_2 \, | \\ !(3(n_i, n_r, x_i, x_r, h_t, e_i, h_i)).R_4 \end{array} \right] \quad \text{responder (for a)}$$

$$R_2 = \nu n_r \, h_t. \{ h_t = \mathsf{H}\{k_t\}(x_r, n_r, n_i) \} \, | \, \overline{c_t} \langle h_t \rangle \, | \quad \text{token}$$

$$\langle 2(n_i, n_r, x_r, p_r, h_t) \rangle \qquad \qquad \text{send message 2}$$

$$R_4 = if \, \mathsf{H}\{k_t\}(x_r, n_r, n_i) = h_t \, \text{then}$$

$$c_t(h_t').if \, h_t' =$$

Security properties ?

- Main results:
 - In any state, the protocol can establish a secure session between compliant principals
 - There are causality relations between control actions (aka authentication)
 - When both protocols are compliant, the key is secure (aka perfect forward secrecy)
- Stated independently of low-level messages
- Compliant principals are also part of the "attacker"
- Additional results:
 - Some identity protection
 - Some DOS properties
 - Some plausible deniability

Operational correctness

Basic Operational Correctness

The protocol uses internal steps:

- low-level communications
- tests after receiving messages

with $id_b \in S_r$. We:

ocol configuration with compli-

At the end of the protocol, we can use an observational equivalence to simplify the established keys.

$$\frac{\mathsf{init}^a(S_r,\mathsf{id}_r',sa_i)}{\nu k_v.\overline{\mathsf{accept}}^b\langle \mathsf{id}_a,sa_i,k_v\rangle} \underset{\longleftarrow}{\triangleright} \frac{\overline{\mathsf{connect}}^a\langle \mathsf{id}_b,sa_r,k_v\rangle}{} \xrightarrow{\mathsf{connect}^a}$$

We start from any reachable

configuration of the post & running sess

Each party gets the other's identity & parameters, shared key.

We end up exactly in the original configuration!
In particular, kv is a perfect key.

Operational correctness with eavesdropping

Let S be a running protocol configuration with compliant principals \mathcal{L} . Let $a, b \in \mathcal{L}$ and S_r be a set of terms with $id_b \in S_r$. We have:

$$S \xrightarrow{\text{init}^{a}(S_{r}, \text{id}_{r}, sa_{i})} \underbrace{\nu n_{i}.[1(n_{i}, x_{i}^{a})]}$$

In addition, the environment can observe mostly-opaque messages, still unrelated to the session key.

$$\frac{\nu n_r h_t.[2(n_i, n_r, x_r^b, p_r^b, h_t)]}{\nu e_i h_i.[3(n_i, n_r, x_i^a, x_r^b, h_t, e_i, h_i)]} \\
\frac{\nu e_r h_r.[4(e_r, h_r)]}{} \\
\rightarrow \frac{4}{\epsilon} \frac{\nu k_v.\overline{accept}^b \langle id_a, sa_i, k_v \rangle}{} \frac{\overline{connect}^a \langle id_b, sa_r, k_v \rangle}{} S$$

where x_i^a is an exponential defined by I^a , x_r^b and p_r^b are an exponential and the preferences defined by R^b , and n_i , n_r , h_t , e_i , h_i , e_r , h_r , k_v are all fresh names.

Correspondence properties

Let S_0 be an initial configuration with compliant principals \mathcal{L} and labeled transitions $S_0 \stackrel{\mu}{\to}^* S$ with no immediate output on any channel accept in S.

The actions occurring in μ have the following properties:

- 1. For any $\beta = \overline{accept}^b \langle id_a, sa_i, k_v \rangle$, we have $id_a \in S_i^b$.
- 2. For any β with $a \in \mathcal{L}$, there is a distinct $\alpha = \operatorname{init}^a(S_r, \operatorname{id}_r, sa_i)$ with $\operatorname{id}_b \in S_r$.
- 3. For any $\gamma = \overline{\text{connect}}^a \langle \text{id}_b, sa_r, k_v \rangle$ there is a distinct $\alpha = \text{init}^a(S_r, \text{id}_r, sa_i)$ with $\text{id}_b \in S_r$.
- 4. For any γ with $b \in \mathcal{L}$, there is a distinct $\beta = \overline{accept}^b \langle id_a, sa_i, k_v \rangle$.
- 5. For any two other control actions that output a session key (either $\overline{\text{connect}}^a\langle -, -, k_v \rangle$ or $\overline{\text{accept}}^b\langle -, -, k_v \rangle$), the keys are equationally different.

Anti-DoS properties

 We characterize "round-trip communication" as a trace property:

$$\nu n_r h_t.(2(_, n_r, _, _, h_t))...\langle 3(_, n_r, _, _, h_t, _, _)\rangle$$

and show an injective correspondence property from (informally) expensive responder steps to round-trips.

- The use of a token is a refinement, modelled as an equivalence
 - The basic model uses local responder state after message 1 & 2
 - The refined model uses the token instead

This is much like the parallel law for CCS $(!P \mid !Q) \approx !(P \mid !Q)$

Plausible deniability

- What gets signed ?
 - Authentication for an active party
 - Deniability from some (data) evidence
- Example:
 - a opens a session with e (which may not comply with JFK)
 - e tries to prove that a opened the session from his data.
 - a refutes e's evidence by exhibiting a trace where
 - a complies with JFK
 - a never tries to open a session with e
 - e produces the same evidence

for instance, a plausible trace may be

- a opens a session with a compliant b ≠ e
- e is an active attacker that impersonates b

Summary on JFK

- JFK is a state-of-the-art protocol, well-written but message-centric and sometimes imprecise
 - We had to interpret the spec and invent a service API
 - Writing down a precise definition for the intended properties of the protocol is difficult (and reveals problems)
- We wrote a "formal implementation" of JFKr in applied pi
- We obtained a formal counterpart for each informal claim, against a large class of active attackers (=contexts)

Questions?

See also http://research.microsoft.com/~fournet/