
Language-based
Information-flow Security

Steve Zdancewic
University of Pennsylvania

Zdancewic 2

Confidential Data

Networked information systems:
PCs store passwords, e-mail, finances,...
Businesses rely on computing infrastructure
Military & government communications

Security of data and infrastructure is
critical [Trust in Cyberspace, Schneider et al. '99]

How to protect confidential data?

Zdancewic 3

Don’t take my word for it…

“Users should be in control of how their data is
used. Policies for information use should be clear
to the user. Users should be in control of when
and if they receive information to make best use
of their time. It should be easy for users to
specify appropriate use of their information
including controlling the use of email they send.”

--Bill Gates, January 15, 2002

Zdancewic 4

Technical Challenges
Software is large and complex

Famous bugs: e.g. MS HotMail
Buffer overflows

Security policies are complex
Mutually distrusting parties

Requires tools & automation

Look at traditional security concerns to set the
context…

Confidentiality
Integrity
Availability

Zdancewic 5

Quality 1: Confidentiality

Keep data or actions secret.
Related to: Privacy, Anonymity, Secrecy
Examples:

Pepsi secret formula
Medical information
Personal records (e.g. credit card information)
Military secrets

Data

Zdancewic 6

Quality 2: Integrity

Protect the reliability of data against
unauthorized tampering
Related to: Corruption, Forgery, Consistency
Example:

Bank statement agrees with ATM transactions
The mail you send is what arrives

Data

Zdancewic 7

Quality 3: Availability

Resources usable in timely fashion by
authorized principals
Related to: Reliability, Fault Tolerance, Denial
of Service
Example:

You want the web-server to reply to your requests
The military communication devices must work

Data

Zdancewic 8

Access Control

Access control
e.g. File permissions
Access control lists or capabilities
Modern spin: Stack inspection

Drawback:
Does not regulate propagation of
information after permission has been
granted.

Zdancewic 9

Cryptography

Essential for:
Protecting confidentiality & integrity of data
transmitted via untrusted media
Authentication protocols

Drawbacks:
Impractical to compute with encrypted
data!

There are secret sharing techniques.

Doesn’t prevent information propagation
once decrypted

Zdancewic 10

End-to-end Solution

Rely on access control & encryption
Essential (authentication, untrusted
networks, etc.)

But… also use language techniques:
verify programs to validate information
flows that they contain.

Zdancewic 11

Benefits (of PL-based mechanisms)

Explicit, fine-grained policies
Level of single variable if necessary
TAL/PCC level

Program abstractions
Programmers can design custom policies

Regulate end-to-end behavior
Information Flow vs. Access Control

Tools: increase confidence in security

Zdancewic 12

Focus of These Lectures

Confidentiality (& weak integrity)
How to define information security?
How to enforce it?

Type Systems for information-flow security
Proof of security

Scaling it up
Polymorphism
Datatypes
State & Effects

Challenges & practicality
Decentralized label model (Jif)
Downgrading (declassification)

Zdancewic 13

Downloadable financial planner:

Information-flow Policy

Network

Disk

Accounting
Software

Access control insufficient
Encryption necessary,but not end-to-end

Zdancewic 14

Noninterference

Accounting
Software

Private data does not interfere with
network communication
Baseline confidentiality policy

[Reynolds ’78, Goguen&Meseguer ’82,’84]

Network

Disk

Zdancewic 15

Comparison to Secrecy in Spi

Spi considers secrecy of atomic keys
Keys can be manipulated in limited ways
(i.e. encryption & decryption)
Cryptographic primitives are assumed to be
perfect (or probabilistically secure)
Not possible to leak partial information

Contrast to arbitrary datatypes
Can be manipulated in many ways
Possible to leak partial information

Zdancewic 16

Noninterference

Proved by:
Logical relations
Bisimulation techniques

P

H1

H’1

L

L’

P

H2

H’2

L

L’

≈low

Zdancewic 17

Formalizing Noninterference
Original formulation: Trace-based models of
computation

Goguen & Meseguer 1982
McClean – late 1980’s early 1990’s

Dorothy Denning proposed program analysis
techniques

Mid-late 1970’s (but no proofs of correctness)

Experiments with Multics
Volpano & Smith 1996

Type system for noninterference

See Sabelfeld & Myers 2003 for survey.

Zdancewic 18

External Observation

External behavior
Observations seen by someone “outside” the system
Outputs (i.e. strings printed to terminal)
Running time
Power or memory consumption
Comments
Variable names

Very hard to regulate!
There is always some attack below the level of
abstraction you choose.
But… attacks against external behavior tend to be
difficult to carry out and/or have low bandwidth

Zdancewic 19

Internal Observation

Internal behavior
At the programming language level of
abstraction
Note that many “external observations”
can be internalized by enriching the
language (e.g. add a clock)

Observational equivalence
e1 ≈ e2 iff for all C[]. C[e1] = C[e2]
C[e1] →* v iff C[e2] →* v

Zdancewic 20

Observations

Final output of the program.
Pure lambda calculus

Evaluation order
Lambda calculus with state

Thread scheduling decisions
Multithreaded languages with
state/message passing

Zdancewic 21

Low Equivalence

Captures what a “low-security”
observer can “see”
Example: Suppose program states
consist of pairs: high * low

(“attack at dawn”, 3) ≈low (“stay put”, 3)

(“attack at dawn”, 3) ≈low (“stay put”, 4)

Zdancewic 22

Lattice Model of Policies

Proposed by Denning ‘76
Use a lattice of security labels

Higher in lattice is more “confidential” or
“secret”
Use for order relation
Use for join (l.u.b.)
Use for meet (g.l.b.)

Prototypical example: low high

Zdancewic 23

Simply-typed secure language

t ::= bool | s → s types
s ::= t{l} secure types

v ::= x | true | false values
| λx:s.e

e ::= v values
| (e e) application
| e ⊕ e primitive op.
| if e then e else e conditional

Zdancewic 24

Semantics

Large step operational semantics

Static semantics
Lattice lifted to a subtyping relation
“Standard” information-flow type system
Heintze & Riecke’s SLam calculus POPL’98
Pottier & Conchon ICFP’00

Zdancewic 25

Noninterference Theorem

x:t{hi} e : t’{low}

v1, v2 : t {hi}

hi low

If

then
e{v1/x} ⇓ v

iff
e{v2/x} ⇓ v

Zdancewic 26

Proof

Uses a logical relations argument
Two terms are related at a security
level L if they “look the same” to
observer L

Define logical relations
Subtyping lemma
Substitution lemma

Zdancewic 27

Scaling Up

Polymorphism & Inference
Sums
State and effects

Simple state
References

Termination & Timing

Zdancewic 28

Polymorphism & Inference

Add quantification over security levels
∀L::label. (bool{L} → bool{L}){L}
Reuse code at multiple security levels.

Inference of security labels
Type system generates a set of lattice
inequalities
Equations have the form l l1 … l2
Constraint of this form can be solved
efficiently

Zdancewic 29

Polymorphism in Flow Caml

Lists in Flow Caml
[Vincent Simonet & François Pottier ’02,’03]

Base types parameterized by security
level bool{low} = low bool
Type of lists also parameterized:

∀’a::label. ∀’L::type. (‘a, ‘L) list

x1 : hi int
[1;2;3;4] : ('L int, 'M) list
[x1; x1] : (hi int, 'L) list

Zdancewic 30

Example: List Length

Length does not depend on contents of
list:

let rec length = function
[] -> 0

| _ :: tl -> 1 + length tl
:
(‘a, 'M) list -> 'M int

Zdancewic 31

Example: has0

Lookup depends on both contents and
structure of the list:

let rec has0 = function
[] -> false

| hd :: tl -> hd = 0 || has0 tl
:

('L int, 'L) list -> 'L bool

Zdancewic 32

Sums & Datatypes

In general: destructors reveal information
Accuracy of information-flow analysis is
important [Vincent Simonet ’02]

Suppose x:bool{L1}, y:bool{L2}, z:bool{L3}

What is label of i?

datatype t = A | B | C
let v = if x then (if y then A else B)

else (if z then A else C)
let i = case v of

A | B -> 1
| C -> 0

Zdancewic 33

Simple State & Implicit Flows

if (a>0) {
b := 4;

}

int{high} a;
int{low} b;
...

PC Label

{low}

{low} {high}={low}

{low}

Zdancewic 34

Simple State & Implicit Flows

if (a>0) {
b := 4;

}

int{high} a;
int{low} b;
...

PC Label

{low}

{low} {high}={high}

{low}To assign to variable with
label L, must have

PC L.

Zdancewic 35

Full References: Aliasing

h:int{high}

let lr = ref 3 in
let hr = lr in

hr := h

Information leaks through aliasing:
Both the pointer and data pointed to can
cause leaks.

Zdancewic 36

Two more leaks

h:int{high}

let lr1 = ref 3 in
let lr2 = ref 4 in
let lr' = if h then lr1 else lr2 in

l := !lr'

let lr1 = ref 3 in
let lr2 = ref 4 in
let lr' = if h then lr1 else lr2 in

lr' := 2

Zdancewic 37

Secure References

t ::= … | s ref types
s ::= t{l} secure types

v ::= … | r heap pointers

e ::= …
| ref e reference alloc.
| !e dereference
| e := e assignment

Zdancewic 38

Type System for State

Modified type system for effects
[Jouvelot & Gifford ’91]

pc label approximates control-flow info.

Notation: lblof(t{L}) = L
Invariant of this type system:

Γ [pc] e : s

Γ [pc] e : s ⇒ pc lblof(s)

Zdancewic 39

Typing Rules for State (1)

Γ [pc] if e then e1 else e2 : s

Γ [pc] e : bool{L}
Γ [pc L] e1,e2 : s

Γ [pc] true : bool{pc}

Zdancewic 40

Typing Rules for State (2)

Prevent information leaks through
assignment.

Recall that pc L

Γ [pc] e1 := e2 : unit{pc}

Γ [pc] e1 : s ref{L}
Γ [pc] e2 : s L lblof(s)

Zdancewic 41

Typing Rules for State (3)

Γ [pc] ref e : s ref{pc}

Γ [pc] e : s

Γ [pc] !e : s L

Γ [pc] e : s ref{L}

Zdancewic 42

Function Calls

if (a>0) {
f(4);

}

int{high} a;
int{low} b;
...

PC Label

{low}

{low} {high}={high}

{low}

Zdancewic 43

Function Calls

if (a>0) {
f(4);

}

int{high} a;
int{low} b;
...

PC Label

{low}

{low} {high}={low}

{low}To call a function with
effects bounded by L

must have PC L.

Zdancewic 44

Effect Types for Functions

t ::= … | [pc]s → s types

Γ [pc] λx:s1.e : ([pc’]s1 → s2){pc}

Γ,x:s1 [pc’] e : s2

Zdancewic 45

Typing Application

Γ [pc] e1 : ([pc’]s1 → s2){L}

Γ [pc] e2 : s1

Γ [pc] e1 e2 : s2 L

L pc’

Zdancewic 46

More Effects

Exceptions
Very important to track accurately
Related to sums

Termination & Timing
Is termination observable?
For practicality sometimes want to allow
termination channels.
Timing behavior can be regulated by
padding (but is expensive!)

[Agat’00]

Zdancewic 47

Practicality

Expressiveness
Full implementations: Flow Caml & Jif

Decentralized label model
Downgrading & Declassification

Zdancewic 48

Expressiveness

Languages are still Turing complete
Just program at one level of security

How to formalize expressiveness?
… I don’t know! (Try to write programs…)

Agat & Sands ’01:
Considered strong noninterference with
timing constraints
Algorithms take worst-case running time
Heapsort more efficient than quicksort!
Relax to probabilistic noninterference to
allow use of randomized algorithms

Zdancewic 49

Jif
Jif – Java + Information Flow

Andrew Myers, Lantian Zheng, Steve Chong
at Cornell

Goal: Put this stuff into practice (Java)
First step: enrich the policy language
Principals: users, groups, etc.

Express constraints on data usage
Distinct from hosts
Alice, Bob, etc. are principals

Zdancewic 50

Decentralized Labels

Simple Component {owner: readers}
{Alice: Bob, Eve}

Compound Labels
{Alice: Charles; Bob: Charles}

[Myers & Liskov '97, '00]

“Alice owns this data and she
permits Bob & Eve to read it.”

“Alice & Bob own this data
but only Charles can read it.”

Zdancewic 51

Decentralized Label Lattice

Join
Order

{}

{Alice:Bob,Charles}{Alice: Bob,Eve}

{Alice:}

… …

T

… … … …

Labels higher in
the lattice are more

restrictive.
{Alice:Bob}

… …

Zdancewic 52

Integrity Constraints

Specify who can write to a piece of data
{Alice? Bob}

Both kinds of constraints
{Alice: Bob; Alice?}

“Alice owns this data and
she permits Bob to change it.”

Zdancewic 53

Integrity/Confidentiality Duality

Confidentiality policies constrain where
data can flow to.
Integrity policies constrain where data
can flow from.

Confidentiality: Public Secret

Integrity: Untainted Tainted

Zdancewic 54

Weak Integrity

Integrity, if treated dually to
confidentiality is weak.

Guarantee about the source of the data
No guarantee about the quality of the data

In practice, probably want stronger
policies on data:

Data satisfies an invariant
Data only modified in appropriate ways by
permitted principals

Zdancewic 55

Richer Security Policies

More complex policies:
"Alice will release her data to Bob, but only after

he has paid $10."

Noninterference too restrictive
In practice programs do leak some
information
Rate of info. leakage too slow to matter
Justification lies outside the model
(i.e. cryptography)

Zdancewic 56

Declassification

“down-cast"
int{Alice:} to
int{Alice:Bob}

int{Alice:} a;
int Paid;
... // compute Paid
if (Paid==10) {

int{Alice:Bob} b =
declassify(a, {Alice:Bob});

...
}

Zdancewic 57

Declassification Problem

Declassification is necessary & useful
...but, it breaks the noninterference
theorem

Like a downcast mechanism

So, must constrain its use. How?
Arbitrary specifications too hard to check.
Exploit the structure in the decentralized
label model?

Zdancewic 58

int{Alice:} a;
int{Alice?} Paid;
... // compute Paid
if (Paid==10) {

int{Alice:Bob} b =
declassify(a, {Alice:Bob});

...
}

Robust Declassification

[Zdancewic & Myers'01,Zdancewic’03]

Alice needs to
trust the contents

of paid.

Introduces
constraint

PC {Alice?}

Zdancewic 59

Typing Rule for Declassify

Γ [pc] declassify(e,{L}) : t{L}
Γ [pc] e : t{L’} PC auth(L’,L)

auth(L’,L) - returns integrity label that
authorizes the downgrading

Zdancewic 60

Does it Help?

Intuitively appealing for programmers
But programmers are still trusted
Easy to implement

Declassification doesn’t change the
integrity level of a piece of data

Noninterference for integrity sublattice still
holds
Weaker guarantee than needed?

Could further refine auth(L’,L)
Restrict declassification to data with
particular integrity labels

Zdancewic 61

Dynamic Policies

Dynamic Principals
Identity of principals may change at run
time
Policy may depend on identity
Requires authentication
Add a new Java primitive type principal

Dynamic Labels
Policies for dynamic principals
May need to examine label dynamically
Add a new Java primitive type label

Zdancewic 62

Interface to Outside World

Should reflect OS file permissions into
security types

Requires dynamic test of access control

Legacy code is a problem
Interfaces need to be annotated with

Zdancewic 63

Parameterized Classes

Jif allows classes to be parameterized
by labels and principals

Code reuse
e.g. Containers parameterized by labels

class MyClass[label L] {
int{L} x;

}

Zdancewic 64

Unix cat in Jif

public static void main{}(String{}[]{} args) {
String filename = args[0];
final principal p = Runtime.user();
final label lb;
lb = new label{p:};
Runtime[p] runtime = Runtime.getRuntime(p);
FileInputStream{*lb} fis =

runtime.openFileRead(filename, lb);
InputStreamReader{*lb} reader =

new InputStreamReader{*lb}(fis);
BufferedReader{*lb} br = new BufferedReader{*lb}(reader);
PrintStream{*lb} out = runtime.out();
String line = br.readLine();
while (line != null) {

out.println(line);
line = br.readLine();

}
}

Zdancewic 65

Challenges

Integrating information flow with other kinds of
security

Access control
Encryption

Concurrency and distributed prog.
Threads can “observer” each other’s behavior
Information can leak through scheduler and through
synchronization mechanisms.
Application of bisimulation & observational
equivalence
Application of information-flow technology to
distributed systems

Zdancewic 66

More Challenges

Dynamic Security Policies
First class principals – dependent types??
First class labels
Inspect policies dynamically (typecase??)
Prove noninterference

Low-level information-flow anaylses
Type preserving compilation
Byte-code or assembly level
Fine grained analysis

Zdancewic 67

Summary
Information-flow security is a promising
application domain for language technology.
There are a lot of good results:

Basic theory
Polymorphism & Inference
State & Effects
Implementations

but more are needed!
There is an excellent survey paper by
Sabelfeld and Myers:

Language-based Information-flow Security
JSAC 21(1) 2003
147 references to other work!

Zdancewic 68

Thanks!

www.cs.cornell.edu/jif

Zdancewic 69

