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Confidential Data

Networked information systems:
PCs store passwords, e-mail, finances,...
Businesses rely on computing infrastructure
Military & government communications

Security of data and infrastructure is 
critical              [Trust in Cyberspace, Schneider et al. '99]

How to protect confidential data?
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Don’t take my word for it…

“Users should be in control of how their data is 
used. Policies for information use should be clear 
to the user. Users should be in control of when 
and if they receive information to make best use 
of their time. It should be easy for users to 
specify appropriate use of their information 
including controlling the use of email they send.” 

--Bill Gates, January 15, 2002
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Technical Challenges
Software is large and complex

Famous bugs: e.g. MS HotMail
Buffer overflows

Security policies are complex
Mutually distrusting parties

Requires tools & automation

Look at traditional security concerns to set the 
context…

Confidentiality
Integrity
Availability
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Quality 1: Confidentiality

Keep data or actions secret.
Related to: Privacy, Anonymity, Secrecy
Examples: 

Pepsi secret formula
Medical information
Personal records (e.g. credit card information)
Military secrets

Data
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Quality 2: Integrity

Protect the reliability of data against 
unauthorized tampering
Related to: Corruption, Forgery, Consistency
Example: 

Bank statement agrees with ATM transactions
The mail you send is what arrives

Data
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Quality 3: Availability

Resources usable in timely fashion by 
authorized principals
Related to: Reliability, Fault Tolerance, Denial 
of Service
Example: 

You want the web-server to reply to your requests
The military communication devices must work

Data
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Access Control

Access control
e.g. File permissions
Access control lists or capabilities
Modern spin: Stack inspection

Drawback: 
Does not regulate propagation of 
information after permission has been 
granted.
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Cryptography

Essential for:
Protecting confidentiality & integrity of data 
transmitted via untrusted media
Authentication protocols

Drawbacks:
Impractical to compute with encrypted 
data!

There are secret sharing techniques.

Doesn’t prevent information propagation 
once decrypted
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End-to-end Solution

Rely on access control & encryption
Essential (authentication, untrusted 
networks, etc.)

But… also use language techniques:
verify programs to validate information 
flows that they contain.
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Benefits (of PL-based mechanisms)

Explicit, fine-grained policies
Level of single variable if necessary
TAL/PCC level

Program abstractions
Programmers can design custom policies

Regulate end-to-end behavior
Information Flow vs. Access Control

Tools: increase confidence in security
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Focus of These Lectures

Confidentiality (& weak integrity)
How to define information security?
How to enforce it?

Type Systems for information-flow security
Proof of security

Scaling it up
Polymorphism
Datatypes
State & Effects

Challenges & practicality
Decentralized label model  (Jif)
Downgrading (declassification)
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Downloadable financial planner:

Information-flow Policy

Network

Disk

Accounting
Software

Access control insufficient
Encryption necessary,but not end-to-end
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Noninterference

Accounting
Software

Private data does not interfere with 
network communication 
Baseline confidentiality policy

[Reynolds ’78, Goguen&Meseguer ’82,’84]

Network

Disk
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Comparison to Secrecy in Spi

Spi considers secrecy of atomic keys
Keys can be manipulated in limited ways 
(i.e. encryption & decryption)
Cryptographic primitives are assumed to be 
perfect (or probabilistically secure)
Not possible to leak partial information

Contrast to arbitrary datatypes
Can be manipulated in many ways
Possible to leak partial information
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Noninterference

Proved by:
Logical relations
Bisimulation techniques

P

H1

H’1

L

L’

P

H2

H’2

L

L’

≈low
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Formalizing Noninterference
Original formulation: Trace-based models of 
computation

Goguen & Meseguer 1982
McClean – late 1980’s early 1990’s

Dorothy Denning proposed program analysis 
techniques

Mid-late 1970’s  (but no proofs of correctness)

Experiments with Multics 
Volpano & Smith 1996

Type system for noninterference

See Sabelfeld & Myers 2003 for survey.
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External Observation

External behavior
Observations seen by someone “outside” the system
Outputs (i.e. strings printed to terminal) 
Running time
Power or memory consumption
Comments
Variable names

Very hard to regulate!
There is always some attack below the level of 
abstraction you choose.
But… attacks against external behavior tend to be 
difficult to carry out and/or have low bandwidth
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Internal Observation

Internal behavior
At the programming language level of 
abstraction
Note that many “external observations”
can be internalized by enriching the 
language (e.g. add a clock)

Observational equivalence
e1 ≈ e2 iff  for all C[].  C[e1] = C[e2]
C[e1] →* v  iff C[e2] →* v 
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Observations

Final output of the program. 
Pure lambda calculus

Evaluation order
Lambda calculus with state

Thread scheduling decisions
Multithreaded languages with 
state/message passing
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Low Equivalence

Captures what a “low-security” 
observer can “see”
Example: Suppose program states 
consist of pairs: high * low

(“attack at dawn”, 3) ≈low (“stay put”, 3) 

(“attack at dawn”, 3) ≈low (“stay put”, 4) 
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Lattice Model of Policies

Proposed by Denning ‘76
Use a lattice of security labels

Higher in lattice is more “confidential” or 
“secret”
Use for order relation
Use for join (l.u.b.)
Use for meet (g.l.b.)

Prototypical example: low high 
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Simply-typed secure language

t ::= bool |  s → s types
s ::= t{l} secure types

v ::= x | true | false values
|  λx:s.e

e ::= v values
| (e e) application
| e ⊕ e primitive op.
| if e then e else e conditional
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Semantics

Large step operational semantics

Static semantics
Lattice lifted to a subtyping relation
“Standard” information-flow type system
Heintze & Riecke’s SLam calculus POPL’98
Pottier & Conchon ICFP’00
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Noninterference Theorem

x:t{hi} e : t’{low}

v1, v2 : t {hi}

hi low

If

then
e{v1/x} ⇓ v

iff
e{v2/x} ⇓ v
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Proof

Uses a logical relations argument
Two terms are related at a security 
level L if they “look the same” to 
observer L

Define logical relations
Subtyping lemma
Substitution lemma
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Scaling Up

Polymorphism & Inference
Sums
State and effects

Simple state 
References

Termination & Timing
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Polymorphism & Inference

Add quantification over security levels
∀L::label.  (bool{L} → bool{L}){L}
Reuse code at multiple security levels.

Inference of security labels
Type system generates a set of lattice 
inequalities
Equations have the form l l1 … l2
Constraint of this form can be solved 
efficiently
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Polymorphism in Flow Caml

Lists in Flow Caml 
[Vincent Simonet & François Pottier ’02,’03]

Base types parameterized by security 
level  bool{low} = low bool
Type of lists also parameterized:

∀’a::label. ∀’L::type. (‘a, ‘L) list

x1 : hi int
[1;2;3;4] : ('L int, 'M) list
[x1; x1] : (hi int, 'L) list
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Example: List Length

Length does not depend on contents of 
list:

let rec length = function
[] -> 0

| _ :: tl -> 1 + length tl
:
(‘a, 'M) list -> 'M int
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Example: has0

Lookup depends on both contents and 
structure of the list:

let rec has0 = function
[] -> false

| hd :: tl -> hd = 0 || has0 tl
:

('L int, 'L) list -> 'L bool
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Sums & Datatypes

In general: destructors reveal information
Accuracy of information-flow analysis is 
important [Vincent Simonet ’02]

Suppose x:bool{L1}, y:bool{L2}, z:bool{L3}

What is label of i?

datatype t = A | B | C
let v = if x then (if y then A else B)

else (if z then A else C)
let i = case v of 

A | B -> 1 
| C -> 0
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Simple State & Implicit Flows

if (a>0) { 
b := 4;

} 

int{high} a;
int{low} b;
...

PC Label                    

{low}

{low} {high}={low}

{low}
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Simple State & Implicit Flows

if (a>0) { 
b := 4;

} 

int{high} a;
int{low} b;
...

PC Label                    

{low}

{low} {high}={high}

{low}To assign to variable with 
label L, must have 

PC L.
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Full References: Aliasing

h:int{high}

let lr = ref 3 in
let hr = lr in

hr := h

Information leaks through aliasing:
Both the pointer and data pointed to can
cause leaks.
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Two more leaks

h:int{high}

let lr1 = ref 3 in
let lr2 = ref 4 in
let lr' = if h then lr1 else lr2 in

l := !lr'

let lr1 = ref 3 in
let lr2 = ref 4 in
let lr' = if h then lr1 else lr2 in

lr' := 2
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Secure References

t ::= … |  s ref types
s ::= t{l} secure types

v ::= … | r         heap pointers

e ::= …
|  ref e reference alloc.
|  !e dereference
|  e := e           assignment
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Type System for State

Modified type system for effects
[Jouvelot & Gifford ’91]

pc label approximates control-flow info.

Notation: lblof(t{L}) = L
Invariant of this type system:  

Γ [pc] e : s

Γ [pc] e : s    ⇒ pc lblof(s)
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Typing Rules for State (1)

Γ [pc] if e then e1 else e2 : s

Γ [pc] e : bool{L}
Γ [pc L] e1,e2 : s

Γ [pc] true : bool{pc}
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Typing Rules for State (2)

Prevent information leaks through 
assignment.

Recall that pc L

Γ [pc] e1 := e2 :  unit{pc}

Γ [pc] e1 : s ref{L}
Γ [pc] e2 : s L lblof(s)
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Typing Rules for State (3)

Γ [pc] ref e  :  s ref{pc}

Γ [pc] e : s

Γ [pc] !e  :  s L

Γ [pc] e : s ref{L}



Zdancewic 42

Function Calls

if (a>0) { 
f(4);

} 

int{high} a;
int{low} b;
...

PC Label                    

{low}

{low} {high}={high}

{low}
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Function Calls

if (a>0) { 
f(4);

} 

int{high} a;
int{low} b;
...

PC Label                    

{low}

{low} {high}={low}

{low}To call a function with 
effects bounded by L

must have PC L.
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Effect Types for Functions

t ::= …  |  [pc]s → s types

Γ [pc] λx:s1.e :  ([pc’]s1 → s2){pc}

Γ,x:s1 [pc’] e : s2
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Typing Application

Γ [pc] e1 :  ([pc’]s1 → s2){L}

Γ [pc] e2 : s1

Γ [pc] e1 e2 :  s2 L

L pc’
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More Effects

Exceptions
Very important to track accurately
Related to sums

Termination & Timing
Is termination observable?
For practicality sometimes want to allow 
termination channels.
Timing behavior can be regulated by 
padding (but is expensive!)

[Agat’00]
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Practicality

Expressiveness
Full implementations: Flow Caml & Jif

Decentralized label model
Downgrading & Declassification
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Expressiveness

Languages are still Turing complete
Just program at one level of security

How to formalize expressiveness?
… I don’t know!  (Try to write programs…)

Agat & Sands ’01:
Considered strong noninterference with 
timing constraints
Algorithms take worst-case running time
Heapsort more efficient than quicksort!
Relax to probabilistic noninterference to 
allow use of randomized algorithms



Zdancewic 49

Jif
Jif – Java + Information Flow

Andrew Myers, Lantian Zheng, Steve Chong 
at Cornell

Goal: Put this stuff into practice (Java)
First step: enrich the policy language
Principals: users, groups, etc.

Express constraints on data usage
Distinct from hosts
Alice, Bob, etc. are principals
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Decentralized Labels

Simple Component {owner: readers}
{Alice: Bob, Eve}

Compound Labels 
{Alice: Charles; Bob: Charles}

[Myers & Liskov '97, '00]

“Alice owns this data and she
permits Bob & Eve to read it.”

“Alice & Bob own this data 
but only Charles can read it.”
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Decentralized Label Lattice

Join
Order

{}

{Alice:Bob,Charles}{Alice: Bob,Eve}

{Alice:}

… …

T

… … … …

Labels higher in 
the lattice are more

restrictive.
{Alice:Bob}

… …
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Integrity Constraints

Specify who can write to a piece of data
{Alice? Bob}

Both kinds of constraints
{Alice: Bob; Alice?}

“Alice owns this data and 
she permits Bob to change it.”
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Integrity/Confidentiality Duality

Confidentiality policies constrain where 
data can flow to.
Integrity policies constrain where data 
can flow from.

Confidentiality:  Public Secret

Integrity: Untainted Tainted
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Weak Integrity

Integrity, if treated dually to 
confidentiality is weak.

Guarantee about the source of the data
No guarantee about the quality of the data

In practice, probably want stronger 
policies on data:

Data satisfies an invariant
Data only modified in appropriate ways by 
permitted principals
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Richer Security Policies

More complex policies:
"Alice will release her data to Bob, but only after 

he has paid $10."

Noninterference too restrictive
In practice programs do leak some 
information
Rate of info. leakage too slow to matter
Justification lies outside the model 
(i.e. cryptography)
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Declassification

“down-cast" 
int{Alice:} to 
int{Alice:Bob}

int{Alice:} a;
int Paid;
...  // compute Paid 
if (Paid==10) {

int{Alice:Bob} b = 
declassify(a, {Alice:Bob});

...
}
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Declassification Problem

Declassification is necessary & useful
...but, it breaks the noninterference 
theorem

Like a downcast mechanism

So, must constrain its use.  How?
Arbitrary specifications too hard to check.
Exploit the structure in the decentralized 
label model?
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int{Alice:} a;
int{Alice?} Paid;
... // compute Paid 
if (Paid==10) {

int{Alice:Bob} b = 
declassify(a, {Alice:Bob});

...
}

Robust Declassification

[Zdancewic & Myers'01,Zdancewic’03]

Alice needs to 
trust the contents 

of paid.

Introduces 
constraint 

PC {Alice?}
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Typing Rule for Declassify

Γ [pc] declassify(e,{L}) : t{L}
Γ [pc] e : t{L’} PC auth(L’,L)

auth(L’,L) - returns integrity label that 
authorizes the downgrading
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Does it Help?

Intuitively appealing for programmers
But programmers are still trusted
Easy to implement

Declassification doesn’t change the 
integrity level of a piece of data

Noninterference for integrity sublattice still 
holds
Weaker guarantee than needed?

Could further refine auth(L’,L)
Restrict declassification to data with 
particular integrity labels
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Dynamic Policies

Dynamic Principals
Identity of principals may change at run 
time
Policy may depend on identity
Requires authentication
Add a new Java primitive type principal

Dynamic Labels
Policies for dynamic principals
May need to examine label dynamically
Add a new Java primitive type label
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Interface to Outside World

Should reflect OS file permissions into 
security types

Requires dynamic test of access control

Legacy code is a problem
Interfaces need to be annotated with 
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Parameterized Classes

Jif allows classes to be parameterized 
by labels and principals

Code reuse 
e.g. Containers parameterized by labels

class MyClass[label L] {
int{L} x;

}
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Unix cat in Jif

public static void main{}(String{}[]{} args) {
String filename = args[0];
final principal p = Runtime.user();
final label lb;
lb = new label{p:};
Runtime[p] runtime = Runtime.getRuntime(p);
FileInputStream{*lb} fis = 

runtime.openFileRead(filename, lb);
InputStreamReader{*lb} reader = 

new InputStreamReader{*lb}(fis);
BufferedReader{*lb} br = new BufferedReader{*lb}(reader);
PrintStream{*lb} out = runtime.out();
String line = br.readLine();
while (line != null) {

out.println(line);
line = br.readLine();

}
}  
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Challenges

Integrating information flow with other kinds of 
security

Access control
Encryption

Concurrency and distributed prog.
Threads can “observer” each other’s behavior
Information can leak through scheduler and through 
synchronization mechanisms.
Application of bisimulation & observational 
equivalence
Application of information-flow technology to 
distributed systems
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More Challenges

Dynamic Security Policies
First class principals – dependent types??
First class labels
Inspect policies dynamically (typecase??)
Prove noninterference

Low-level information-flow anaylses
Type preserving compilation
Byte-code or assembly level
Fine grained analysis
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Summary
Information-flow security is a promising 
application domain for language technology.
There are a lot of good results:

Basic theory
Polymorphism & Inference
State & Effects
Implementations

but more are needed!
There is an excellent survey paper by 
Sabelfeld and Myers:

Language-based Information-flow Security
JSAC 21(1) 2003
147 references to other work!
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Thanks!

www.cs.cornell.edu/jif
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