(C&\QU\'\ and Types

TOY)

Globa) Computing

FOUNDATIONS OF SECURITY

Oregon (23.6.03)

Viadimiro Sassone

University of Sussex, SUssex|®

rOUNUations O &10Ddl COMPULITE

Global Computing;

computation over a global network of
mobile, bounded resources shared among
mobile entities which move between
highly dynamic, largely unknown,
untrusted networks.

Difmiculties:

Extreme dynamic reconfigurability; lack
of coordination and trust; limited
capabilities; partial knowledge . ..

1ssues:

Protection and management of resources;
privacy and confidentiality of data; ...

Mobility & Agent Migration

Globality & Variability

Resource Sharing & Control

Safety & Protection

Rl

im:

[llustrate calculi which formalise these

ideas and pave the ground for the

development of foundations solid enough '

to underpin future applications. The  Caleulus:

) [ Basic calculus

pproach: o

p I - [ Variations

resent tools — essentially type systems — " Bisimulation

to guarantee safety, security and in _

particular resource access control. I Properties
/hat:

0 Name Mobility

O Types for Safety & Control

O Asynchrony & Distribution

O Ambient Mobility

O Resource Control
J— = =1

< K = =1
Aim:
[llustrate calculi which formalise these
ideas and pave the ground for the
development of foundations solid enough Typed 7 Calculr
to underpin future applications. '
[l Sorts
Approach: L] Simply Typed 7
Present tools — essentially type systems — 1 1/0 Types
to guarantee safety, security and in 1 Secrecy Tvpes
particular resource access control. y 1yp
[l Group Types
What:
O Name Mobility
[0 Types for Safety & Control
O Asynchrony & Distribution
O Ambient Mobility
O Resource Control
< K = =1




Overview of the Lectures

Overview of the Lectures

Aim:
[llustrate calculi which formalise these
ideas and pave the ground for the
developmgnt of foundat.lon§ solid enough AMDIONT Caleoi
to underpin future applications.
[1 Mobile Ambients
Approaeh. [] Ambient Types
Present tools — essentially type systems — "] Boxed Ambients
to guarantee safety, security and in
. [1 Types for
particular resource access control. Access Control
What:
O Name Mobility
O Types for Safety & Control
O Asynchrony & Distribution
[ Ambient Mobility
O Resource Control
= = = =1

Roadmap

im:
lllustrate calculi which formalise these
ideas and pave the ground for the
developmgnt of foundat.lon§ solid enough ASyRChronous r Calculr
to underpin future applications.
) 0 A
pproach: [l Asynchronous ~
Present tools — essentially type systems — o7
to guarantee safety, security and in 7D
particular resource access control. T
[l Join calculus
/hat:
O Name Mobility
O Types for Safety & Control
00 Asynchrony € Distribution
O Ambient Mobility
O Resource Control
J— = =1
im:
lllustrate calculi which formalise these
ideas and pave the ground for the
development of foundations solid enough
to underpin future applications. Rasource Control
pproach: [ Interferences
Present tools — essentially type systems — . St.ecrecy n Aml?l.ents
to guarantee safety, security and in " Sizes & Capacities
particular resource access control.
/hat:
Name Mobility
Types for Safety & Control

Asynchrony & Distribution
Ampbient Mobility
Resource Control

I [ B |

[J Another way to look at the plan:
Start from m and move towards asynchrony and distribution.

,JJ

distributed BA NBA ~"MA

o
_~
ad
,—/JJ TA

P/-/; join

asynehronous

O What will we ignore?
An enormous amount! However, what we'll do will be sufficient to be able
to follow the literature and the current developments.




&10Ddl COMPULING

— Lecture | —

Name Mobility

nOallfiap 101 LeCiule |

The 7 calculus

[l The 7 calculus’ basic mechanisms

O

Examples
[l Variations
[0 Polyadic
[0 Summation
[0 Match & mismatch
[0 Recursion
[ Higher order
[1 Barbs & bisimulation
[J LTS & bisimulation

“he 7 caleulus is:

[1 A formal model to describe and analyse systems of interacting
(communicating) Processes, with dynamic (re)configuration;

] Terms are processes, that is COMPUTAtional activities running in parallel
with each other and possibly containing several independent subprocesses.

[ Currently the canonical model of coneurrent computation, as the
A-calculus for functional computation:
[0 computation in the A-calculus is the result of function application;
computation is the process of applying functions to arguments and
yielding results:

[0 computation in the m-calculus arises from process interaction /reaction
(based on communication).

Names in the 7 caleulus

Naming is a pervasive notion in 7

[ It is a prerequisite to COMMUNICATION and, therefore, interaction and
computation.

[ It presupposes independence: the namer and the named are independent
(concurrent) entities.

Names ‘name’ commaunication channels
not agents




IR SYNLAX

Reductions

[ An infinite set of Names: N = {xz,y, z,...}.
0] Action prefixes:

[] Processes:
P:=) m.P; | P|P|(va)P | P
iel
where
O T finite;
O input z(y).P and new (vy).P bind y in P. Terms are taken up to
a-conversion. That is: for z not free in P

z(y).P =xz(2).P{z/y}  (vy)P = (v2)P{z/y};

[0 commonly used shorthands: 0 for the empty sum >, P + P for
binary sums; T or x when the message is irrelevant

— = =1

t 1

{
(v2)(2(y) + 2(w).@(y) | 2(u).u(v) | Z(z))
)1 2(2)  (v2)(2(y) + z(w)-wy) | Z(v) | 0)

(v2)(0 | g(v

(vz)(0(y) | 0]0)

contexts and COﬂgYUQﬂQQS

rocess Contexts:

C:=[.] | 7n€+P | Wa)¢ | €|P | ¥

onguences.
relation < is a congruence if it is preserved by all contexts, that is P < )
nplies:
TP+ Rxm.Q+R (va)P < (va)Q
P|R<Q|R R|Px<R|Q
1P 1@

= = = =1
Structural COﬂgYUQﬂQQ
P = Q if they can be transformed into each other using
[ rearrangement of terms in summations;
[J commutative monoidal laws for | (with 0 as unit);
O
(v2)(P| Q) = (v2)P|Q, if z ¢ fn(Q);
(v2)0=0;
(vz)(vy)P = (vy)(va)P.
0 'P=P|!P
= = = =1




otandard Form

_process
(va)(Ma |- | Mm | 1Q1 |-+ [ 'Qn)
in standard form if
1. each M, is a sum and
2. each @; is itself in standard form.

Nm: Every processes is structurally congruent to a process in standard form.

007: Easy, by structural induction.

Reaction Rules

Taw (P +M) — P
Reaet: (M +z(y).P) | (2(2).Q + M') — {2/y}P | Q

P— P P— P

par: Res:
PlQ—P[Q (va)P — (va)P’

P=P P —Q Q=Q
P—Q

Struct:

Evaluation contexts: & ==[.] | £+ P | (va)& | &| P

An example
Ithough it may appear not obvious, the term
P =a(2).5(z) [ (vy)z(y).Q
as a redex. Let us use = to uncover it.

P =xz(2).9(2) | (vy)(@().Q) | ((vy)2(y).Q
= 2(2).9(2) | (va)(z(a).Q) | ((vy)2(y).Q
= (va)(z(2).9(2) | 2(a).Q) | (vy)Z(y).Q
= (va)(g(a) | Q) | (vy)z(y).Q

SQOPQ extrusion

The following rule enlarges the scope of a:

va)(P|Q) = P|(va)Q ifadn(P)

[] left-to-right reading: no surprise
L] right-to-left reading: enables export of private names.

c(z).P| (va)é(a).Q

In such form, the processes may not communicate.
However:

c(z).P | (va)ela).Q = (va)(c(z).P | ¢a).Q)
— (va)(P{a/z} | Q)

the name a, private to (), has been communicated to P.

As in the previous slide, it may be necessary to perform an a-conversion on a.

< K = =1

K K = =1




DLOPE CALTUBION, CONLITIURU

he reduction
c(z).P| (va)e(a).Q — (va)(P{a/z} | Q)

stablishes a new communication link between P and @, viz. a.

he new link is now Private to P and @, and will remain so until one of them
ommunicates it to third parties.

cope extrusion and channel-based communication provide an elementar, yet
owerful mechanism for:

01 Name mobility: dynamically changing the topological structure of a system
of processes, by creating new communication links.

O SQQFQQy: establishing private, hence secret channels.

LI @onlICe O Tldllie THODIILY

Thae essence of name mob'\\'\ty

4 ~
O
\\
@)
\\_//
(vz)(P|R)|Q

Suppose P = z(z).P’ (z not in P') and Q = z(y).Q’

~o Pis N
N oz x 7 \
P G )
\ / /
\ z \ —_— / z /
\\ \ I //
| |
. ®, . ®
\\ // \\_’//
(v2)(P|R) | Q P (vz)(R| Q')

New scope of z

Name mob'\\'\ty and secrat channels

A simple security protocol.

[J Alice and Bob want to exchange secret M, Server mediates.
A and B share private channels c4s and cgg with S

[1 A sends B a secret channel c4p via S.

Msgl: A—S caponcas
MSg 22 S— B CAB ON CBg

[l Now A and B communicate via cap.
Msg3: A—+B Moncap

m-caleulus specification of the protocol

A £ (veap)cas(cas)-cap(M)
S £ cas(x).cps(x)
B £ cps(z).x(y).P{y}

SYS £ (veas)(veps)(A| B S)




A TUll O the PToLtYCOI

SYS = cps(x).z(y).P{y} | cas(z).cas(r) | (vcap)(Cas(can).can(M))

= cps(2).2(y).-P{y} | (veas)(cas(z).crs(z) | Cas(can) can(M))

— cps(z).2(y).P{y} | (vcaB)eBs(can) | ca(M))
= (vcas)(cps(z).2(y).P{y} | €Bs(can) | caB(M))

— (veas)(cas(y) - Ply} [ cap(M))

Lhe tull, COnCepiually

A = (veap)eas(cap)-cap(M) A =tap(M)

— S:

B = cap(y)-P{y}

S =cas(z).ces(z)
B = cps(z).z(y)-P{y}

(B)

cAs cBs cas . . cBs

5 ®

We Will revisit this example with eryptographic primitives

= =1

This is an ideal picture, as private channels are an abstraction
(vn)(m(a)@Q | n(z).P)
What if the two processes are located at remote sites?
In practice, one needs cryptography
(vn)(({a}n)Q [ p(y).decrypt y as {z}, in P)
that's the idea behind the spi calculus
= =1

Polyadic

The idea:
Y1,y Yn)-P | Z{21,...,20).Q = {Z/Y}P | Q

Is it a more expressive paradigm? Or can it be encoded?

EﬂQOdmg'? Lf(Zl, 22>.P_l = ;E<21>.E<Z2>.I_P_l.
Right idea:

FZ(z1,22). P = (v2)T(z).2(z1).2(22)." P

Tx(21,22). P = 2(y).y(y1)-y(y2)." P~

ThM. The translation is ‘sound’ (i.e., if "P7 behaves like "Q7, then P behaves
like Q). Is it ‘corract’ (and therefore ‘Tully abstract’)? (Lert for exercise).




cXAlpie. MOy CRIIS Cell. bul afitd gel

get(y) s(2).(s(z) | g(=))

loet(y).s(z).(5(x) | y(z)) | [l receive on get the name y of a channel where to send back the result

| _ _ [1 upon receiving the channel name, consume the current cell value, and then
put(y, v).s(z)(5(v) [ 7())) reinstate it while copying it to the channel y;

put(y, v)-s(z)(5(v) [ 7())

[ a private channel s ‘stores’ the value n (it represents the state of the

memory cell),
(1 similar situation, with a further subtlety: also expect an “ack” channel (y)

[] two handlers serving the ‘001" and ‘DUL’ requests. . ) !
& & P L from the user, and use it to signal the completion of the protocol.

[J both implemented as replicated processes, to serve multiple requests.

[0 each request served by first spawning a fresh copy of the handler by
means of the congruence !P = P |!P.

Cell and User Cell & user: reduction

sample user of the cell:

dllent () = (vack) (vret) (30) | (put(y,v).s(x). .- |- . ))cen | (PUL(ACK, 1). ... )yser

P (ack, ) 20K ). (re) et () A (z) — (5(0) | (). (5(1) |TRO) | .. eett | GO ... Juser
— (1) [ 2k} | -+ )eerr | (ACK()- - - - Vuser

1 declare private return and ack channels — (3(1) | (get(y).s(x). ... ))cenr | (goL(rQL). ... )user
[] first write a new value, wait for ack, and then read the cell contents to
print the returned value. — (3(1) | (s(z).(5(x) | ret(z)) . ..))cenr | TeL().print(z)

t us look at th tem: _ _
ot s fookcat the system oy (31 [ TOU(L) . . Yeert | 100 (). pOE()

cal(0) | dient(v) = (ws)(wack)(wret) (.. Deen | (- - user B .. Yo | T
— (S -+ )cell | PTIN

NOtQ: =-steps omitted.

= = =1 S = =1




summation

he original calculus has unguarded sums:

P:=...|P+P

his makes the theory more complex while producing little gains in expressiveness.

put guarded sum: 3, mi(y).P
ejects things like (z.P + y.Q) | (z.P' + y.Q’).

0 sums at all:
till, purely internal choice 7.P + 7.Q) can be defined:

(va)(a | a.P | a.Q)

MaLCHNE 40 VBT LCIITTE

The original calculus has
mu=...|[z=ylr|[z#yr
[x=z]P=P [x#y|P=0

Useful in programming, it has an impact on the theory, and somehow complicates
it. A general encoding is impossible, but in some cases its effect can be recovered
to a certain extent:

La(@).(; [z = ki Pi)a = a().(2() [ 22, ki()-.Pia)

Though this works only provided nobody ‘interferes’ with k;.

= =1
Recursive Definitions
“is useful to be able to write
A@) ¥ Qu, where Q=+ A(@) - AlD) - - -
can be obtained using replication as follows
1. Choose a4 to stand for A;
2. R = replace A(w) with aa(W) in R;
3. P = (vaa)(P |laa(®).Qa).
n the other hand, replication can be defined from recursive defs.
AY pla
J— = =1

Higher Order 7

A most natural suggestion for process mobility:

mu=---|z(X) | Z(P)
Pu=---1X

z(X).P | z(R).Q - {R/X}P|Q

Th. Encoding ‘fully abstract’. Assume a name an unused name z associated t¢
each X.

[a(P).Q] = (vp)a(p)-(IQ] | 'p[P]), p fresh
[a(X).P] = a(z).[P))

X]=7




other variants

Observations and Bisimulation

[ Asynehronous 7. Disallow continuation on sending a(z).P.
Local 7. Disallow inputs on z in the body of a(x).P.

[1  Private 7. Disallow output of free names: Processes can only pass names
their own private names.

[ Distributed 7. Several interesting calculi based on 74: Dpi, Join, Blue, Seal,
Nomadie Piet,. ..

1 Spi, applied pi,. ..

O

Observations. PJ, if P can engage in action involving a

Plz 2 P = (vi)(a(z).P' +---) ag i
Pl, 2 P = (vi)(a(z).P' +--) a g
PYo £ P =>|a (== —7)

Barbed Bisimulation & is the largest equivalence relation rh s.t. for all P h Q
[J If P— P’ then Q = Q' for some such that P’ th Q0’;
7 If PJ,, then Q.

Barbed bisimulation is very weak, pretty useless:

aw) & al) & (vwalu)

Consider e.g. M = {(a(u),a(v))} and ...

K K = =1

Observations and Contexts

The problem with aliasing

arbed equivalence is very weak, but ‘contexts’ are very powerful enquirers:
onsider ¢ = (va)([ ] | a(z).x). Then

Cla(u)] = (va)ul, Ela(v)] — (va)vly El(vu)a(u)] = (vau)u }

herefore Clalu)) % Flaw)] % F|(vu)a(u)]
arbed Congruenee 2¢: |s the largest congruence in ~, that is

Px=¢Q iff ¢[P] =~ ¥|Q], forall €.

ontext Lemma: P =¢ Q iff Po | R =~ Qo | R, for all R and substitutions o-.

xercise: Only non-injective substitutions are interesting here. . .

Role of ¢ is account for alia8iNg occurring from rebinding of names after input.
Consider that T|y~Ty+y=m.

But, in € = a(y).[.] | a(z), since z is received for y, T | z % T.x + ©.7.
The effect of such contexts is captured by the context lemma o(z) = o(y) = 2.

Similar problems for matching:

[z =yle =~ 0 but [z = z|c#0.




Labellietd 1TallsILiON SYslelll

7 ACLIONS

] Barbed bisimulation derives Naturally from the reduction rules.

[1 Congruences are brought about by engineering, mathematical and logical
considerations.

[J But barbed congruence is hard to work with.

(1 Desiderata: Characterise it in terms of:
1. bisimulations (easy to reason with — ¢oinduction)

2. labelled transition systems (describe interactions with environment
explicitly, help intuition, bag of tools, ...)

an=71|TyYy | vy | TY

[ n(a): namesin «

(1 bn(a): names bound in «, that is bound output.

Dagiderata:
TNhM: Establish a compositional —— such that —»= = —»

Thm: Establish a proof technique for ¢ using bisimulation on =

Labelled Transition System

Zy).P Lp  w(z).P —5Ply/z P P
(Open) . CloseL)
}) s P/ ( P )/zz P, Q Tz QI
T#2 2@fn(Q)

(vz)P T p P|Q — (v2)(P'|Q)

omml_)z

T

s SumbL N (Par\_)
P s P' Q s Q' ( }l — P’

P S p

bn(a)Nfn(Q)=0

PlQ -5 P|Q P+Q %P P|Q S P|Q
(RQS) o (RQp o
P =P P)| P —Q
= - 2¢n(a) —
(vz)P — (vz)P P —Q

An example
Let us show how to prove that
z(y).P | (va)z(a).Q — (va)(P{a/y}|Q)
7(a).Q =5 Q
2(y).P % Plajy}  (wa)p(e).Q " Q

z(y).P | (va)z(a).Q — (va)(P{a/y}| Q)

The role of Open, Close, and Comm:

)P+ (@).Q=  (P{a/y}|Q)

(y)-P <= (va)(a).Q = (va)(P{a/y}|Q)




Bisimulation

isimulation /& is the largest equivalence relation  s.t. for all P th @
P 25 P’ then Q == P’

ofe that:
in a(z).P ~ @, term P{y/xz} must be matched for all y (wel, aimost...);

vZTz must be matched only for an appropriately fresh z.

gain, & is not preserved by substitutions

ull Bisimulation P ~¢ @ iff Po ~ Qo for all substitutions o (non injective).

M. ~ C = and ~°¢ C =°.

n finite-image processes, i.e., such all sets of a-derivated {P’ | P = P’} are
nite, with matehing ~¢ = =,

XQreise: Prove that matching is necessary, by showing that P % @, but
[P] = €[Q)] for all contexts without matching, where

=< P=a(z)|'z|'z|ly|'y and Q=a(y)|'z|'Z|Y|!T ==

COMPatizoiis i OLhRT DISHTIUTALIONS

EXercises

C—>§\&
(/N

Qe—s IR

C y

Differences in the treatment of input actions AN give rise to different notions o
bisimulation:

0 ate: a(z).P ~ a(x).Q iff P{y/z} ~ Q{y/z} for all y;
O ground: a(z).P =~ a(xz).Q iff P{y/z} ~ Q{y/xz} for a fresh y;

[ open: obtained using substitutions explicitly in the bisimulation game.

f

“rercises:

[l Prove = —3 = 3=

[l Prove =C ~;

0 Prove=C ~and = C ¢
[l Prove T{a) 2° (v2)T(z).
[l Prove 7.P =°¢ P.

[J Prove ~ C &~ and ~¢ C ¢

Summary of Lacture |

[l This lecture introduced the 7 calculus’ mechanisms and the fundamentals
of its semantic theory, ie barbed congruence and full bisimilarity.

b Further Reaamg:
A complete list would be enourmous. Luckily, two references for all can
take you a long way
[0 Communication and Mobile Systems: the m-calculus (Miner)
[0 The m-calculus: A theory of mobile processes (sanglorg), Walker)
[J The mobility home page http://lamp.epfl.ch/mobility/



http://lamp.epfl.ch/mobility/

&10Ddl COMPULING

— Lecture 11 —

Types Tor safety and Control

nOallllap O LLCLUle 1l

Why Types?

Milner's sorting system
Simply typed 7 calculus
IO types and subtypes
Typed barbed congruence
Types for secrecy

O Ooo0oogo

Group types

onsider the following terms of the polyadic 7-calculus.

a(b,c).P|a(x).Q
a(true).P | a(z).z(y).Q

3oth terms are ill-formed, make no sense, and must therefore be ruled out. This
one of the role of types. In general, types establish INVANants of computation

1at we use to guarantee safety in many varieties.

1 "Types protect Trom errors and therefore provide FUArantees of consistent

process interaction.

[ Types convey logical structure. the untyped m-calculus is too weak to
prove some @xpected properties of processes arising from implicit discipline of

name usage.

Types bring the intended structure back into light, and enhance formal
reasoning on process terms: for instance, typed behavioral equivalences are
more generous, and can be easier to prove, as only typed contexts need to

be looked at.

Milner's sorting system

Memory cells

cl(n) = (vs)(5(n) | 1gei(y)-s(z).(5(z) | 5(z)) |
put(y, v).s(2)(5(v) | 7()))

[] ret used to communicate integers,

[J get and ack used to communicate another channel

sorting:
ret S; S; =~ (int)
gt Sy Sg — (Si)
ack Sa Se — ()
put Sp Sy, — (S4,S)
S




SOILINE, TOTTAITY

SHIPIY TYPRU 7 CalCUlus

“sorting System

[1 A function ¥ : S —> S* describes the tuples allowed on channels of each
sort. () is the object sort of .

[ Object sort of v € S must follow the sorting discipline X(v).

[ P respects X if in each subterm Z(%).P’ or z(%).P’, if = : ~y, then 7 : (%)

ubject Reduction: If P respects 3 and P — @, then () respects ..

follows that P 2 implies that ¢/ : 3(v), for z : 7.

herefore, these cannot happen:

a(b,c).P|a(z).Q
a(true).P | a(z).z(y).Q

S, T == B Types of basie values
| (Th,...,Tx) tupletype, k>0
| T link type (channel)
Channel types

[] inform on the type of the value they carry

Examples
[ #(int) : channel carrying values of type int.
[0 #(unit) : channel carrying x, the only value of type unit.

[ #(f#int) : channel whose values are channels carrying integers.

Type system

Typing rules: Values and Messages

[ Initial idea: Types assigned only 10 enannels, processes are either well typec
under a particular set of assumptions for their bound and free names, or
they are not.

[ two judgement forms:
O T'kwv:T v hastype T
grIrrP P is well-typed

[ T Type environment. a set of type assumptions for names and variables
(equivalently, a finite map from names and variables to types)

ifferent approach possible, based on assigning more informative types to
rocesses to describe various forms of process behavior.

1 Values
(Base) (Name)

I'kbv:B Tu:Tkru:T

(Tuple)
I'twv,:T;, i=1.k

TFoy, ..o v (T, .., Tk)

[ Processes |

(Input)

FFu:§(T) T,8:THP

ZNDom(I)=&




FYPIIE TUIRS. FTOCESS

rocesses 11

710 (Par

(ze19) QFP THQ
T'Fo 'cPl@Q

Rep! Restr

( F‘)l— P ( I‘}a :THP
TH!P 't (va:T)P

Lype oysielll FTOPDRILICS |

Subject Reduction:

[1 reduction preserves well-typedness.
[J fl’FPand P— @, then ' Q.

[l needs

0O Substitution Lemma
if'Fwu:Tand ',z : T+ P, then I' - P{u/xz}.

O SUD}QQ'L Congruenoe
if 'FPand P=Q, then'F Q.

Type System Properties 11

Why Types? 1i

ype Safety
[J  well-typed processes communicate in type-consistent ways.
0 LetT,c:4(Ty,...,T,) - P. If P contains

Fe(zr, ... zp).Q1 | E(vr, ..., vk).Q2

then ¢ is a name (not a basic value), k = h =n and v; : T;.

[ Subject reduction guarantees that this property holds of all derivatives of P.

[]  We will describe richer notions of type safety that provide security
guarantees

U TprS \'\Q\p Tesouree access control

them

name will use it.

Types come to the rescue: enforce constraints on use of channels by
associating them with read and/or write capabilities.

In the untyped m-calculus, resources (channels) are protected by hiding

Often too coarse a policy: protection is lost when the channel name is
transmitted, as no assumption can be made on how the recipient of the




CAallpie. LRl

10 1YPE alith SUDLYDECS

[] printer P and two clients C; and Cs.
P provides a request channel p carrying data to be printed

O

[l m-calculus representation:

(wp)(P|C1 | Cy)

0 if C1 2 5(j1).5(j2). ..., we expect that the jobs ji, jo, ... are received and
processed, in that order.

[ Not necessarily true: C3 might compete with P to “steal” the jobs sent by
C; and throw them away: Oy £ !p(5).0.

[ Let's X this with Types!

ST == ...
| T input capability on a channel of T values
| o7 output capability on a channel of T" values
| #T link type (channel)
Channel types:

[] inform on the type of the value they carry
[1 offer capabilities to their users
Examples:
[ i(int) : input-only channel carrying values of type int.

[ fi(int) : channel carrying input-only integer channels.

Subtyping kicks in: any channel can be used in only one of its capabilities. . .

subsumption: if z : {77, then
z i1 and z : o7 too — =

iT\ﬂT/oT

Subtyping

Subtyping, 11

he core of resource access control by typing: restrict capabilities in certain
ontexts to protect channels from misuse.

p: T, a: §iT - a(p).P|a(z).Q

 knows p as a read/write channel. @ receives it on a and therefore knows it
nly as a input-only channel. Name p can travel on a because of Subtyping ans
ibsumption.

(Subs Reﬂ) (Subs Tmn)
T < TI Tl < TII
TLT T<LT"
(Subs \O/\) (Sub lO/O)
1T <iT 1T < oT

[1 subtyping applies also to argument types

(Sub 1) (Sub O) (Sub 10)
ST TS TS ST
iS <iT oS <oT 1S <dT
7 N ~
covariant contravariant invariant

[ intuition: Assume c: {7

O ¢ can safely be used to read values at type T or higher, ...
[1 provided that only values at type 7', or lower, are written to ¢

As for invariance, suppose nat < int < real and a : fi(int).

If # was variant, either this P; = @(3.5) or P, = a(z).log(z) would be
typable.

Also @ = a(z).succ z | a(—2) is obviously alright.

But P; | @ and P, | @ are both fiawed.




INQW LY DINE TUICS

ryped priiitel

[0CAss5es

(output)
I'kwu:ol 'k, : T; r-pP

'+ u(v).P

(Subsumption)
'tu:S ST

I'Fu:T

ubject Reduetion: if ' P and P — @, then T - Q.

[] use types to make sure the printer only reads from p, and the clients only
write on p.

[ initialize the system with two channels a and b, to send the name p to P
and to C7 and Cs restricting the use of p.

S £ (vp:HT)a(p).b(p)la(z : iT).P | by : oT).(C | Ca)
—  (vp:AT)P{p/x} | (C1| C2){p/y}

[ typing ensures that P only reads, and C;'s only write on p
[1  With appropriate definitions for P and C;’s

a,b: (4T - S

Typed printer 1}

Limitations

lain steps of the typing derivation of I' - @(p).b(p) | a(z).P | b(y).(C1 | Cy),
here I' = {a,b: {({T),p : 4T'}.
I'Fa,b:§(1T)  §(HT) <o(tT)

T'ka,b:o(tT)

I' - a(p).b(p)

U Tkp:tT

0T < iT
H(HT) <i(HT) i(8T) <i(iT)
T'Foa:i(iT)

'k a(z).P

N | IN

T,z:iTFP

i7" < oT
HT) <i(HT) i(HT) <i(#T)
TEb:i(oT) T,y:oTFCy|Cy

I'Eb(y).(C1| C2)

IN | N

The simply typed A calculus has only finite computation. Not so the simply type
7 calculus. There however limitations, due with the fact that terms must have a
finite bound on the “nesting” of channels.

Thm. No well typed term can produce a sequence of actions such as

£E1($2).$2 (173).333(;54),;34(1-5)_. ..

1

'Cause, what would the type of 21 be? f(f(f(...)))
The problem can be avoided with [eCUTSIVE TYD@S (pierce, Sangiorg).

Then z; : uX.fX. The untyped calculus can be encoded satisfactorily in the
recursively typed 7 using such type.




AUVACRU 1YL SYolellld R Lane 101 1Yyhel BRIaVIOUTal EYUIVAIRIICES

he work on types has push forward towards greater refinement and control of What is the effect of types on behavioural equivalences?
sources. We will see examples of types for secrecy and capability types. Firstly, it makes no sense to compare processes with different types. Also, we
list of things we will not see: know that
[] linear type systems, trying to control how many times a resource is used - . - -
(P‘QYQQ. Kobg}yasmy Y()Sm(m,) P = a(b)(b<'[)> | C(Z)) % (Z(b)(b<v>c(z) + C(Z)b<'l)>) = Q
"I types for deadlocks avoidance (Kobayashi,. . But what if we know, say, I' = {a : 1S, c: 1T} - P,Q for S # 17
[1 Polymorphic types:
a: (XX x X) Fa(Int;c,s) | a(z).open z as (X;2,y) In Z(y) (Pierce, Sangiorg) Then {a: {fiS,c: T}> P = Q
. This is because no legit context will be able to alias b an c.
Example. P = (vz)(a(z) | Z(b)) #° @ = (va)a(z).
P and @ are distinguished by € = (va)(a(z).z(z).c|[.]). However,
A= {a IﬂOf;,b:;S} > }HVEEC fﬁ.
This is because no well-typed environment will be able to verify the presence of
the output Z(b). Types make equivalence coarser, as they limit the “power of
. observer,” that is the number of contexts.
= =1 < = =1
efinition: A (I'/A)-context is a I'-context with a A-hole. That is, € such that Typed notions of ~ are know for most typed 7 calculi, but the issue can be
henever At P, then I' - @ (P). problematic.
arbed Congruence. For A - P, Q we say A P = @ if for all closed I and all Consider

/8)-contexts , we have G(1) = €(Q) P = (vay)(@(@) |7) | 12.Q| Q) Q= (va)(ale) |a(z) | 1.Q).
yped subStitutions ¢ is a A/I" substitution if for all 2 € Dom(A), we have These are . A distinguishing context is % — a(z1).a(z2).(21().2 | 7).

Fo(z) : Aw). But if I"' F a : oounit, then I'> P =€ (), because no context will be able to input

| and, therefore, tell ¢ apart from zx.
yped Context Lemma A P = @ if and only if all closed I which extend T,

r all A/T" substitutions, and all I' - R we have Po | R =~ Qo | R. Matching actions is not trivial, though. Observe that

vax azx xvU
Q———

So, they are easily too fine. Need to refine with system/environment point of
view of an action.
< = = As=a proof technique sometimes the context lemma works much better. = ™




FYPE 101 SLCIRCY

n application in which types guarantee that secrets are not leaked by programs.
xpressed in the Spi calculus.
emember the wide mouth frog protocol? Let’s add explicit encryption:

A—)S:{KAB}KAS
S__)B:{KAB}KBS
A——)BZ{M}KAB

he protocol now runs as

AM) 2 (vKap)eas({Kan}kas)-Cas{M} kas)
CAS'(x)'Q&SQ x of {y}KAS in CS—B<{y}KSB>
csp(z).case z of {y} kg 0 cap(2).case z of {w}, in F(w)

nst(M) £ (vKas, Ksp)(A(M) | S| B)

yacrecy of M: Inst(M) =2 Inst(M'), for all M. (Similar notion available for authenticit
( Y)

= =1

OPl. dll appliel 7 CalCUlUs

L,M,N :=...
| 0
| succ(M)
| (M,N)
| {My,...,M}n

P,Q,R:=...
| [M is N|P
| let (z,y) =M in P
| case M of 0: P, succ(z) : @

| case L of {z1,..., x5}y in P

Sp\ caleulug. Semantics

7010
suceessor
pair

shared-key eneryption

mateh
pair splitting
integer case

shared-key decryption

[Mis M|[P =P
let (z,y) = (M,N) in P = P{M/z,N/y}
case 0 of 0: P succ(z) : Q=P
case succ(M) of 0 : P, succ(z): Q= Q{M/x}
case {M}y of {z}n in P = P{M/z}

(Comm)

n(ey, ..., op)P [ 0(M, ..., My).Q — P{Mi/z1,..., My/zy}

Par New con
( )P—>P’ (New) PP (Pg)EPI P—-Q Q=qQ

PlQ—>P|Q  (vn)P— (vn)P P>Q

Sacrecy

Data into three security classes, formalised as types:

[]  Public, which can be communicated
[]  Secret, which should not be leaked;
L] Any, which is arbitrary data

Public

N

Seeret

Encryption keys are data. Only the following combination are reasonable

[] encrypting v with a Public key has the same level as the data
encrypting v with a Secret key can be made Public;

[1 only public data can be sent on public channels, while all kinds of data may

be sent on secret channels.

AIm: Design a type system to guarantee the secrecy of parameters of type Any.

= =1




VIeBsRdERy alll CONTOUNURES

o avoid confusion on the format of encrypted data, we adopt common one.
Secret, confounder

\{%M% Ms iy

Any Public

Messagel B - A: Np
Message2 A — B: {M,Ngp}k,,
his does not guarantee the secrecy of M. If an attacker sends a nonce N¢
vice, A replies with ciphertexts {M, N¢}k,, and {M',Nc}k,,. The
ttacker gets to know whether M and M’ are the same message by just
omparing the two ciphertexts.
Message1 B — A: Np
Message2 A —B: {M,N,Nalk,,

he confounder N4 is a fresh number that A creates for every encryption and
revents the information flow illustrated above.

The Guarantees

The confounder N4 is a fresh number for every encryption. This prevents the
information flow arising from encrypting the same data repeatedly. The protocol
with confounders:

Messagel B — A: Np

Message2 A —B: {M,Np,Nalk,,

Expressed in the spi calculus, A's part of the protocol looks like this:

m(ng)(wK)(vna)e({np,z, *,n4} k)

where c is a public channel and x has level Any.

It is possible to show that this typechecks. Thus it does not leak the value of =z,
in the sense that A[M /x| and A[N/xz]| are equivalent for all closed M and N.

= =1
he Types:
[l F E well formed means that environment E is well-formed.
0 E-M:T means that term M is of level T in E.
[l EFP means that process P type-checks in E.
nvironments
Env Empty (Env Variable)
( ) F E well formed
- z¢dom(E)
F (0 wel formed FE,z : T wel formed
(EI\V Name
FEwdllformed EHM:Ty..E-Mgy:T, EFN:R
n¢dom(E)
FEn:T:{M,..., My, n}xn wel formed
e = =1

Typing - Values

(Level Sub (Level Var
Et+ T TR FEwllformed z:7T in B

EFE+FM:R Etz:T

(LQVQ\ Name)
FEwtormed EbFn:T:{M,...,Mg,n}tn

Etr-n:T

(\_Q\/Q\ ZQTO) (LQVQ\ SUQQ) (LQVQ\ Pair
F E weall formed E-M:T EF+ T EFRN:T

EFsucc(M):T

EF0: Public EF (M,N):T




FYPIIE = Values 1l

(Le\/e\ Enc Pub\'\e)
E-M:T.. Mp:T FEFN:Pulic

EF{Mi, ..., My}n:T

T'=Public if k=0

(Level Enc Secret
Ern:T: Ml,Mg,Mg,n}N
EFM;:Seret EFMy:Awy EF M;s:Public EF N :Seeret
E+ {Ml,Mz,Mg,’n}N : Public

LYPINE = FTOCRLOCS

(Level Output Public)
EF M :Public EF M;:Pubdle,...,EF M :Public EFP

E+M(M,,..., M).P

(Level Output Secret)
EFM:Seret EFE Mp:Seeret EFE My : Ay EF Ms:Publie EEP

E '+ M(M;, My, M3).P

(Level Input Public)
EF M :Public E,x;:Pudlic,...,zg : Pudlic - P

EF M(zq,...,z).P

(Level Input Seeret
E R M :secret  E,xq @ Secret, zg : Any, 3 : Public - P

Et+ M(l‘l,mg,alg).P

(Lavel NIl (Leval Par) (Lovel Rep)  (Level Res
F E well tormed E-P EFQ E+P En:T:L-P

< < EFO E-P|Q EF!P

Typing — Processes |l

(Le\/e\ Mmh)
E+-FM:T EF-FN:R ERP

EF [Mis N|.P

here and below T', R not Any

(Leval Pair Split)
EFM:T Ex:Ty:TFHP

EF let (z,y)=M in P

(LQVQ\ Int Case
EFM: EFP Ex:THQ

EtF case M of 0: P, succ(z) : Q

(Level Dec Public
EFL:T FN:Puwlic Ezi:T,...,2p,:THP

EtF case L of {z1,...,zx}N in P

Level Dec Seeret}E
EFL:T F N :Seeret  E,z; @ Publie, zg : ANy, z3 @ Secret, x4 : Any - P

EF case L of {z1,22,23,24} in P —

Secrecy by Typing

Thm: Secrecy

Let E be an environment with only variables of level Any and names of level Public
in Dom(FE). Let 0,0’ be substitutions of values for the variables which respect E.

If E+ P, then Po = Po’

In other words, if P is well typed, then no observer that can tell Po apart from
Po’, so it cannot detect differences in the value of any parameter of type Any.




TOUDS 10T SLCIRCY. BCOPE LXLIUGIVN TRVISILLU COMTOTNE SCOPE CXLTUSIVN

_ [1 The problem must be approached carefully: scope extrusion is a
p().0 | (vs) p(s).P fundamental mechanism.
[ 1dea: classify names into groups, and isolate a group G for names that

[J The name s is initially private to P. One step of reduction passes it over to should be secret. Then declare (vs : G)p(s).P.

O. This may be desirable, as we have seen.
0 Global groups are of N0 USQ. Leakage can be made to typecheck:

[J But we may instead want to keep s from escaping its initial scope. Eg, s
could be a secret, and O an opponent. p(y:G).O|(vs: G)p(s).P

1 How can we do that?
[J Groups themselves should be secret, so that P cannot output values of
[J one could say: 7(s) should not occur in P, ie s should not be sent on a group G on public channels.

channel known to the opponent.
CJ A scope mechanism for groups:

[1 But this is not easily enforced: p may be obtained dynamically from some 7
other channel, and may not occur at all in P. p(y:T).0|(vG)(vs: G)p(s).P

This will not typecheck if one tries to imply 7" = G, as G has local scope.

P1 Calculus with GYOUPS GYOUPS and reduction
U GYOUPS can be created dynam'\ea\\y U GTOUPS have no Qomputat'\ona\ 1mpaet:
P = ... as before N
| (WG)P  group creation erase((vG)P) £ erase(P)
erase(a(Z : T).P) £ a(Z).erase(P)

(1 Additional reduction
0 (vG)P — (vG)Q if P—Q

erase((vz : T)P) = (vz)erase(P)

it ngruence rul
~ Additional congruence rules 0 P — @ if and only if erase(P) — R, for some R = erase(Q).

(VGl)(VGQ)P = (VGQ)(IIGl)P
wG)(P|Q)=P|(vG)Q if G ¢ fg(P)
(vG)(wa :T)P = (va: T)(vG)P if G & fg(T)

0 They do, however, affect typing




pypes alitt JUUERICILS

0 Channel Types

0 T,U :=G[T1,...,T,]: polyadic channel in group G
0 Type Environments

O Tu=g|I,G|T,u:T lists, not sets (1)
0 Additional judgements

U I'ko: good environments
O I'eT: good types

O Intuition:
I' =T iff all group names in 7" are declared in I

T F o iff all types in T are well-formed

FYPINE RUICS. T0TTRALION TUIRS

Good Environments

Empt EnV u Env

(EmP) ( r }—)T u ¢ Dom(T) ( G ¢ Dom(T")

ogko Nu:TkFo I''GFo
G00d Types
(Type Chan)
Gedom(l) T+HT,..T+HT,
'k GT,...,T,]

< < > >

Typing Rules: processes
r0Cass typing as before, e.g.
(Input)
F'ru:GT,...,T,] T,z1:Th,...,2n: T F P
Pru(zy : Ty, 2y Ty)P
ule for group ereation
et p
'k (vG)P

Properties of the type system

[0 Subject Reduction
HTHP:Tand P— Q, then T HQ : T.

[ Secracy
Let S=p(y:U).0| (vG)(vz:G[...])P, and assume ' - S.

[0 Then no process deriving from S outputs x along p.

[0 Formally, for all processes ), S’ and S”, and contexts €[-] such that
S=wqQ)(ve:G[...])S, S — 8" and S" =%¥[p(z).Ql,

it is the case that p is bound by %[ ]




FTOOL O sRCIRCY

ULy peU O DPONIRHLS

ssume:

ICkp(y:U).0| (vG)(vz:G...])P
— WG@)(vz: Gl...|)€p(x).Q]

vith p not bound in ¢[-].

O

O

O

By subject reduction ', G,z : G|...] - €[p(x).Q].
This implies that I', G,z : G[...],I" F p(z).Q for some I’
ThenT',G,z: G|...], I+ p: H|G|...]] for some H.

\mPOSS-\D\Q:
O T'kply:U).0|wG)(ve:G[...])P implies p € Dom(T)

[0 Thus we would have T' - p : H[G]...]], but this judgement is not
derivable because G ¢ Dom(T").

Seerecy Thm generalises to the case of untyped/ill-typed opponents

Summary of Lacture 1l

O

O

We studied the use of (elementary) types in the 7 calculus, starting simple
sorts to protect tupling for programmers’ errors, arriving to types to protect
secrecy.

We introduced subtyping as a natural way to manage capabilities and
disclose different ‘views’ of the same object to different users.

We considered the why and how of typed equivalences.

Further Reading:

Again, the best starting points are:

O The m-calculus: A theory of mobile processes (sangiorg, Walker)
0 The mobility home page http://lamp.epfl.ch/mobility/

Consider also

[ The Spi Calculus (Abagi, Gordon)

[0 Secrecy by Typing in Security Protocols (Abaa)
0 Secrecy and Group Creation (Cardell, Ghelli, Gordon)

(] Idea (simplified): extend the type system so that all processes type check
trivially:
I'tn:Un I,Z:UntP Thkn:Un THM:UnTHP
I'F n(z:Un).P T'+n(M,..., My)P
[1  Untyped opponents can be made to typecheck by annotating all their
free/bound names/variables with the type Un.
[1 Prove subject reduction for the new system
[J Derive generalized secrecy
= = = =1
Global Computing
— Lecture {1l —
Asynenrony and Distribution
= = = =1



http://lamp.epfl.ch/mobility/

IR Lane 101 ASYNICHTONY

et us move a step towards realistic networks, trying to embed 10¢ations in our
alculi. As a first step, let us build a case for:

synenrony. Channels in 7 are ‘global’ high-level, somehow unrealistic. Everybody
an send and receive on them, regardless of location. The handshaking

T.P +— z.Q)

presents an instantaneous action at a distance unfeasible in distributed
etworks, where localities, delays, and failures play a fundamental role
listributed consensus (Lynen)).

Iso summation can be criticised especially in ‘mixed’ forms like

?.P+EI.Q | E.Qﬂf.P’ +k

ynchronised choice at a distance very hard to implement.

Iso, T(z) + y(z) makes little sense in general.

et us abandon synchronous remote communication. . .

nOallllaph O LLeCLUTe Il

[1 The asynchronous 7 calculus

[ The localised 7 calculus

[1 The distributed 7 calculus

LI The join calculus

Asynehronous

0 continuation on oUtPUL:  Z(y)K
ontinuations can be simulated as:  7.(z(y) | P).

ow can P know when and if the output is received? Well, in general it can't.
ut .. .QXp\'\Q'\l continuations:
}

sender: 7.(Z(y) | ch.P’) receiver: z(y).(Q" | ETm)

he synchronisation is now much looser, and widely accepted to be a better base
r distributed systems

[l AQTION premxes 7 ::= ¢y | z(y) | X
[ Processes P ::=z(y) | > m.Pi | P|P|(va)P | P

*—

synchronous calculi often do not consider sums nor 7.

T 4. EXDressiveness

Polyadic 7r:
{Z(1,92)} = (vw)(T(w) [ w(v).@(y) | w(v) D(y2))
{z(21,22). P} £ 2(w)(vv)(@(v) | v(z1)(@(v) | v(22) {P}))

Synehronisation:

Y

[#(y).P] = (va)z(y, a) | a.[P]
[2(2).P] £ 2(z,a).(@| [P])

EXercise. Compose { - } and [ - | above. Prove that it takes 2n 4+ 5 monadic
asynchronous communications to exchange one n-pla.




4. EXPICOSIVRIICo), 11

Jmmation
Ok£1I(p, f)p  Fal2i(p, f).f

erms in the summation will compete to grab p from Ok. The loosers will either

ang forever, or grab f from Fail.

[21(y1)-P1 + 2 (y2).Py] 2
(1) (OK | iz1,2 i (2)-(wp ) (U{p, £) | p-(Fal | [B3]) | £-(Fail | Z5(2))))

lixed choice cannot be encoded (satisfactorily).

on ASW\QNOT\OUS Bigimulation

. 1 NQ LOCAl 7r CAICUIUS

Only the OUTPUT Capability can be received on names (aither by typing or by syntactl
restrictions). It makes a lot of sense in practice (eg printer, objects, distributed

environment, ...). As a consequence, all the ‘receivers’ for a channel are local to the
scope. One of the semantics consequence:

L > (v2)T(z) =° (v2)(T(2) | Z(y))

Simulating read capabilities.

We represent a name z of w4 with a pair (z°,z) of w, whose first component
represent the (lost) read capability on z.

z° > x 2 12°(2).2(s, ). 2(s, t)

[a(z)] ¢ = (v2°)(@(2®, ) | 2° < 2)

a(z A a(2°,2)-[Pl gu12y tags
[a(z).P], { (vw)(@*(w) | w(z®, 2).[Pl gy

We-will see later the JOIN CalcUlUS, which originated the idea of UNIQUQ FRCOPEQES.

/ill the hypothesis of asynchrony bear consequences on bisimulation?

2(2).3(z) = 0

Vlatter of fact, with only asynchronous contexts, 74 &> !z(2).Z(z) =° 0

his can be captured a LTS definition.
synenronous Bisimulation ~,: the largest equivalence s.t. for all P =, Q

P % P’ for o € {Ty,vTz, 7} then Q =—=~, P’

P 2y P'then Q =2~, P or Q = Q' for P' ~, Q' | Z(y)
0lQ. Alternatively the 2nd clause: if P|,, then P |Z(y) ~, Q | T(y) for all y.

o~

gc/
C/ “(\%

a

1

The Case Tor Distribution

Distributed Systems consist of:
[J A collection of independent distributed sites offering SQ\”V’\QQS/\”QSOUYQQS to
migrating agents.
[ Resources: All sort of things a agent may long for (CPU time, space,
printers, ... ); we will model them as 7-calculus channels for now.

[l Agents: mobile processes of general nature; we will model them by
augmented 7-calculus processes.




The Case Tor Distribution
? |
a0 @9

b c

Ore precisely. .. Add 10¢ations or Sites, remove direct 1eMOTE communication.
he basic elements are:

[ Locations are sites containing processes: [[P]

[l Communication is only local: I[z(2).P | z(y).Q] — I[P | Q{z/y}]

[ Agents travel between locations [[gotok .P | Q] | k[R] — I[Q] | k[P | R]

The Case for Distribution

‘ k h
(0,0 0

Agent Migration
This opens a lot of interesting “global” issues

[J  Which resource are available at a given location?
[J How do we make sure their are used accordingly?

The use of types to control resource access and usage is an important current
topic.

= = = =1

= =1
The distributed 7 calculus
0 Values: Viu=1]c|c@l
0 Sites: M =0 |I[P]| M|M| (ve@l :T)M
Example: R[P] | (va@l)(k[...a@l.. ] |I[...a...])
[ Threads:
u(Z : T)Q local input on channel u
u(V)Q local output on channel u
gotou P code movement to site u
[u=v|P ;@ testing of names
(ve:T)P  generation of new names (Channels or 10cations)
P|lQ composition
P replication
0 finished
Example: 1[d(z@z) P] | k[(va) goto ! .d(a@k)]
< = =1

SeMantics

Structural congruence
T U1P Q] = 1[P] | HQT
[ f(va:T) P] = (va@l : T)I[P]
a

Reduetion Semantics
O k[e(u).Q | e(z : T)P] — k[Q | P{v/z}]
[0 E[gotol.P] — I[P]




LR TalllOun eI {YCL afdlll)

A Ttefined cell

et us reconsider the the cell and write a distributed version.

[J g — inputs a location; the location MUST have a channel called ret on which
to return value

[J p - inputs a location and new value; location MUST have a channel ack on
which to send acknowledgement.

Coll(n) 2 (vs)(3(n) | tg(y)-5(2).(5(a) | gotoy TW(z))
| 1p(y, v).5(2)(5(v) | gotoy TK())

User

gotol .p(h, 0) | ack(). goto ! .g(h) | ret(z) print(z)

System = [[Celi(v)] | h[User]

In order to use the cell, users have to have a ack and a reply channel. Here is a
version where these are generated on purpose and communicated from the client
to the cell.

System = [[Celi(v)] | h[User]
user £ (var)l :: p(a@h,0) | a()(l :: g(r@h) | r(z).print(z))

Cali(n) £ (vs)(3(n) | 9(2Qy).s(2).(3(z) | y = Z(z))
'p(2@y, v).5(z).(5(v) | y : 2())

Notation: calling a method at a location: [ :: @(v) shorthand for goto!.a(v).0.

A Call Factory

Types Tor Resource Access Control

ere is a (final) version, where a new private cell is created for each user.
System = s[[S] | hq[Usery] | hoUsers]
S £ 11eq(2@y). (ve) (v = Z{c) | goto c.Call(0))
user; £ (vr)(s i Teq(r@h;) | r(z).User;(2))
Evolution of the Syst@m

s[S] | h1[Userq] | hafUsers]
— s8] (ver) (e [CN(0)] | haUsers]) | haUsers]
— s8] (ver) (e [CN(0)] | haUsers]) | (we2)(c2[Cell(0)] | haUsers])
- XQreise:
[I Program a remote channel creation and a newloc construct.

L1 Program a forwarder from in@a to out@b

Location Types. Key notion: describe the services available at a site.
loc[s1 : T1,. .., 8n : Th]

The purpose of the type system is to guarantee that incoming agents access only
the resources granted to them, in the way granted to them. This is called

Rasource Access Control.
Example:  comp t!req(x : int,1et@ : fi(int)@loc).l :: 1et(fx)]. Then,

comp_t : locreq : i(int, i(int)@loc)]




SUDLYDING.

e Types, MOre PIRCIxely

ubtyping plays a central role in access control policies:

(Sub Log)

—

S<T
loc[5: S, sk : Sk < loc[§: T

he receiver gains capabilities according to the type of the location. Using
ibtyping the sender can control this.

or instance, a receiver of [ over a channel carrying loc[a : iV, b : oW] will be able

> read V-values over a and write I/ -values to b, but not to use any other
source possibly present at [ (and hidded by subtyping).

(Sub Remote |
ALA <L

AL < A'el’

et us study the types of the previous examples, and unveil some of the issues
volved.

= =1

Viu=A| AQCL value types
A== 4(T) | (T) | o(T) local ehannels types
L:=loc[sy : Ty,...,8n : Ty location types
T:=(V,...,V) transmission types
P ::=Qu process types
N =9 network types

K K = =1

A Tael for the rules

Typing the cell

(Sub Va\) (Sub Loe)
Thko:V TFV LV TH¢:L THLLL
Thu:V' r+¢:L
(Val Rem)
T'tu:A TFHLKIloc
I'Fu@L : AGL
(Ou)

THl:locla:0T] ThHE:T THP:@
T'+a(d).P: e/

-,

n
( )we:loc[a;iT] r,Z:T+P:@l
Tta(Z:T).P:QL

(Go) (Loc)
T'HFP:0@/ I'tZ:loc THP:©/

I' gotol.P : @k '+ /][P]

The simple cell

Cal(n) 2 (vs: iV)(5(n) | 1g(2@y : oV @loc).s(z : V).(5(x) | y :: Z(z))
| 1p(2@y : o(unit)@c,v : V).s(x : V).(3(v) | y :: Z())

cell : CELL = loc[g : §(oV@loc), p : #(o(unit)@loc, V)]

The cell tactory

£ 11eq(2@y : o(CELL)@loc). (ve : CELL)(y :: Z(c) | goto c .Cell(0))

8 : loc[req : f(o(CELL)@loc)]




DYRAMIC Types

DYHAMIC 1YDES, RESVIVEU

onsider a generic system
server[. .. | tquest(v : V, 2@l : o(ANSW)@loc) .. .1 :: T(answ)]
[he type of server:

serv £ loc[quest : #(V, o(ANSW)@loc), . . ]

ow, suppose that client wants to setup a ‘private’ service, so that answers to
1est's can reach only it.
client [server :: setup(reply@client).reply(s : Serv)...J
server[!setup(r@z : Serv). (vs : Serv,)
goto s.(z :: 1eply(s) | tquest(v, zQz).z :: Y(f(z))...)]
serv, £ loc[quest : #(V, o(ANSW)@z), . . .]

vsetup k

server ———s (vs : loclquest : f(V, o(ANSW)@k)]) s[. - .]

Viu=A| AGL | AGu  value types

(Sub Remote 11) (Sub Remote 111)
AL A T'tv: L

ABu < A'Gu AGu < AQL

(Val Rem 11
'tu:A@v ThHo:L<loc

' u@u: AQu

The move capability

Location Typed Bisimulation

dd a new component of types which allows to control movements. Consider
M == ...loc[move,, Z : T)
he obvious typing rule is

(Move)
Tk k : loc[movey] '-P:Gk

' gotok.P: @/

imilarly, one can add a capability new, to allow processes from / to create new
nannels at a given location k. And more.

xample: A confdential aceount

bank[!new aceount (y@z : ¥ @loc, _Qa : i() @Agent)

(v10¢ : [move,, Withdraw : ... deposit : ...])...]

Question: Does this affect the behavioural equivalences?

2

k[b()] = k[0]
Of course. The impact of types with locations is even greater than before.
Whether the equivalence above holds depends on I'. Precisely, can we move to &

to observe b?

Consider
(vk : locla : (), moven,]) hy[d(k)] | ho[e(k)] | K[a()]
(vk : locla : §(), movep, |) h[d{(k)] | ho[e(k)] | k[O]

They are equivalent if T contains: d : i(loc[move|) and ¢ : i(loc[a : {()]) and it is
not possible to move between h; and hs.




LOCALION TypeU BisiiulaliOf

7

I" does not
-— have move
capability
for these

. I has move
. capability

| .
for these 7
.
i 7z
.

et 7 be the collection of locations (e.g. {k1,%k2,k3,k4}) for which T does not
ave move capability but the environment may a priori have code running at.

LOCALION TypeU BisiTulaliOf

7

I" does not
-— have move
capability
for these

. I has move
. capability

| .
for these 7
.
i 7z
.

Transition of the form: (T'> M) -2 (' > M) where T is of the form
(Tko, Tr1y ..oy Tgp) for & = {k1,..., kn} such that

Tpo <T'y; foreach ki €

[1  Knowledge gained at any ¢ is learned in T'gg

[1  Knowledge gained at ki is learned in I'y; and T'xq
RS = =

= =1
Lg‘bg\\gd trgnS\t\On S StQm example rules
p

[1 T'xo contains move capability for [
[1 and I'yg contains read capability for a at [ for values of type T’
(1 then (T > I[a(v).P]) LN (T Myo v : TGl > P)
[] T'gg does not contain move capability at & € 7
[1 and I'y contains read capability for a at k for values of type T
[ then (T > k[a(v).P]) —=2% (T My v: T@l My v : TCL > P)
< = =1

Full abstraction

Thm

With the simplifying assumption in place that all move capabilities are of the
form move, (that is everybody is allowed in, or nobody is) then, for all systems o
D7 and all  we have

I>M2>N iff TooM=~7 N

where T'y, = (I',T',...,T") and ~7 is the bisimulation equivalence induced by the
labelled transition system.

Open issues:

[J Remove the simplifying assumption about move capabilities

[1 Other capabilities: permission to exit, permission to create new channels,




The Join Calculus

he Join calculus (aka the Reflexive Chemical Abstract Machine): a version of

synchronous m combining restriction, reception, and replication in one construct:

Join receptor: J > P.
-or example the definition
def apply(f,x) > f(x)

efines apply that receives two arguments and applies the first to the second, as
own by the reduction:

lef apply(f,x)>£(x) in apply(g,y) — def apply(f,x)> £(x) in g(y)

Notice:
[1 Definition persistence and locality

[l This is very similar to (vapply)(lapply(z,y).Z(y) | apply(g,y)) in 4. In

general, def D in P corresponds to a 7 form of the kind (vd)(!"D7|"P7).

< = =1

The RCHAM Semantics

efiexive Chemical Abstract Machine: Structural rules = plus reduction —:
tates of the RCHAM are expression of the form D = P, where P are the
inning processes and D are the (chemical) reactions.

(str-Join) =P|Q = =P,Q
str-def =def DinP = D,, =P, 04y instantiates dv(D) fres
dv dv
(TQG) J> P ‘: Jaru - Jo P ‘— oy Orv substitutes for rv(J)
Edef z(z)>x(z,2) in z{a) | def z(z) > z(z, 2, 2) in x(b)
=k(z)pk(z,2) =

k(a),def z(z) > z(x, z,z) inz(b)

)
= k(z) > k(z, 2),r(2) > r(r, 2, 2) = k{a),(b)
= k(z) > k(z,2),r(z)>r(r, z,2) = k{a,a),r(b)
— k(2) > k(z,2),r(z)>r{r 2, 2) E k{a,a),r(r,b,b)

= [=def z(2)>x(2,2) in x(z,a) | def x(2) > z(x,2,2) in z(z, b, b)
= = =1

IR BYNILAX

Processes PQ == xz(V) Asynenronous message on
def D in P  Definition of D in P
P|Q Parallel Composition
0 Empty Process
Join patterns  J,J' = z() Asynehronous reception on z
J|J Joining massages
Definition D,E == JbvP Elementary clause
DAE Simuitaneous definition
Values Vv,V = Names

The only synchronisation primitive is the JOIN pattern:

def z(z1) | y{22)> @ in P

Example: Join pattern

def ready(printer) | print(file) > printer(file) in P

reduces only in the presence of messages on both ready and print, concurrently

def ready(printer) | print(file) > printer(file)
in ready(gutenberg) | print("slides.ps”) | @
— def ready(printer) | print(file) > printer(file)

gutenberg(”’slides.ps”) | @

The same behavior is obtained by composing the definitions of apply and
printer:

def apply(f,x)>f(x) A ready(p) | print(f)>apply(p, f)




Derived constructs

PQ == f(V)P Saquential Composition
let 7= Vin P Named Values
reply V = f  Implicit Continuation

J,J' u= f(T) Synehronous recaption on f

v,V u= f(V) synenronous Call
Lf@)] = f(u, ky) (Join pattern)
|reply V = f] £ k(V) (process)
(V)] 2 let =V inz(d) (asynenronous call)
|let u= f(V ) in P| £ def k(u)> P in f<X7, K) (synchronous call)
|let % = in P 2 P{v/u}
|F(V); P] 2 def k()b P in f(V, k) (sequencing)

Digtriputed Join Calculus

The cell in Join

The distributed refiexive chemical abstract machine (DRCHAM) is a multiset of
“located” RCHAMs
D, ‘:m Pl” “Dk ':Pk Py

Each of these is a TUNDING 10CATION, and they are related to each other by a
sublocation relation:

=4 is a sublocation of |=, if p is a prefix of ¢.

(str-loc) alD:Pl=, = |, DEmwP (a trozen)

(comm) =4 2(0) || JbP= — |=¢ || JOPEZ(D) (z€dv())

(move) a[D : Plgo(b, k)] =g || Fue — o | alD: Pls()] Fys
Notice:

[1 Remove messages are forwarded to the unique solution where they are
defined. There the usual (red) applies.

= T The entire location moves, not the thread = ™

= def call[s(z) | get(r) > r(z) | s(z) A
s(z) | put(v) > s(v) : s(0)] in get(z);put(2)

—  l[D : s(0)] = get(z); put(2)  — D = s(0)]| = get(x); put(2)
— D s(0) [ gU@) || = put2)  — D = 5(0) | 2(0)] = put(2)

— D = 8(0) | 2(0) | put(2) — D= s(2) | 2(0) —

= def cell[s(z) | get(r) > r(z) | s(z) A
s(z) | put(v) > s(v) : s(2)] in z(0)

XQreise: Program a mobile cell.

Summary of Lecture 11

[] We studied asynchrony in the 7 calculus and its consequences on
behavioural equivalences.

[1  We considered a distributed 7 calculus and a notion of typed equivalence.

[l We introduced the distributed join calculus.

0 Further Reading:

Again, the best starting points are:

[0 The m-calculus: A theory of mobile processes (sanglorg), Walker)
[0 The mobility home page http://lamp.epfl.ch/mobility/

Consider also

[ Asynchronous 7 (Boudol), (Honda, Tokoro)

Comparing Synchronous and Asynchronous 7 (Palamidessi)

Decoding Choice Encodings (pierce, Nestmann)

On Asynchronous Bisimulation (Amadio, Castellani, Sangiorg))

Access and Mobility Control in Distributed Systems (Hennessy, Rathke, et a)

I I |

Join Calculus (Fournet, Gonthier, ot 20 http://pauillac.inria.fr



http://lamp.epfl.ch/mobility/
http://pauillac.inria.fr

&10Dal COMPULINg

— Lecture VI —

Ambient Mobility

Vel NCLWOTKS alld THODIEC AfCIILS

O

Distribution over wide-area networks introduces new issues and breaks

many of assumptions usually made in concurrent systems. We have already

discussed asynchrony.

Other examples:

[0 existence of explicit physical locations determines latency in
communication,

[J existence of virtual locations enforcing security policies that can
restrict access to resources or even the visibility of locations.

Mobile Ambients: a calculus of locations with migration primitives
sufficiently expressive to encode the m-calculus, and presenting a new idea:

Modelling Environment Mobility

= =1
The roadmap
Mobile Ambients
Typing ambients
Boxed Ambients
Types for access control in ambients
= =1

Overview

Mobile Ambients:

g

0

Provide a direct representation of the structured nature of physical or
administrative domains as well as of mobile computational environments.

Are named agents: n[P]

Represent computational environments, containing data and live
computations: n[P | (M)]

Can be nested: n[m[P]|k[Q]]

Move under the control of their enclosed processes: n[in m.P] | m[Q]
This is dubbed (subjective mobility).




The Essence of Mobile Ambients

SYIILAX

| SUb]QQUVQ movemeaents
n[inmP|Q]|m[R]—m[n[P|Q]|R]
m[n[foutm.P|Q]|R]—n[P|Q]|m[R]
| Process interaction

n[ (M).P|(z).Q ] — n[ P|Q{M/z} ],

~ Boundary dissolver

openn.P|n[Q] — P|Q.

(M).P output

Note. Channel are local and anonymous. Output can be synchronous.

Expressions Processes
M == a,...,q names P = 0 stop
| z,...,2 variables |  (va:W)P restriction
| inM enter M | P|P composition
| out M oxit M | P replication
| open M open M | MJ[P] ambient
| (My,..., M) tuple | M.P action
| M.M path | (@:W)P  input
|

structural COﬂgTUQﬂQQ

MoDIIIty. An example

=Q

0 (M.M'").P=M.(M'.P)

O (wa:W)b[P]=b[(va: W)P] fora#b

0 (va:W)0=0

O (va:W)a[0]=0

O (wa:W)wb: W)P=wb: W)(va:W)P fora#b
O (wa;W)(P|Q)=P|(wa:W)Q foradfn(P)

0 '\P=1!P|P,

O usual rules for symmetricity, associativity and identity

O Ooo o

Firewalls

[] An agent crosses a firewall by means of passwords k, k; and k.

The firewall, with secret name w, sends out the pilot ambient k& to guide

the agent inside.

Firewall 2 (vw)w[k[out w.in ky.in w] | open k;.open ky.P]

Agent £ k;[open k.k2[Q]]

Agent exhibits the passwd k; using k; as wrapper ambient
Firewall verifies that agent knows the passwd with in &y
in w carries the agent into the firewall

ko prevents () from interfering with the protocol




A TUll O the PIoLtYCOI

Firewall 2 (vw)w[k[out w.in ky.in w] | open k;.open ky.P]

Agent £ k1 [open k.k2[Q]]

Firewall | Agent
— (vw)
Jw|open kj.open k2. P] | ki[k[in w] | open k.k2[Q]]
vw)w[open kj.open ks.P] | kiin w | k2[Q]]
Jw[open ky.open ks P | k1[k2[Q]]1]
Ywlopen ky.P | ka[Q]]
)

E[in k1.in w] | w[open ki.open ko.P]| ki[open k.k2[Q]]

Reduction: structural rules

Reduction: communication

0 SUYPNSQS
(Par) (New)
P— P P— P
P|lQ—P|Q (va:W)P — (va: W)P'
(Amb) (Cong)
P—P P=P P —Q Q=Q
a[P] — a[P’'] P—Q

. but note that processes inside ambients reduce

[ ambients are active while moving

(Comm) (z)P| (M) — P{M/z}
[l local, asynchronous and anonymous
[ Remote communication must be encoded.
[0 To realise:
a[send M 10 b| P]|b[get(z) rom a.Q | R]
we use a ‘1aXi’ ambient to transport a packet with M:
(vn)(a[n[out a.inb|{(M)]|P]|blopen n|(z)Q | R])
— (vn)(a[P] | n[in b| (M)]|blopen n | (x)Q | R])
— (vn)(a[P][b[open n|n[(M)]]|(z)Q | R])
— a[P]|b[{M) | (z)Q| R]
— a[P][b[Q{M/z} | R]
< K = =1

[1 1dea: ambients are places of conversation

[1 multiple processes within an ambient can freely execute input and output
actions:

[ since messages are not directed to a particular channel, it is possible for a
process to output a message that is not appropriate for the receivers active
inside the current ambient.

(z: W)z[P]] (in n)
[] type systems must statically detect such errors, keeping track of the
topic of conversation
appropriate within a given ambient
< K = =1




CACHANER 1YPeS

EXpression Types

w m= B type constants
| AmbD[E] ambient: allow £ exchanges
| Cap[FE] capability: when exercised unieash F
Exehange Types
E,F == s no exchange

| (Wh,...,W,) uplen>0

PR RUIRS

Type Judgements

[J T'F M : W expression M has exchange type W;

[J T'F P :T process P has type T'.

NOTQ: processes have types, describing efects (i.e. their exchanges)

Process Types
T = [E] process exchanging £
Typing Processes |
put-Output

0 Tyz:WkEP:[W
Tk (z:W)P:[W]

O ifz: W, and P also exchanges W, then (z : W).P exchanges W.

0 Only one topic of conversation.

0 TFM:W
C'E{(M): W]

[0 M is an expression of type W: hence a process that outputs M

exchanges W, i.e. has type [W].

Typing Processes I

Ambients

0 ThFa:Amp[E] THP:[E]
Tka[P]:T

thought of as potentially exchanging any type.

the type of exchanges held by P inside a.

is opened ... useful for typing open

[J an ambient exchanges nothing at its own level, hence it may be

[0 Type safety requires consistency between the type that a declares and

[0 We can check that processes inside that ambient behave consistently.

[J Further consequence: can tell what types are exchanged with ambient




LYPINE EXPDIROSIONS |

FYPINE EADTRSSIONS 1

pen

7 TFM:Am[E]
' open M : Cap[E]

O if n: AmDb[E], opening n unleashes processes enclosed in 7, which have
exchanges of type E.

00 by our intended interpretation of Cap[E], this implies open n : Cap[E].

[0 Further consequence: process exercises open n : Cap[E] may end-up
running in parallel with processes which exchange E.

[0 any such process must be itself prepared to exchange E that types ...
useful for typing M.P

In and Out

0 ' M : Amb[F]
I'kin M : CaplE]

0 TFM:Am[F]
'k out M : CaplE]

[] need not track type information

[ all the required consistency checks on the local exchanges within an
ambient are already accounted for by the typing of open.

Typing Procasses 111

Mobility Types

Prefix
0 THM:Cyp[E] THP:IE]

'+ M.P:[E]
Explained earlier

(mmm
0 'tP:T THQ@:T

TFP|Q:T

[J  Remember: just one topic of conversation

[J  Remaining rules present no difficulties

O

Exchange types are effective in imposing a discipline on the exchanges
within ambients.

[]  but communication is just one aspect of the computation of the ambient
calculus, and not the core one.

O

basic properties of mobile ambients are those related to their mobility, to
the possibility of opening an ambient and exposing its contents,

O

want a type system to control/characterize these aspects of ambient
behavior.




DOXINE AMDICHLL

[l The Open capability is
[0 essential for communication, but
[J potentially dangerous
a[in safe_amb.NastyCode ] | sate_amb[open a.Q ]

—>— safe_amb[ NastyCode | Q]

[J complicates the typing of mobility

[1  Drop the open capability of Mobile Ambients

[l Provide new constructs for communication across boundaries
[0 exchanges towards children: (z)".P, (M)™.P

[ exchanges towards parent:  (z)".P, (M)T.P

Boxed AMDIENTS. overview

{1 Mobile Ambients \ open + parent-child 1/0

Communication primitives
[ (£)"P: input from ambient 7
[ (M)"P : output to ambiet 7
1 = the location where the communication happens

LI n =% local, as in Mobile Ambients
LI 5 =mn: from parent to child
LI 5 =1: from child to parend

Remote communication, between siblings, still requires mobility

I = =1
Typed Boxed Ambients. Syntax
no = n names
| XS 1 enclosing amb
| XS * local
P === 0 nil procaess VU == n name
| XS PP, composition | XS inV  mayenter V
| XS (vn:A)P restriction | XS outV mayexitV
| XS P replication | XS -epeni—may-opents
| XS V[P] ambient | XS Vi.Vo  patn
| XS V.P prenxing
| XS (x:W)".P input
| XS (V)n.P output
| XS (vG)P group creation

Reduction Semantics

Mobility:
n[inm.P|Q] | m[R] — m[n[P | Q]| R]
m[n[outm.P | Q]| R] —n[P|Q] | m[R]

communication:
(@).P[(V).Q » P{V/x}|Q
(@)".P | n[(V).Q | R] - P{V/x} | n[Q | R]
(@).P | n[(V)".Q | R] - P{V/z} | n[Q|R]
(Vy"P | n[(@).Q | R] = P | n[Q{V/z}| R]
(V).P | n[(@).Q | R] - P | n[@{V/x}|R]

(i)
(Out)

(Comm Local)
(Comm Input n)
(Comm Output 1)
(Comm Output n)

(Comm Input 1)

= =1




Digcussion

[1 Reductions yield clear notions of resources and access requests
[0 each ambient has an allocated resource, its local (anonymous) channel;

00 (M)" = write access to the ambient 7 towards which the request is
directed (equivalently, its anonymous channel).
O (z)" =~ read access

[] Resource access control policies expressed easily and directly

[ Static analysis, by typing, eased and more accurate, given the absence of
open

till, we will criticise it tomorrow. For now let us look at access control.

Indirect Border CYOSS\ﬂg in MA

royan Horses. The system

Odysseus| in Horse.out Horse. Destroy] | Horse[ inTroy | | Troy[ Trojans]

well-typed under assumptions:

Odysseus : amb[Achaean, ¢ross(Toy)]
Horse : amb[Toy, cross(City)]

Troy : amb[City, ]

OWQVQr, the system may evolve to

Troy[ Trojans | Horse[ -] | Odysseus[ Destroy] |

here Odysseus got inside TT0Y'S Wall§ taking by surprise the Trojans.

GIOUD Types 10T MODIILY

Aim: Resource Access Control
[1 Detect and prevent unwanted aceess to resources.

[J We focus on static approaches based on enforcing type disciplines.

GroUps. Sets of processes with common access rights. (Cardelli-Ghelll-Gordon)
Constraints like k : CanEnter(n) are modelled as:

n belongs to group G

k may cross the border of any ambient of group G.
For instance, the system:
Elinn | [outk]] | n[-]
is Well-typed under assumptions of the form:

E : amb([K, eross(N)]

[ : amb][L, cross(K)] n : amb[N, .. ]

Types

Groups: G,H,...

Sets of groups. ¢,2,.7, ... 7/ The universal set of groups

Ambients types:

A = amdby[G, M, C] amb of group G, good for actions x C {i,0,c,r,w}
With mobility type M/, and communication type C'
Process tprS'.

o == proel, M,C] process that can be enclosed in an ambient of group G,
may drive to ambients whose groups are in A7,
and communicates as deserived by type C'
Capability types:
K = G, M,F] capability that can appear in an ambient of group G,

may drive it to ambients whose groups are in M,
With exchange type £ for local communication




Lypes (COlIL.)

obility types:

M = mob¥] mobility spacs

ommunication types:

C == CN[E,F]
xchange types:
E.F == w0

assage types:

read /write values (valid it O <

E for local and ' for upward e

I,O == 1 | XS Wyix...xWy | XS T bottom, tuple, top
alue types:
wyYy .= A ambient name
| XS K capability
J— = =1
(Vai n
B’,n W, F o
Cn:WI'Fn:W
(Val prx) (Vval i)
'Vy:K; T +Vi: K TV :amb;[G, M,com[E, F]]
' Vo.Vi: K ' inV : cap[H, mob[{G}], E]
(Val sub) (Val out)
r-v:w; w=<w I' -V :ambe[G, M, com[E, F1]
H
re=v:w I' - out V :cap[H, M, F]

DUDLYDINE

(sAmD)
X1 g X0 g {i,O,C,r,W}

(SPTOQ)
My < M1; Co < 01

amb,, [G, M, C] < amb,, [G, M, C

(cap
My < Ml; Fy < Fy

€ap[G, Mo, Fo| < eap[G, My, Fi]

(sCom}}
o< FE1; Fy < Fy
com[Eq, Fo] < com[Ey, Fy]

] proc(G, My, Co] < proe[G, My, Ch]

(sMob)
% C%

mob[¥p] < mob[# ]

(SEX)
I < Iy; Og=<0Og

™W[lg, O] < W[I1, O1]

SMs sTuple
) — ( p)W¢<Ti; icl.k
L <Wix...xW,=<T Wix...xWp<T) x...xTy
K K = =1
GO00d Processes — MOD'\\'\W
(Pro prx
I' - Veweap[G, M, F|; T+ P:proc[G, M, com[E, F]
I' = V.P:proc[G, M, com[E, F|]
Pro amp
I' - V:ambe[H, mob[.],com[E, F]]; T F P:proc[H, mob[.#], com[E, F] ce o
S
T = V[P]:proc[G, mob[@], com[F, zero]]

(Pro ras) (Pro gras)

''n:AF P:1I 'k P:1I

———— G¢fg(ll)

'k (vn: AP :1I ' (vG)P:1I

(Pro 0) (Pro par)
G € dom(T") '-P:1I; THQ:II

I' - 0 : proe[G, mob[(], com|[zero, zero]] rcP|Q:1I
(Pro rep) (Pro sub

'-pP:1I r-prP:0 oO<Ir

r+1p:1I r-p: 1
< K = =1




G00d Processes — communication

(Inp %)
I'xz: W F P:procG, M,com[rw(I, O], F]
't (z:W).P:proc[G, M,com[tw[I, O], F]]

(out %)
'V :W; Tk P:proe[G, M,com[tw[l, W], F]]
' (V).P :proe[G, M, com[tw[I, W], F]

(o 1)
,x: W F P :proeG, M,com[E,w[I, O]]]
T (x: Wi)!.P:procG, M, com[E, [T, O]]]

(output 1)
'-Vv:W; Tk P:proe[G, M,com[E,tw[l, W]]]

T F (V)P :proe[G, M, com[E, tw[I, WT]]

...and 8o on analogously

Detecting Odysseus’ intentions

ow, in order to assign a type to

Odysseus| in Horse.out Horse. Destroy] | Horse[ inTroy | | Troy[ Trojans]

e need assumptions of the form:

Odysseus : amb.[Achaean, mob[{Ground, Toy, City}], ]
Horse : amb;,c[Toy, mob[{Ground, City}], |

Troy : amb;oc[City, -, ]

epresenting that Odysseus is an Achaean intentioned to move into a City!
n the other hand, under assumptions of the form

Odysseus : amb.[Achaean, mob[{Ground, Toy}], ]
1e Trojans should not fear any attack from Odysseus.

ut what if Odysseus is Iying about his intentions (i.e. type)?

FTOPEILICS

communication properties:

0 WDk (z:W).P|(V).Q:TthenT - VY with Y < W.

MODbility properties:
0 KT F n[inm.P | Q]| m[R] :1I, then

'k m:amdy,[M,_,-] and T F n:amb,, [, mob[.~],_]

withM € ¥, i,c € xg and ¢ € 3.
O KT F mn[outm.P| Q]| R]:1II, then
I' = m :amb, [M, mob[A4,], ] and I = n : amb,, [N, mob[4,], ]

with o,c € g, c € x1, M€ ¥, and ., C .%,.
SUD]QQY, reduction:

[l T F P:Iland P=Q or P — (@, then there exist groups Gg,...Gy
such that Gg,...,Gg, I’ F @ : II.
RS =
AGG\ﬂg QO-QQP&D'\\'\UQS
Reduction Semantics:
n[inm.P| Q]| m[ina.R|S] - m[n[P| Q]| R|S] forac{xn}
m[n[outm.P |Q]| R ]|outa.S = n[P|Q]|m[R]|S Torac{xn}

MOoDbility Types: (extended: % tells which procaesses are allowed in.)
M = mob]S,¥]

Subtyping Relation: (extended)

(sMoD)

% C%, % C6
mob[%, €o] < Mob[¥;, ]




G00d Values in BSA

(Val in) (Val out
I F V:amb;[G, M, com|[E, F]

T F V:amb,[G, mob[.#, €], com|[E, F]

I I inV:eap[H, mob[{G}, 0], E]

(Va\ Qo'm)

(Vg\ eoout)
' F V:amb;[G, M, com[E, F|]

I' - out V:eap[H, mob[.#, 0], F]

T F V:amb,[G, M, com[E, F]

I + inV:cap[H, mob[@, {G}], F]

(Va\ coin *)

(Val coout %)
G € dom(T)

G € dom(T")

I + out V:cap[H, mob[@, {G}], F]

I' F in «:0ap[G, mob[{, Z],zer0]

In (Valin), (Vai out), (Val coin), (Val coin), assume He T

I' - out *:ap[G, mob[(), %], zero]

GOOU FTOCRSSES — MODIILY 1T} BoA

control Properties in BSA

0]
1o 9) G € dom(I)

I - 0:proc[G, mob[@, @], com|zero, zero]

(Pro pix
'+ Veeap[G, M, F|; T F P:proc[G, M, com[E, F]

I' - V.P:proc[G, M, com[E, F]

(Pro amb)
' F V:ambc[H,mob[.#, €], com[E, F]
I’ - P:proc[H, mob[.#, €], com[E, F]

I' = V[ P]:proc[G, mob[@, {H}], com[F, zero]]

ceess Control Theorem:

Whenever

't m[ina.P|Q]:II or T+ mlouta.P|Q]:1I,
ith o € {x,n}, then
O T'F m:amb,,[-, mob[_, €], ], and

O eithet o =% and € = %,
O ota=nwihI' - n:amb,, [N, |Jand N € F.

K K = =1
using QO-Q‘AP‘AD\\\UQS 10 defend 110y
Our running example in BSA:
The Trojan War £ Odysseus[ in Horse.out Horse. Destroy ]
| Horse[in * .inTroy]
| Troy[ In Horse. Trojans | out Odysseus.Sinon
which can be Well-typed only if
I F Troy : amb;ec[City, mob[_, {Toy, Achaean}], |
That is if Troy (in suicidal mood) allowed Achaeans in.
< K = =1




Unlllg CO-Lapabllities 1O URICliU 11Oy {CLU) SUlliilialy O LeCLule 1V

onsider now the system: We focused on ambient mobility, introducing ambients and their exchange types,
boxed ambients and their mobility types.
The Trojan Trap £ Odysseus| in Horse.out Horse. Destroy] Further Reading
| Horse[ In * .inTroy] Mobile Ambients, a “hot topic”: lots of papers. References for this lecture are:
_ _ [J Mobile ambients (Cardelli, Gordon)
| Troy[ inHorse. Trojans] .
L] Mobility types (Cardelli, Ghelli, Gordon)
L] Polymorphic Typing (Amtoft, Kfoury, Pericas)
e I
hls.5|tuat|on would b.e perfectly safe for Troy (but dangerous for Odysseus!) [ Safe Ambients (Levi, sangorg)
rovided we can type it under the assumptions of the form
[] Boxed Ambients (Bugliesi, Crafa, Castagna)
Odysseus : amb.[Achaean, _, | [l Typing and Subtyping Mobility (Merro, Sassone)
HOTSe : amb;oc [Toy, -, com[E, 0]] L. along list, ...
Troy : ambsec[City, mob[d, €], -]
vith Achaean & €.
= = =1 S = =1

Global Computing The Case for Resource Usage Control

Global Comput‘mg involve scenarios where mobile devices enter and exit domains

_ LQQ‘LU“Q \/ - and networks.

Typical Devices:
Today: Smart Cards, Embedded devs (e.g. in cars), Mobile pnones, PDAS, Sat navigators, ...
Tomorrow: PAN, VAN, D-ME, P-COM, ...

Requirements:
U SQQUNW'. Authentication, P\"N&Qy, Non RQPUG'\M'\OI\

Towards Ambient Resource Control

Trust Formation and Management

Central Notion:

Context (e.g. Location) Awarenass
Resource Usage

Dynamic Learning and Adaptability
Policies of Access Control and their Enforeement

Negotiation of Access, Access Rignts, Resource Acquisition

O 0Oo0oooo

Protection of Resource Bounds ...




ROAUIMaP 10T LeCLlule V

(1 Control of Interference in Mobile Ambients. manageable vs expressive:

how do you want your calculus?

0 Secreey in Untrusted Networks: crypto-primitives for mobile agents

0 Ambients with Bounded Capacity: make realistic hypothesis on ambient

capacities and processes’ space consumption.

Interferences in Mobile Ampients

[l The inherent nondeterminism of movement may go wild: Grave Interferences

E[n[inm.Ploutk.R]|m[Q]]

1 Introducing Safe Ambients

n[inmP|Q]|m[inmR|S]—m[n[P|Q]|RI|S]

1 Co-capabilities and single-threadedness rule out grave interferences

Mobile Boxad Ambients

| open’s nature of ambient dissolver is a potential source of problems.

' Direct communication as alternative source of expressiveness: MODile Boxed
mbients. Perform 1/0 on a subambient n's local channel (viz. (z)™) as well as

om the parent’s local channel (viz. (z)")

(@)".P[n[ (M).Q [R]— P{M/xz}[n[Q|R]
(M).P|n[ (2)".Q |R] — P|n[ Q{M/z}|R].

| But it is a great source of NON-10CA) nOndeterminism and communication

terference.

m[ (2)".P | n[ (M) | (?)-Q | k[ (z)".R]]]

1

I

!

\ﬂU’OGUng NBA: Communication

NBA: a fresh foundation based on: each ambient comes equipped with two
mutually non-interfering channels, for 102} and UPWArd communications.

(@)".P|n[(M)".Q | R] — P{M/x}|n[ Q| R]

(M)}.P|n[(2).Q |R]— P|n[ Q{M/z}|R]

[1 Expressiveness??

[l Hmm, rather poor: n[ P] cannot, for instance, communicate with children it
doesn't know statically. It can never learn about incoming ambients, and will
never be able to talk to them.




HLTOQUCITIE NDA. MODIILY

. Let us introduce co-actions of the form enter(z) which have the effect of
inding the variable x.

. Such a purely binding mechanism does not provide a way control of access,
ut only to registers it. As a (realistic) access protocol where newly arrived
gents must register themselves to be granted access to local resources.

' Need a finer mechanism of ACCQSS CONTrol:

| |
af enter(b, k).P | R ]| b] enter(z,k).Q | S] — bl a[ P| R ]| Q{a/z} | §]
| L | ?

his represent an access protocol where the credentials of incoming processes (k

 the rule above) are controlled, as a preliminary step to the registration protocol.

NDA. SYIILdX

Names: a,b,...n,x,y,... €N
Locations: Messages:
n = a nested names M,N == a name
| XS = enclosing amb | XS enter(M,N) may ent
| XS * local | XS exit(M,N) may exit
| XS M.N path
Processes: Prefixes:
P == 0 nil process T u= M maessage
| XS Pi|P, composition | XS (z1,...,25)" input
| XS (vn)P restriction | XS (My,..., M)" output
| XS n.P replication | XS enter(z, M) allow en
| XS M[P]  ambient | XS exit(z, M) allow ex
| XS n.P prenxing
K K = =1

e = =1
NBA: Raduetion Semanties
mobility
n[enter(m,k).P | R] | m[enter(z,k).Q | S] — m[n[P|R]|Q{n/z}|S]
n[m[exit(n,k).P | R]| S]| exit(z,k).Q — m[P|R]|[n[S]|Q{m/x}
communication
(@).P | (M).Q — P{M/%}|Q
@".P|n[(MY.Q|R] — P{M/%}|n[Q]|R]
(M)™.P|n[(¥)*Q|R] — P|n[Q{M/Z}|R]
struetural eongruenee
P=Q, @ — R, R=S=—P—S
K = =1

A 0ne-to-one communication server

(1 Let w(k) be a bidirectional forwarder for any pair of incoming ambients.
w(k) £ w[ enter(z, k).enter(y, k).(1(2)".(2)¥|!(2)¥ .(2)") ]

An agent can be defined as: A(a,k, P,Q) £ a[enter(w, k).P | exit(w, k).Q] and
a communication server as:

A

o2(k) = (vr) (r[() I1O)"-(w(k) | exit(,k).exit(-, k).r[()" 1))

[] It can be proved that once two agents engage in communication no other
agent knowing the key k can interfere with their completing the exchange. In
formulas:
(vk)( 020(k) | A(k,a1,(M)".Py,Q1) | A(k, az, (z)".Pa{z},Q2) | Hie ; A(K, a;, R;, S;) )
= = (vk)(020(k) [a1[P1 [ Q1] | az[ Pi{M/z} | Q2] | Hie1 A(K, ai, Ri, Si) )




A DTIIL SRTVET

| The following process assigns a progressive number to incoming jobs.

enqueue, £ (ve) (c[(1) ]| 1(n)¢.enter(z, k).(n)*.c[(n+1)" ])

. We can turn it into a print server (which consumes such numbers).

prisrv (k)

k[ enqueue,, | print ]

(ve) (e[{1)" 11 1(n)° exit(z,n).(dat)*.(P{dat} | [ (n +1)" ])

(1>

print
A client then acts as:

job(M, k) 2 (vp)p| enter(k, k).(n)".(vq)q[ exit{p, n).(M)" ] ]
“enters the server prtsrv(k) (using enqueue), it is assigned a number that it uses

s a password to carry job M to print (which eventually will bind it to dat in P.
Dynamic name discovery and passwords are fundamental here.)

GO0odies 0T NBA over BA

[J A good set of equational laws
[1 A simpler type system
[1 A sound LTS characterisation of barbed congruence.

[1 No significant loss of expressive power

Some Equational Laws

,arbag@ Collection laws
[ (#)"P|().Q| (M)™.R ] =°
P

0
I @P|(M).P|(M)".P ] = 0

1%

ommunication 1aws

I (M) (M) ] = I[(Mo) T [I[ (M) ]

I[(@).P|(M).Q] = I[P{M/7}|Q]

(D) (@LP M) .Q]) = (v)(P{M/&}|1[Q])
m[(@)PI[(M)".Q]] = m[P{M/z}|1[Q]]

ODIINTY laws

- (vp)(m[enter(n,p).P] | n[enter(z,p).Q]) = (vp)(n[Q{m/z}|m[P]])
' I[m[enter(n,p).P] | n[enter(z,p).Q1] =° I[n[Q{m/z} |m[P]]]

A Type System for NBA

0 Types
Message Types W x= N[E] ambient/password
| C[E] capability
Exchange Types E,F == s no exchange
|  Wix...x Wy tuples (k> 0)
Process Types T u= [E,F] local /upward exchange

N[E] types both ambients and passwords; Shh is the Silent Type; N[shh] is an
ambient with no upward exchanges or a password that reveal the visitor's name.

O TyPQ Environments

(Env Empty) (Env name)
k¢ a¢ Dom(T)

FEo la:WkEo




PR RUIRS

MQSSQgQS

Projection)
T,a: W,T'Fo

T,a:W,T'Fa: W

Enter)
TFM:N[E] TFN:NF] (FLGQ)

T + enter(M, N) : C[G]

(Path)

Tk M :C[Ey] T+ M,:C[Es]

(EXit)

' M{.M; : C[El L Eg]

THM:N[E] THN:NF] (FLG)

T+ exit(M, N) : C[G]

PIIE RUiCs. 1l

0 Processes: mobility

(Amb) (Prefix)

T'M:N[E] TFP:|[FE T'-M:C[F] T-P:[E,G] (FKQG)

'+ M[P]:[G, H] T+ M.P:[E,G]

(Co-enter) (Co-exit)

I'FM:NW] T[,z:N[W|FP:|[E,F] I'FM:NW] T,z:NW]|FP:|[E,F

T + enter(z, M).P : [E, F] I + exit(z, M).P : [E, F

(Co-enter-silent) (Co-exit-silent)

THM:NSW THP:[EF] z¢&fv(P) TFM:NSwW THP:[EF] z¢fv(P)

T + enter(z, M).P : [E, F] T F exit(z, M).P: [E, F]
RS = =1

Processes
(Par) (Rep) (Dead)
THP:[E,F] T+Q:[E,F] ThHP:[E,F] Tho
THP|Q:[E,F] THIP:[E,F] THO:|E,F]|
(New)
I',n:N[G]F P:[E,F]
'+ (vn:N[G)P: [E, F]
< = =1
Typing Rules: Il

Processes: \/O
Input) (1nput )

L,2WhkP:[W,E| 0,&WFP:[EW

T+ (2:W).P: [W, E] T+ (z:W).P:[E,W|
Input M) (output)

THFM:NW] T,z:Wt P:[G,H] THM:W T+ P:[W,E|

T+ @W)M.P: (G, H] T+ (M).P:[W,E]

Output (Output N

THFM:W TFP:[EW| TFN:NW| TFM:W TFP:[GH]

T+ (M).P:[E,W] '+ (MYN.P: |G, H]

- Subject Reduction. TP :Tand P — @, then T Q : 7.
< = =1

Encoding: BA in NBA

We can encode BA into NBA enriched with a focused form of nondeterminism.

4P = @ | (P)n

(mlP1}n = ml{Phn]

(@°Phn = @ (P)a

(@P)n = @(P)at @ (Phn+ sty (P)n
(@'P)n = (upplexit(n,p).(a) enter(n.p).(@)" | | &vter(y. p) (@)* (P)
(My*P)n = (M)*(P)n

((MPYn = (M)(PYn+ (M) (P)n+ Xy, ;M) (P)n

((M)TP)n (vp)plexit(n, pw).(M)" enter(n, p).(-)" ]| enter(y, p)(-)¥ { P) n

where 0SS = lenter(z,mv)|lexit(z,mv), in n = enter(n,Mv), and out n = exit{n,mv)
and p,y ¢ fn(P).

(] Thm. The encoding is operationally sound. If P and @ are Single-threaded,
then it is equationally sound, that is { P [},, =° { @ [},, implies P =¢ Q).

< K = =1




SLCICCY 111 LI PI CAICUIUS

DECIRCY 11 LI d5pl CalCUIUD

[1 exchange messages over private channels

(vn)(7(m) | n(z).P)

[1 No third process can
[ discover m by interacting with the process
[J cause a different message to be sent on n

[0 Orisit?

Not the spi calculus way, as we saw. In a distributed system

(vn)( n(m) |n(x).P )
at site A at site B

[1 Link between A and B may be physically insecure, regardless of the privacy
of n

[] use private keys to encrypt connections over public channels

(vn)(p{{m}n) | p(y).case y of {z}, in P)

[J anybody can read on p
[ only the intended recipients know n and will read m

Secreey in the Mobile Ambients

SQQYQQy'. Need new primitives?

ames /2 Cryptokeys. Carrying messages inside private ambients preserves
lessage Integrity and privacy. Or, does it?

(vn)(a[ n[out a.in b.{(M)] ]| b[ open n.(z)P ] )

t actually offers poor guarantees, as n must be revealed along the move.
OW TO provide stronger protection?
] Commit to agents their own security, with €0-Capabilities

(vn)(a[n[out a.in b.open n.(M)]]|b[in b.open n.(z)P])

No one can open n and read M before n reaches b.
] Protect ambients by encapsulating them

(vn)(a[p[out a.in b| n[(M)]]]|b[open p.open n.(x)P])

A public ambient p carries a private ambient 7, which need not reveal its
name to move.

Case [: Physical devices:

[] the first proposal is all we need: physical devices can easily perform
aceess control, such as that encompassed by co-capabilities

Case I1: 50ft agents
[ the first proposal is pointless in “untrusted” networks. Similarly, the second

proposal presupposes encryption for data and code and applies only partially
to active agents, which may not move autonomously when encrypted.

A erypto-primitive: subjective access control using co-capabilities + data
encryption to preserve secrecy of data while agents move autonomously

—>ealed under k

\erypto-key

n[seal k.P|Q] — n{P|Q[y

Effects:
] DIOCKS message exchanges and @NCIYDLS their contents;

[J the sealed ambient cannot communicate, but it may move.

< K = =1




sealed Ambients

CBA. dYNILdX

. The mechanism to resume to a fully operational state is associated to
iovements and co-capabilities containing keys

n{inm.P|Qf}, | m{in{z}x.R|R'} — m{n[P|Q]|R{n/z}|R'}

xample:

(vk)a[ n[seal k.out a.in b.(M)]]|b[in {z}s.(y)*.P]
— (vk)a[ nf out a.in b.(M)" }, 1| b[in {z}4.(v)*.P]
— (wk)a[ ][ n{in b.(M) B, |b[in {z}k.(y)".P]
— (vk)a[ ][b[n[(M)']] (y)".P{n/x}]

Silent Reduction

lent Evaluation Context: SE =[] | (wn)SE|SE| P |n[SE]|n{SE},
obility 1

shh

n{inmP|Q}|m{m R|S} = m{n{P|Q}|R|S} (emer)
m{n{out m.P|Q}|R}|out .S = n{P|Q}|m{R}|S (o)

obility 1
n{in m.P| Qb | m{in {c}x.R|S} s m{n[P|Q]| R{n/a}| S} (K-enter)

m{P|nf{out m.Q | R}, }|oUt {£}x.S s m{P}|n[Q|R]|Sfn/a} (K-exit)

shh

n[seal k.P | Q] — n{P|Q [}, (seal)
structural Rules
P=Q, Q ™ R R=s—P ™5 (struct)

p Q = SE[P] LN SE[Q] (context)
= =1

Expressions Locations
M,N == k,...,q names n == a ¢hild
| x,...,z \variables | 1 parent
| inM enter M | % local
| outM o&itM
| in lat enter
| out let exit
| M.M  path
Prefixes Processes
T = M path P = 0
| (z1,...,2E)" Input | w.P
| (M, ..., Mg)" output |  (vn)P
| in{z}um, let in & unseal | P|P
| out{z}um let out & unseal | Im.P
| seal M sealing | M[P]
L | M{Phy
Reduction
Evaluation Context E == [—]|(vn)E |P|E|E|P|n[E]
communication
(local) @F)P|(M)Q — P{M/T}|Q
(input n) (@"P|n[(M)'Q|R] — P{M/#}|n[Q|R]
(uputn)  (M)"P |[n[(@)'Q|R] — P|n[Q{M/&}|R]
struetural Rules
(silent) p Q = P—Q
(struct) P=Q,Q — R, R=S = P — S
(context) P — @ = E[P] — EQ
< K = =1




Remarks

O

No explicit data encryption (delegate it to implementation).

{1 At most one level of sealing.

O

Silent reductions do not apply under prenx.

O

Reductions do not apply under prefix and sealed ambients.

] No computation, except mobility, for sealed ambients

CACOUINE O HI

[J 1dea. represent an encrypted message with a sealed ambient which
contains the message.

Communicating the encrypted messages is communicating the name of the
corresponding ambient.

[0 Use three translation maps, with [ -] leading (and p a name):

(- ) p : Expressions — EXpressions
-1 p : Expressions —— Processes
-] : Processes — Processes

[
[

[0 (M), returns p, the name of the ambient that stores M.
Correspondingly, [M] , stores M into an ambient named p.

Encoding of spi

0 The encoding (monadic case)

(a)p=a, ({M}i),=p

[al » 20
KM}l 2 (vg)(IM] o | pl (2)" seal kiin @.( (M) 4)"])

[o] £ 0, [(vn)P] £ (wn)[P], [P|Q] = [P] |[Q]
[6(M)] £ (vg)(IM] 4 [B[({ M) )])

[b(x)P] £ (x)°[P]

[ease M of {z} in P] £ letz= (M), in

(wp)(IM] 5 | (we) (&) | e[in {y}x-(2)¥(2)"] | (2)°P))

[J  Thm. The encoding is equationally sound.

Secrecy, by typing

Typing System: Secrecy is captured by a type system I which may classify
processes as UNTrusted and data as pUb\\Q if it can be exchanged with untrusted
process.

[J Types split the world in two: TRUSTED vs UNTRUSTED.

TRUSTED UNTRUSTED
Message types W | N[E], Key[E] Public
Exchange types E (Wi,...,Wg), Shh
Process Types T [E, F| ‘ Un

[l The type system
[0 allows interactions between the two components
[0 preserves the desired secrecy invariants on the trusted components.




Fypes 101 oeClely ‘Trusted and Untrusted

essage Types
. . a

[J Public: messages that may be exchanged with untrusted processes. The rules of the game: How do TRUSTED and UNTRUSTED interact?
Includes movement (co-)capabilities

(] MOoDility Tor free: (un)trusted ambients may traverse (un)trusted sites;
[0 N[E]: ambients with upward E exchanges (as usual)

T Key[E]: keys that may apply to ambients of type N[E] [ NO local exehanges between trusted and untrusted processes;

rocess Types 0 YES hierarcnical exenanges of public values allowed between trusted and

untrusted processes.
[1  Un: unknown processes P

[ [E,F]: processes with local E exchanges + upward F' exchanges Typing RuleS: A Manichean view of the world.

[1 Each process form has two typing rules, depending on whether is trusted o
untrusted .

[J Trusted systems exchanging public values with the untrusted components
become themselves untrusted

Sample typing rules Proparties of the Type System

(Co-In Key) (Untrusted Co-in) O Subject Reduction
T+ M : Key[E] T+ M : Public HTHFP:Tand P— Q,thenTHQ:T.
T,z:N[E|F P:[G, H] T, z:Publick P : Un N
— — 0 Typability
T'Fin {z}y.P: (G, H] ['Fin {2} P Un Let {ar, .., an} = fn(P) and {1, .., #m} = fv(P) then
(Amb Seal) (Untrusted Amb Seal) a; : Public, ..., a, : Public,z; : Public,. .., z,, : Publick P : Un
T+ N : Koy[E] T+ N : Public
'+ M :N[E] '+ M : Public
'k P:|[F,E] T'HP:Un [ and Secrecy. ..
TM{P}y:T T-M{P}y:T
(Input M Amb) (Untrusted Input M)
T+ M:N[Wy,..., W,] T'+ M : Public
Lozy :Wh,...,2n : Wy b P [E,F] I, z; : Publick P : Un
Tk (z1,...,2,)"P:[E,F] T'F(z1,...,2z1)™P: Un
< = =1 < K = =1




DECIRCY alltd AUVERTRATICS

Tuitively:
A Process preserves the secrecy ofa p'\QQQ of data M T it does not pUD“Sh M| or
anything that would permit the computation of M.

-Adversary. A context A(—) which initially knows all names in S.

avealing Names: P may reveal n to S if there exists an S-adversary A(—), a
ontext C(—), and a name ¢ € S not bound by C(—) such that:

A(P) = C(c[(n)" 1 Q]).

his captures two kinds of attacks
[1 an hostile context enclosing a trusted process, as in a[Q | (—)],

[] a malicious agent mounting an attack to a remote host, as in

alin pin ¢.Q | Q']] (-).

nexample: P = c[(a)*]| a[(k)"] may reveal k to {c}. In fact, for A(—) the
c}-adversary (2)°.(y)*.c[ (1)"] | (), we have A(P) = c[(k)']| []]a[].

DECIRCY alld AUVERTRATICS

< = =1

Quaestions

Intuitively:
A process preserves the secrecy ofa p'\QQQ of data M T it does not pUD“Sh M| or
anything that would permit the computation of M.

S-Adversary: A context A(—) which initially knows all names in S.

Revealing Names: P may reveal n to S if there exists an S-adversary A(—), a
context C(—), and a name ¢ € S not bound by C(—) such that:

A(P) = C(c[(n)" | Q).

This captures two kinds of attacks
[1 an hostile context enclosing a trusted process, as in a[Q | (—)],

[] a malicious agent mounting an attack to a remote host, as in

alin pin ¢.Q | Q']] (-).

secrecy Theorem: Well-typed processes do not reveal their seerets publicly. Formally, if
I'P:Unand 't s: W # Public, then P preserves the secrecy of s from all
public channels, i.e. from {a |I' - a : Public}.

K K = =1

O Sea\mg/unseg\mg is a rather flexible mechanism.

[1 How and how efficiently can the underlying mechanism of selective
encryption be implemented ?

[J Sealing provides for secrecy of messages. It would be nice to have more, eg
hiding part of the agent structure.

[1 Can guarantees of data integrity be established along similar lines.

Dimensions, Capacities, Mobility

Focus: CQPQQ'\W Bounds Awarenaess.

BoCa: Bounded Capacities

Subjective Mobility
Bounded Capacity Ambients

Space as a linear co-capability.

I [ I A

Fine control of capacity.

a[ind.P|Q][b[<|R] — ~|bla[P|Q]|R]

sut}ec&'\\/@ move capability /
Spate co-capability




Minimal Daesiderata A LalCulus O BOUNURH Lapalities. IMOVEITICIL

[J Realistic about space occupation. Bigger processes take more space. Fundamentals: Space Conscious Movement

n[inm.0igand1atP | | m[ =] | n[ inm .small and siim P |
al[inb. P|Q[b[=|R] — =|b[a[P|Q]|R]

=|b tb.P R] — P b[=| R
0 Replication must be handled appropriately |blal ou QI E] alP1QITPL=|R]
a['P]=a[!P|P]=a['P|P|P]=a|!P|P|P|P]=...

Example: Travelling needs but consumes no space.
Allow an analisys of variation in space occupation

a[inb.inc.outc.outh.0] | b[m | c[=]]

[l More precisely, control Process spawmng. N\ = | B[ = | [ a[ outec.outh.0]]]

Computation takes space, dynamically, and we'd like to model it. NN a[0] B[ =] e[=]]
Tarm Well-formednass A Caleulus of Bounded Capacities: Open
undamentals: SPQQQ conscious Movement Fundamentals: SPQQQ conscious Opemng
' But the 817@ of travellers matters!
k times k times opna.P|d*[epn.Q|R] — P|Q|R
—— ——
a* [inb. PQ]|b[=]...|=|R] — =|...]=|b[a*[P|Q]|R]
=|...|=|b[a*[outb.P|Q]|R] — a*"[P|Q][b[=]...|=|R] _ _ : :
— et Example: Recovering Mobile Ambients.

[a[ P]] £ a’[topn | [P] ]
[(va)P] £ (va®)[P]

/hat is the a®? A well-formedness annotation measuring the size of P.
“counts spaces: Weight (=) = 1, Welght (a®[ P ]) = k if weight(P) = k, L otherwise.
eduction only for Well-formed terms: (1) weights appear as conditions on

ductions; (2) the calculus’ operators make only sense with type annotations.

01ation. We use =* as a shorthand for = | ... | =.
~———

k times




CalCulus O BOUNUCRU Lapalities. SPaWig

undamentals: SPQQQ Conscious Process Activation

k k
passive procass—>> | =" =P
weighs 0

P waighs k
xample: Replication: 1¥£ Ik
AP — EP|P

ypes ensure only 0-WeIghTed processes are replicable: One must use spawning,
> that TepIiCAtion needs Space proportional to the process’ weight.

Xample: ReCUTSION (wel, aimosty:

e(XM)P 2 (vX*)(lopn X .pFP | X[=F]), where P 2 P{X[=*]/X}

DUL . EXAAPICS {LVPell)

 Caleulus of Bounded C‘APQQ'\UQS'. Transfer

Example: Ambient Spawning,
spwhb[ P 1 £ oxp°[ out a.opn . pFB[ P ]

Then,

The father must provide enough space for the activation, of course.

Example: Ambient Renaming
aped*. P 2 spwkb[ =" | opna]|inb.opn. P.

Then,

Ambient a needs to DOTTOW space to rename itself.

al B[ P11 Q]| =" [opneg  — a[Q]|H[P].

—5 |opnz |a*[aed*.P|Q] — b[P|Q]|="

undamaentals: SPQQQ AQqU'\S'\UO\'\ and Release
a.Pl=]a*[".Q|R] — P|d"[Q]|=]|R]
. P|=|S]|¥[e.Q|R] — o [P|S]|¥[Q|=|R]
ransfer from Child:
get_from_ehild a. P £ (vn)(opnn. P | n[ a».opn |)

xample: A Memory Module

memMod £ mem[ =26M5 | 1« | traey |

malloe £ m[ !memy . Treef outm.my» . « ] | 1« ]

266 M B

memmod | malloe —» mem|[ !« | Mreay | | m[m26MB | ||| ] —2%256MB

mem[ T« | Mree» | | malloe | ree256M B[ | « ] —256M B mamMod | malloc | ...

= =1

On the nature of space

An economic vehiele for mump\e coneepts

7 Available space: a - | P ]

[ Oceupied space: M ..  (Notation: M. A.)

) Lost space: (va)a*[=F1]. (Notation: 0F.)

~
~

destroy® 2 (va)(d”..... a0|a[7..... *.0]))

k times k times

destroy® | uF —* oF




v CalCUlUs O BOUNIURU LaPablILIes. SylildA

BoCa: Reduction Semantics

VEax
P:=a|O|M.P|P|P|M[P]|!'P|b*P|(vn:7)P | (z:x)P|(M)P
z=inM |out M |opn M | M" | «

w=opn || M»

n=¢|lz|C|C|M.M

E_Q\Q
i

Lruetural Congruenee:

(],0) is a commutative monoid.

(va)(P | Q) = (va)P | Q ifa ¢ n(Q)
(va)0 =
(va)(M)P = (M)(va)P if a & fn(P)
(va)(vb)P = (vb)(va)P
al (vb)P | = (vb)a[ P ] if a7 b
_ IP=1P|P

A System of Capacity Types

apacity Types. ¢,... are pairs of nats [n, N|, with n < N.

fect TYpes &, ... are pairs of nats (d, ), representing decs and incs.

xenange Types: x ::=shn | Amb(o, x) | Cap(€, x)

rocess and Ambient and Capability Types:

a : Amb{(®, x) a has no less than ¢, and no more than ¢\ spaces
P :proc(k, &, x) P weighs k and produces the effect £ on ambients
C:Cap(€,x) C transforms processes adding £ to their effects

ffects and capacities componentwise and are ordered as follows:

0<¢=¢m < 0omand oy < du,

(enter) a*[ind.P[Q]|b0[=" |R]—=*[b[a[P|Q]|R]
(exit) =" [b[a*[outh. P | Q]| R]—a*[P|Q]|b[="* | R]
(open) opna.P |a[opn.Q |R]—P|Q|R
(tranD) " .P|=|a*[*.Q|R]— P |d**[Q|=]|R]
(rans) @t [«.P|=|S] | [a».Q | R]—a*[P|S] | [Q|=]|R]
(spawn) pEP |k — P
(comm) (x:x)P | (M)Q—P{M/z} | Q
A Typing System: Capabilities
(Axiom) (Empty)
T,a:Amb(¢, x) F a : Ambd(g, x) 'k e:Cap((0,0),x)
(In) (Ou)
T'E M :Amd{(e, x") T+ M :Amd{e, x")
I'Fin M : Cap((0,0), x) I' - out M : Cap((0,0), x)
(TTM\FDL vy Amb<¢’ XI> (TTQ“S)
T+ M : Cap((0,0), x) T «:Cap((1,0), x)
(Open)
T'F M : Amd{[n, N], x)
I'FopnM : Cap((N —n,N —n), x)




LYPINE SYoLeITl. LOLAPAbIILICS dlll FTOCRS:C

A TYDINE SYsLCIT. FTOCSH5ES

(coTranD) (coTrans)
T M : Amd(e, x')
T 7:Cap((0,1),x) I'F M» :Cap{(0,1),x)
(coOpen) (Composition)
L' M:Cap(€,x) T'HM :Cap(€,x)
I' - opmn : Cap((0,0), x) I'-MM :Cap(€+Ex)
(Slot) (Zaro)
I'F = Proc(1, (0,0), x) T'F 0 : Proe(0, (0,0), x)
(Input) (Output
T,z:xkF P:procfk, &, x) T'FM:x TFP:pProc(k, & x)
Tk (z:x)P :Prock, &, x) L' (M)P :pProe(k, &, x)
< = =1

(Prenx) (Replication)

I'EM:Cap(€,x) Tk P:Proc(k, &, x) '+ P :'Proc(0, (0,0), %)
T'M.P:Proclk,&+E %) TP :Proc(0, (0,0), x)
(NQW]) (Spawn)
,a: Amb(e, x) F P : Proc(k, €, x") L' P:proclk, &, x)
Tk (va: Anb(g, x))P : Proc(k, €, x') T FFP:Proc(0, €, x)
(Parallel

Tk P:pProc(k,&,x) T'FQ:Proc(k’, & x)
FEP|Q:Proclk+K,E+E %)

(Ambient)
I'F M :Amd([n,N],x) Tk P:Proc(k,(d,i),x) n<k—d k+i<

N

'+ M*[ P]:proe(k, (0,0), x")

A Caleulus of Bounded Capabilities

hm: SUD]QQT, Reduction
TF P:pProck,&,x) and P — @ then T'F @ : Proc(k, &', x) for some £’ < £.

ne m'\ssmg DIt:
Grave interferences in the use of spaces

.. I
al[inb] |b[DP |=|a[c[outa]]]
Ly

ree(X*)P 2 (vX*)(lopn X .0FP | X[ =F])
— (wX*)(lopn X .0*P |opn X .bFP | X[ F))

— (uXk)(!oan.l>’“13 | Dkﬁ) | =% Oooops

control SPQQQ US&gQZ Named Slots
Pi=wcy|akP|--- (spawn) apFP |k — P
Example: Renaming siots
{*fy}y.- P £ P (=; | P)
Then, =F [{%/y},-P — = |P
Example: ReCUTSION (now right):
(XM P £ WX)(IXpPP | 2%),  where P2 P{k/X)
Example. Deriving Named Slots
- £ af«| =]
a>kP 2 (un)(n| a*» .>*opn. P | opnn)




Digcussion

Nis 18 just a start.

ol 1o be done:

SUllilialy Ol LeCLUle vV

We illustrated some initial ideas about resource control in ambient-like
environment. In particular, access control based on passwords and dynamic learning
about the environment; data secrecy data for migrating agents; control of space
usage for mobile mobile ambients.

Further Reading: This lecture was based on

(] Safe Ambients (Levi, Sangjorg)).

[] Boxed Ambients (Bugliesi, Castagna, Crafa)

L] NBA (Bugiesi, Crara, Sassone)

(] Secrecy in Untrusted Networks (Bugliesi, Crata, Sassone)

] Calculus of Bounded Capacities (Barbanera, Bugliesi, Dezani, Sassone)
Related work include

L] Finite Control Ambients (Gordon et 2))

[J Resource Control in the Ambient Calculus (Teller et al)
] Resource Usage Analysis (igarashi, Kobayashi)
O

Typed Assembly Languages (Morisett) .. .and many more. ..
= = =1

0 In the large. Develop a theory a resources, including quantitative bounds
negotiation and enforcement in GC, which goes beyond space.
Develop languages and logics to express policies and properties. ...

[ In the small: Expressiveness of BoCa; Equational theory; Smarter types; ...

0 In general. A lot to be done. ..

< = =1

0 Global Computing is about computation over a global, highly distributed,
swiftly changing network of bounded resources.

[ Central problems are (third-party) resource usage, usage analysis, and
protection.

[ These lectures have focused on foundational calculi (arising also from work on
concurrency), useful to represent and understand issues in GC, and on
types systems which guarantee properties of relevance.

O What we discussed:

0 Name Mobility
O Types for Safety & Control
O Asynchrony & Distribution
0 Ambient Mobility
1 Resource Control
[0 GC is a moving target, and very much alive and kicking. There are many

open issues and challenging problems, spanning (almost) all grades from
theoretical to practical.

Certainly & good topic for o PhD. ..




	Roadmap
	Global Computing
	Roadmap for Lecture I
	The $pi $ calculus
	The Syntax
	Contexts and Congruences
	Standard Form
	Reaction Rules
	Scope extrusion, continued
	A run of the protocol
	The run, conceptually
	But of course ...
	Example: memory cells
	Cell: put and get
	Cell and User
	Cell & user: reduction
	Summation
	Matching and Mismatching
	Recursive Definitions
	Other variants
	$pi $ Actions
	Labelled Transition System
	Exercises
	Summary of Lecture I
	Global Computing
	Roadmap of Lecture II
	Simply Typed $pi $ calculus
	Type system
	Typing rules: Process
	Type System Properties I
	Type System Properties II
	Why Types? II 
	Example: printer
	Subtyping
	Subtyping, II
	New typing rules
	Typed printer
	Limitations
	Advanced Type Systems
	Types for Secrecy
	Spi: an applied $pi $ calculus
	Spi calculus: Semantics
	The Guarantees
	The Types
	Typing -- Values
	Typing -- Values II
	Typing -- Processes
	Typing -- Processes II
	Secrecy by Typing
	Pi Calculus with Groups
	Groups and reduction
	Types and Judgements
	Typing Rules: formation rules
	Typing Rules: processes
	Properties of the type system
	Untyped Opponents
	Summary of Lecture II
	Global Computing
	The Case for Asynchrony
	Roadmap of Lecture III
	$pi _A$: Expressiveness
	$pi _A$: Expressiveness, II
	$pi _L$: The Local $pi $ calculus
	The Case for Distribution
	The distributed $pi $ calculus
	Semantics
	The famous Cell (yet again)
	A refined cell
	Types for Resource Access Control
	Subtyping:
	The Types, more precisely
	A feel for the rules
	Typing the cell
	Dynamic Types
	Dynamic Types, Resolved
	The move capability
	Location Typed Bisimulation
	Full abstraction
	The syntax
	Example: Join pattern
	The cell in Join
	Summary of Lecture III
	Global Computing
	Open networks and mobile agents
	The roadmap
	Overview
	The Essence of Mobile Ambients
	Syntax
	Structural Congruence
	Mobility: An example
	A run of the protocol
	Reduction: communication
	Reduction: structural rules
	Types: overview
	Exchange Types
	Typing Rules
	Typing Processes I
	Typing Processes II
	Typing Expressions I
	Typing Expressions II
	Typing Processes III
	Mobility Types
	Boxing Ambients
	Boxed Ambients: overview
	Typed Boxed Ambients: Syntax
	Reduction Semantics
	Discussion
	Types
	Types (cont.)
	Subtyping
	Good Values
	Good Processes -- Mobility
	Good Processes -- Communication
	Adding co-capabilities
	Good Values in BSA
	Good Processes -- Mobility in BSA
	Control Properties in BSA
	Using co-capabilities to defend Troy
	Using co-capabilities to defend Troy (ctd)
	Summary of Lecture IV
	Global Computing
	Roadmap for Lecture V
	NBA: Syntax
	NBA: Reduction Semantics
	Goodies of NBA over BA
	Typing Rules: II
	Typing Rules: II
	Secrecy in the pi calculus
	Secrecy in the spi calculus
	CBA: Syntax
	Silent Reduction
	Reduction
	Remarks
	Encoding of spi
	Encoding of spi
	Secrecy, by typing
	Types for Secrecy
	Sample typing rules
	Properties of the Type System
	Questions
	Dimensions, Capacities, Mobility
	Minimal Desiderata
	On the nature of space
	BoCa: Reduction Semantics
	A System of Capacity Types
	A Typing System: Capabilities
	A Typing System: CoCapabilities and Processes
	A Typing System: Processes
	Discussion
	Summary of Lecture V
	Drawing conclusions

