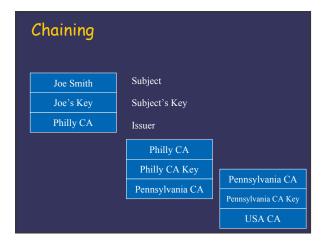
Network Security Architectures Part 1 Fundamentals

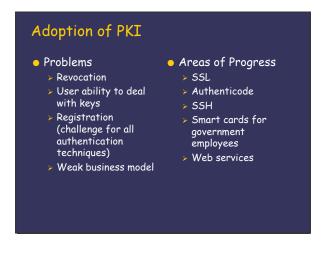
Summer School on Software Security Theory to Practice

Carl A. Gunter University of Pennsylvania Summer 2004

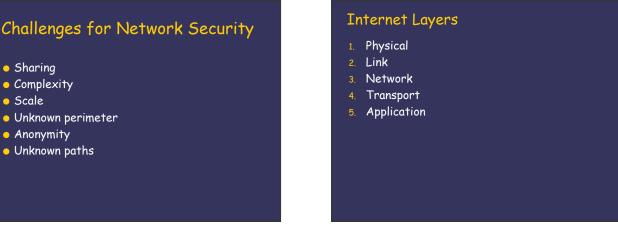

Public Key Infrastructure

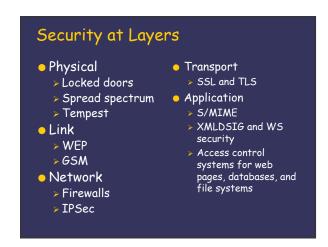
- Mutual authentication of participants in a transaction requires a system of identities
- Principals are identified by public keys
- These keys can be used for authentication, but only if "spoofing" is prevented
- A Public Key Infrastructure (PKI) provides a basis for establishing trust

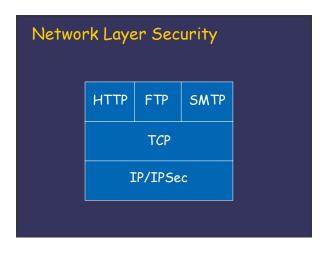
PKI Systems

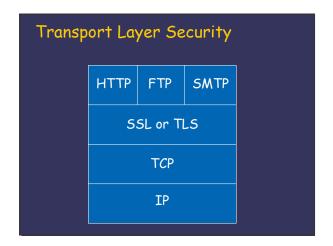

- Three Philosophies
 - > Hierarchy
 - ITU X.509 (DAP, PKIX)
 - -DNS
 - > Web of Trust
 - -PGP
 - > Ad hoc
 - -SSH
 - Most research studies

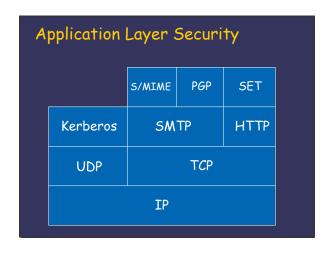
X.509 Certificates X.509 certificates bind a subject to a public key. This binding is signed by a Certificate Authority (CA). Subject Name Subject Public Key CA Name CA Signature

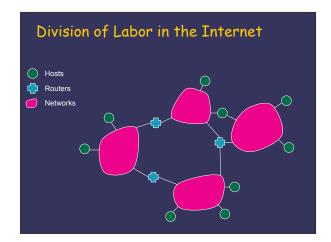


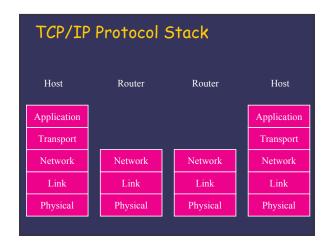

Certificate Management Distribution: How to • Revocation: Terminate find a certificate certificates before Certificate accompanying signature or as part of a their expiration time. > How does the relying protocol party know that the certificate has been Directory service revoked? DAP LDAP Many CRL distribution strategies proposed ■ DNS Mitre report for NIST Email suggests certificate revocation will be the > Cut and paste from web pages largest maintenance cost for PKIs

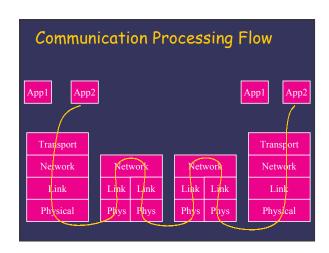

Semantics of CRL's • Three certificates. 1. Q says P is the public key of Alice. 2. R says P is the public key of Alice. 3. Q says R is the public key of Bob. • Three kinds of revocation. 1. P is not the public key of Alice. (3 not 2.) 2. Q no longer vouches for whether P is the public key of Alice. (2 and 3.) 3. The key of Q has been compromised. (2 not 3.) 1998 Fox and LaMacchia

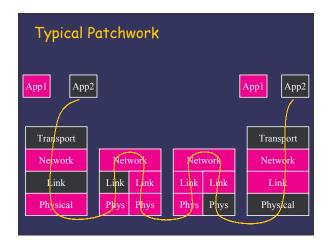


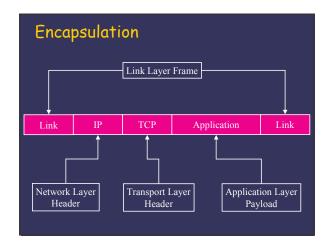


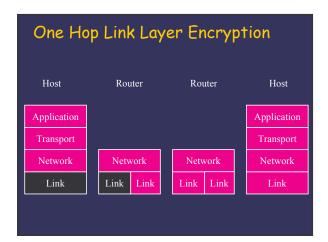


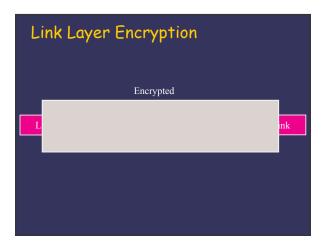


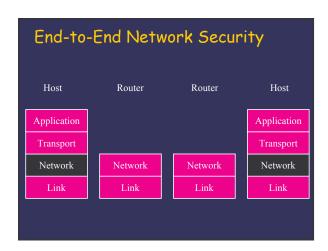


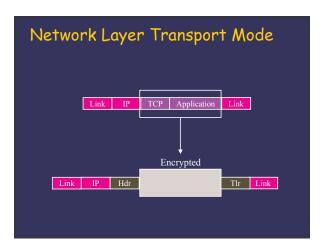


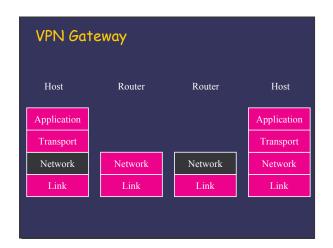


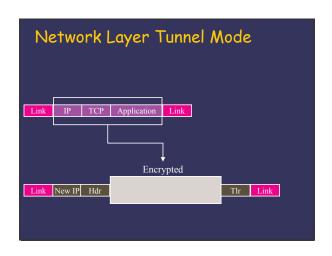


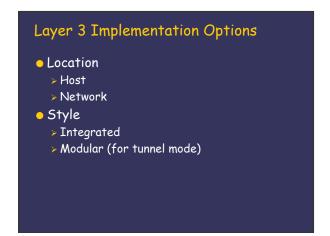


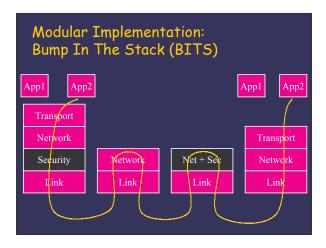


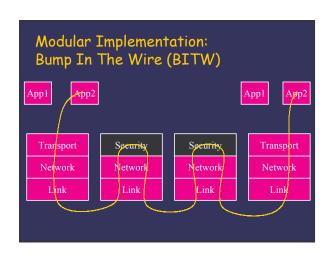

Physical Layer Protection Issues Hide signal Spread spectrum Emission security Radio emissions (Tempest) Power emissions

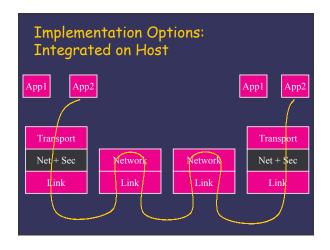


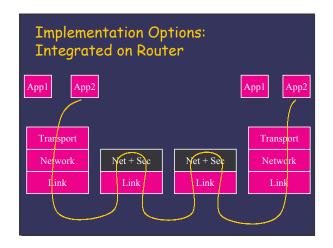


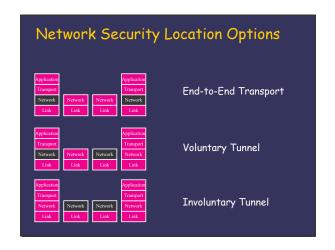


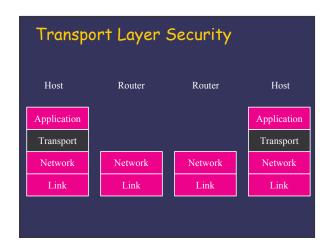


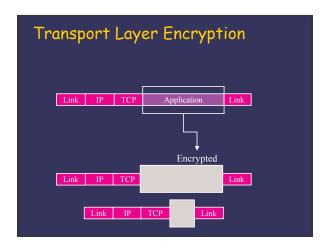




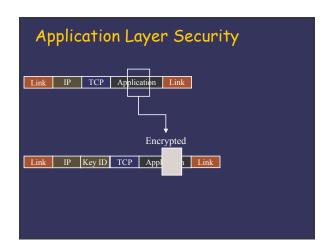












Link Layer Security

- Advantages:
 - > Transparent to applications
 - > Hardware solution possible
 - Can address especially vulnerable links (viz. wireless)
- Disadvantages:
 - Hop-by-hop protection causes multiple applications of crypto operations
 - > May not provide end to end security

Network Layer Security

- Advantages
 - > Transparent to applications
 - > Amenable to hardware
 - > Flexible
- Disadvantages
 - > Makes routing more complex
 - Flexibility introduces policy management and compatibility challenges

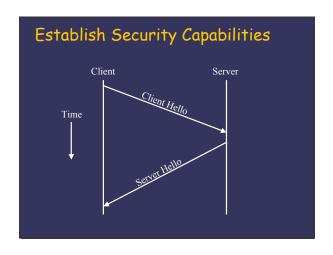
Transport Layer Security

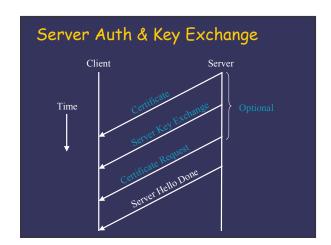
- Advantages
 - Transparent to applications and may be packaged with applications
 - > Exposing TCP enables compression and QoS classification
- Disadvantages
 - > Probably implemented in software
 - > Exposing TCP risks DoS

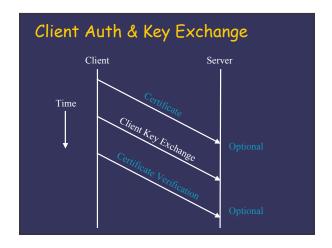
Application Layer Security

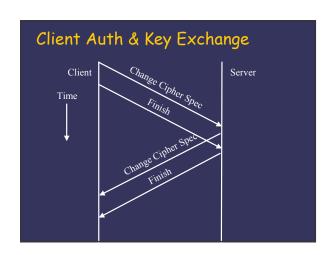
- Advantages
 - > Customized to application
 - Requires no special protocol stack (transparent to networking)
- Disadvantages:
 - > Hard to share between applications (viz. standardization challenge)

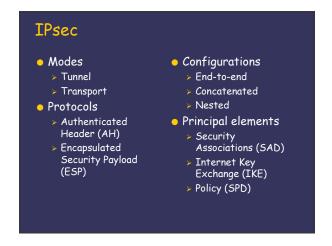
Protocols to Software

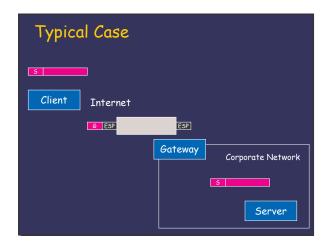

- There are important differences between theoretical descriptions, standards and software
 - > Evolution (versions, extensibility)
 - > Interoperability (options, negotiation)
 - > Error modes
- Two brief case studies
 - > Transport Layer Security (TLS)
 - > Network layer security (Ipsec)


Secure Socket Layer (SSL)


- Session protocol with:
 - > Server authentication
 - Client authentication optional
 - > Integrity checksum
 - Confidentiality
- Possibly the most important security-related ecommerce protocol
- Session sets up security parameters
- Many connections possible within a given session
- Current version TLS 1.0


 http://www.ietf.org/rfc/2246.tx


X.509 Key Est. Messages Let DA = EB(k), rA, LA, A. Let DB = rB, LB, rA, A Two messages: A -> B: certA, DA, SA(DA) Check that the nonce rA has not been seen, and is not expired according to LA. Remember it for its lifetime LA. B -> A: certB, DB, SB(DB) Check the rA and A. Check that rB has not been seen and is not expired according to LB.



Security Association

- An SA describes the parameters for processing a secured packet from one node to another
- SAs are simplex: use one for each direction
- If more than one SA is used for a packet the applicable SAs are called an "SA bundle"

SA Parameters (ESP Only)

- Sequence number, Sequence number overflow, Anti-replay window
- Lifetime
- Mode
- Tunnel destination
- PMTU
- Encryption algorithm (IV, etc.)
- Authentication algorithm

Policy

- Policy is not standardized in IPSec but certain basic functionality is expected
- A Security Policy Database (SPD) is consulted to determine what kind of security to apply to each packet
- The SPD is consulted during the processing of all traffic:
 - Inbound and outbound
 - > IPSec and non-IPSec

SPD Actions

- Discard
- Bypass IPsec
- Apply IPsec: SPD must specify the security services to be provided.
 - > For inbound traffic it is inferred from: destination address, protocol, SPI.
 - For outbound traffic this is done with a selector.

Selectors

- Selectors are predicates on packets that are used to map groups of packets to SAs or impose policy
- They are similar to firewall filters
- Selector support
 - > Destination and source IP addresses
 - Name (DNS, X.509)
 - Source and destination ports (may not be available on inbound ESP packets; use inner header for inbound tunnel mode)

IPsec Processing: Outbound

- Use selectors in SPD to determine drop, bypass, or apply
- If apply, determine whether an SA or SA bundle for the packet exists
 - > If yes, then apply all appropriate SAs before dispatching
 - > If no, then create all necessary SAs. Apply these when done before dispatching

IPsec Processing: Inbound

- If there are no IPsec headers check SPD selectors to determine processing discard, bypass, or apply
- If apply, then drop
- If there are IPsec headers, apply SA determined by SPI, destination, protocol
- Use selectors on result to retrieve policy and confirm correct application

Internet Key Exchange (IKE)

- Motivating problem: Security settings (SAs) must be highly configurable
- Solutions:
 - Let network administrator manually configure SA (most common)
 - Provide mechanism to allow automatic negotiation and configuration
- Can be found at: http://ietf.org/internetdrafts/draft-ietf-ipsec-ikev2-13.txt
- IKEv2 Current as of March 22, 2004

Station to Station Protocol

- A -> B : YA (Diffie-Hellman public key)
 Calculate k.
- B -> A: YB, E(k, SB(YB, YA))
 Calculate k, use it to decrypt the signature, check the signature using the verification function of B and known values YB, YA.
- 3. A -> B : E(k, SA(YA, YB))
 Decrypt the signature and check it using the verification function of A.

High-level view

• Requester:

Responder:

IKE_SA_INIT -->

•

<-- IKE_SA_INIT

• IKE_AUTH -->

•

<-- IKE_AUTH

> These are mandatory message exchange pairs, and must be executed in this order.

High-level view Initiator: Responder: CREATE_CHILD_SA --> CREATE_CHILD_SA INFORMATIONAL --> INFORMATIONAL These messages are optional and can be sent by either party at any time.

Changes from IKEv1

- 4 initialization messages instead of 8
- Decrease latency in common case of 1
 CHILD_SA by piggybacking this onto initial message exchanges
- Protocol is reliable (all messages are acknowledged and sequenced)
- Cookie exchange option ensures that the responder does not have to commit state until initiator proves it can accept messages

Summary

- PKI provides potential scalable identities for the Internet but adoption has been difficult
- Network protocols are designed in layers; security can be provided at multiple layers with various tradeoffs
- Theoretical protocols differ in significant ways from Internet standards and software