Part 2: Reachability analysis
of stack-based systems

From Finite to Infinite-State
Systems
* So far, algorithms for systems with
finite state spaces

- semi-algorithms in the presence of
recursion

Decidability of reachability analysis
Single thread of control:
Finite
Control Acyclic Looping Infinite

Data
Finite Yes Yes Yes
Infinite Yes No No

Decidability of reachability analysis
Multiple threads of control:
Finite
Control Acyclic Looping Infinite

Data
Finite Yes Yes No
Infinite Yes No No

Decidability vs. Expressiveness

» Unbounded state # Undecidable
* Is the unbounded system able to encode
a Turing machine?
- Single-counter machines? NO
- Two-counter machines? YES
- Single-stack machines? NO
- Two-stack machines? YES

State representation

« Explicit representation infeasible
* Symbolic representation is the key
- For the fransition system
- For the reachable states

Pushdown systems

6. L, g0, g,)

g, h € 6 : finite set of control states

I, m €L : finite set of stack symbols
go : initial control state
lp ¢ initial stack symbol
— i set of transitions

Remarks

The classical definition of a pushdown system has,
in addition, an alphabet I of input symbols.

Each transition depends on the control state, the top
of the stack, and the input symbol.

The language L = I* of a classical pushdown system
contains those input sequences for which there is an
execution leading to the empty stack.

We are only concerned with reachability analysis and
will therefore ignore I.

Three kinds of transitions: Configuration: g,
(9, 1) > (h, m) (step)

(@ 1)~ (h,mn) (call) :

(g.) = (h,¢) (return)

Modeling sequential programs

*+ An element in G is a valuation to global
variables

+ Anelement in L is a valuation to local
variables and
- current instruction address for the frame
at the top of the stack
- return instruction address for the other
frames

h,
= hl 9’ - = .
Example
bool a = F; (a, (x, pcy)
void main() { (F, (,LD)
Ll: a=T;
L2: flip(a): (T, L2)
L3:} (T, (_, L3)(T, L4))
void flip(bool x) { (F, (., L3)(T,L5))
L4: a=lx; F (L3
L5:) (F, (. L3

(F.e)

Reachability problem

Given pushdown system (6, L, g, lo, =) and
control state g, does there exist a stack
Is e L* such that (g, lp) =* (g, Is)?

Naive algorithm

Add (go, lp) To R

(g.1s)eR (g,1s)= (g, 1s")

Add (g, Is") to R

Problem with the naive algorithm

* R is unbounded so algorithm won't
terminate
» Two solutions:

- Summary-based (a.k.a. interprocedural
dataflow analysis)

- Automata-based

Automata-based algorithm

(g.1s)eR (g,18)= (g 1s")

Add (g, lo) To R Add (g, Is") to R

Key idea:
Use a finite automaton to symbolically represent R

Symbolic representation

Pushdown system (G, L, g, lo, =)

Representation automaton (Q, L, T, 6, F)

- Q (D 6) is the set of states
- L is the alphabet

- T is the transition relation

- G is the set of initial states
- F is the set of final states

T~
()

m

Represents the set of configurations: { (h, m), (g, Im* 1)}

A set C of configurations is regular if it is
representable by an automaton

Theorem (Buchi) : The set of configurations reachable
from a regular set is also regular.

Remarks

The classical definition of a pushdown system has,
in addition, an alphabet I of input symbols.

Buchi's theorem does not contradict the fact that
pushdown systems can accept non-regular languages
over the input alphabet I.

The language of reachable stack configurations is a
language over the alphabet L.
The accepted language is a language over the alphabet I.

Pushdown system:

(6.L.90. lo, =)
-6={90.91, 92}
-L= {'o' l, |2}

- (90, 10) = (g1, 11lo)
(91, 1) = (92, Iolo)
(92, 12) = (90, 1)
(90, 11) = (0. €)

Pushdown system:

6.L.90. 1o,)
- 6={90,91. 92}
-L= {|o: l |z}

- (90, 10) = (g1, 11lo)
(91, 1) = (g2, 12lo)
(92.12) = (0. 1)
(90. 1) = (90. €)

S

Pushdown system:

(6.L, 90 lo, =)
-6={90.91. 92}
-L={lo. 11,1,

- (90. o) = (91, lilo)
(91, 1) = (92, 12l)
(92. 1) = (90, 1)
(90, 1) = (0. €)

Pushdown system:

(6.L.90. lo, =)
-6={90,91, 95}
-L={lo. 1y, 1;

- (90, lo) = (g1, o)
(91, 1) = (2. 1,lp)
(92.12) = (90, 1)
(90. 1) = (90. &)

= s
eo—e

Z

Pushdown system:

6.L.g0. 1o, =)

-6={90,91, 95}

-L={lg, 11,15}

- (90, 1) = (91, l1lo)
(91, 11) = (92, 1,lp)
(92, 12) = (90, 1)
(90. 1) = (g0,)

Pushdown system:

6.L.90. 1o, =)
-6={90,91, 95}
-L=Alo 1y, 15}

- (90. lo) = (91, lilo)
(91. 1) = (g2, I20)
(92, 12) > (90. 1)
(90. 1) = (90. €)

Pushdown system:

O
(6.L.90. lo, =)

-6={90.91, 92}

o5 o

- (9o, lo) = (91, lilo

(91, 1)) > (92, 1)
el |\ ()
(90, 11) = (0. €)

eaeae

Pushdown system:

6. L, g0. g, >)

- 6={90,91. 92}

-L= {|o: l |z}

- (90, 10) = (g1, 11lo)
(91, 1) = (g2, 12lo)
(92.12) = (0. 1)
(90. 1) = (90. €)

Pushdown system:

(6.L, 90 lo, =)

-6={90.91. 92}

-L=Alo I 1

- (90. o) = (91, lilo)
(91, 1) = (92, 12l)
(92. 1) = (90, 1)
(90, 1) = (0. €)

{ (90, oV lo'o+ o '1'0'0+), (91 |1'o+), (92, l2'0'0“)}

Reachability analysis for
concurrent pushdown systems

* Undecidable in general

* Three approaches
- restrict computation model, e.g., Esparza-
Podelski 00
- sound and imprecise approaches, e.g.,
Bouajjani-Esparza-Touili 03, Flanagan-
Qadeer 03
- unsound but precise approaches

Context-bounded verification of
concurrent software

Context switch Context switch

¢ —> o > 8 b 8 e s 8 s & —b 8 ——> o —b

Context Context Context

Analyze al/ executions with small/ number of
context switches |

Different from bounded-depth model checking
* no bound on the computation within each context

Why context-bounded analysis?

* Many subtle concurrency errors are
manifested in executions with a small
number of context switches

+ Context-bounded analysis can be
performed efficiently

KISS: a static analysis tool

+ Technique to use any sequential checker
to perform context-bounded
concurrency analysis

* Found a number of concurrency errors
in NT device drivers even with a
context-switch bound of two

Driver KLOC | # Fields |# Races

Tracedrv 0.5 3 0

Moufiltr 1.0 14 0

Kbfiltr 11 15 0 Total:
Imca 11 5 1 30 races
Startio 11 9 0

Toaster/toastmon |14 8 1

Diskperf 2.4 16 0

1394diag 27 18 0

1394vdev 28 18 1

Fakemodem 29 39 6

Toaster/bus 5.0 30 0

Serenum 5.9 41 2

Toaster/func 6.6 24 5

Mouclass 7.0 34 1

Kbdclass 74 36 1

Mouser 7.6 34 1

Fdc 9.2 92 9

Zing: an explicit-state model checker

+ Case study (Naik-Rehof 04): Concurrent
transaction management code from
Microsoft product group

* Analyzed by the Zing model checker
after automatically translating to the
Zing input language
- Found three bugs each requiring between

three and four context switches

Why context-bounded analysis?

* Many subtle concurrency errors are
manifested in executions with a small
number of context switches

+ Context-bounded analysis can be
performed efficiently

Polynomially-bounded executions

« Context bounding leads to polynomial
bound on the number of executions
- n threads, each executing k steps
- total no. of executions = Q(nk)

- With context bound ¢, no. of executions =
O((n?.k))

@ 2000000 -
£ 1500000 |
2
S 500000
g
3 0

O 2 © 9

contexts

n 120000
g 100000
7]
% 80000 B
3 60000 |
£ 40000 ——p-bt
8 20000 M
0 ST T T
Q > ©
contexts

Reachability analysis

* Rechability analysis of finite-data
concurrent programs is decidable for
bounded number of context switches

KISS: A static checker for
concurrent software

No error found

Concurrent KISS Sequential Sequential
program P program Q Checker
Errorin Q

indicates

error in P

KISS: A static checker for
concurrent software

No error found

v

Concurrent - Sequential -
— A
program P KISS program Q SDV

X

Errorin Q
indicates

error in P

KISS strategy
v

SDV

Concurrent
program P

Sequential
program Q

X

+ Q encodes executions of P with small
number of context switches
- instrumentation introduces lots of extra
paths to mimic context switches
* Leverage all-path analysis of sequential
checkers

DispatchRoutine() {
int 1;

if (! de->stopping) {
AtomicIncr(& de->count);
// do useful work
// ..
t = AtomicDecr(& de->count);

if (+=20)

SetEvent(& de->stopEvent);

PnpStop() {
int 1;

de->stopping = T;
t = AtomicDecr(& de->count);

if (t==0)
SetEvent(& de->stopEvent);

WaitEvent(& de->stopEvent);

DispatchRoutine() {
int t;

if (! de->stopping) {
AtomicIncr(& de->count);
// do useful work
// ..

t = AtomicDecr(& de->count);

if (t==0)
SetEvent(& de->stopEvent);

PnpStop() {
int t;
if ($) return;
de->stopping = T;
if ($) return;
1 = AtomicDecr(& de->count);
if ($) return;
if (+==0)
SetEvent(& de->stopEvent);
if ($) return;
WaitEvent(& de->stopEvent);

bool done = F;
CODE =

if (!done) {
if ($) { done = T; PnpStop(); }
}

DispatchRoutine() {
int 1;
CODE;
if (! de->stopping) {
CODE:

AtomicIncr(& de->count);

// do useful work

// ..

CODE;

1 = AtomicDecr(& de->count);
CODE:

if (t==0)

PrpStop() {
int 1;
if ($) return;
de->stopping = T;
if ($) return;
t = AtomicDecr(& de->count);
if ($) return;
if (+==0)
SetEvent(& de->stopEvent);
if ($) return;
WaitEvent(& de->stopEvent);

bool done = F;
CODE =

if (!done) {
if ($){ done = T; PnpStop(): }
}

DispatchRoutine() {
int t;
CODE;
if (! de->stopping) {
CODE;

AtomicIncr(& de->count);
// do useful work
/7 ..
CODE;
t = AtomicDecr(& de->count);
CODE;
if (t==0)
SetEvent(& de->stopEvent);
CODE;

PnpStop() {
int t;
if ($) return;
de->stopping = T;
if ($) return;
t = AtomicDecr(& de->count);
if ($) return;
if (+==0)
SetEvent(& de->stopEvent);
if ($) return;
WaitEvent(& de->stopEvent);

}

‘ main() { DispatchRoutine(); } ‘

SetEvent(& de->stopEvent); | |}
CODE;
}
}
e if (!done) {
bool done = F; CODE =) if ($) { done = T; PnpStop(); }
DispatchRoutine() { PnpStop() {
int 1; int 1;
if ($) return; CODE;
if (! de->stopping) { de->stopping = T;
if ($) return; CODE;
AtomicIncr(& de->count); t = AtomicDecr(& de->count);
// do useful work CODE;
/7 .. if (t==0)
if ($) return; SetEvent(& de->stopEvent);
1 = AtomicDecr(& de->count); CODE;
if ($) return; WaitEvent(& de->stopEvent);
if (+==0) CODE;
SetEvent(& de->stopEvent); | |}
} main() { PnpStop(): }
}

KISS features (I)

+ KISS trades off soundness for scalability
+ Sound for event-driven systems

- embedded software,

* Unsoundness is preci
other systems

TinyOS
sely quantifiable for

- e.g., for 2-thread program, explores a//
executions with up to two context switches

KISS features (IT)

* Cost of analyzing a c

oncurrent program P =

cost of analyzing a sequential program Q
- Size of Q asymptotically same as size of P

* Allows any sequentia
concurrency

| checker to analyze

However...

* Hard limit on number of explored
contexts

Is a tuning knob possible?

Given a concurrent boolean program P and a positive
integer c, does P go wrong by failing an assertion via an

. execution with at most ¢ contexts?
- e.g., Two context switches for concurrent

program with fwo threads

Sequential boolean program

Context switch Context switch
R S l e Global store g, valuation to global variables
Local store l, valuation to local variables
Context Context Context Stack s, sequence of local stores

State (9.5)

Problem:

+ Unbounded computation possible within each context!
* Unbounded execution depth and reachable state space
- Different from bounded-depth model checking

Reachability problem for

Sequential boolean program sequential boolean program

Global store

9. valuation to global variables
Local store I, valuation to local variables ~ .y .
Stack s, sequence of local stores Reach(g, s)={(g's) | (9. 5) >* (9. 5)}
State (g,)

Given (g, s), is there s’ such that
Transition relation: (9, s) >* (error,;s')?

(g.5)~>(d.3)

Aggregate state

Set of stacks ss
Aggregate state (g,ss)={(g,8) | sess}

Reach(g, ss) = U {Reach(g,s) | s € ss}

Aggregate transition relation

* Suppose G ={ g';,.., 9'n}
* There is a unique partition of Reach(g, ss)

into aggregate states: (g'y, ss') U ... U (g, sS'y)

(9.55) = (g1, 55'1)

(9.88) = (g, s5"n)

iff Reach(g,ss)= (g, ss) U ... U (g, ss’y)

Theorem (Buchi, Schwoon00)

« If ssis regular and (g, ss) = (g, ss'),
then ss’ is regular.

+ If ssis given as a finite automaton A,
then a finite automaton A’ for ss' can be
constructed from A in polynomial time.

Algorithm

Problem:

Given (g, s), is there s’ such that
(g, s) »>> (error,s')?

Solution:

Compute automaton for ss' such that
(9, {s}) = (error, ss’) and check if ss'
is honempty.

Concurrent boolean program

Global store g, valuation to global variables
Local store l, valuation to local variables
Stack s, sequence of local stores
State (9, Sl, Sz)

Transition relation:

(9,s1) > (g.s")inthread1 (g,5,) > (9, s) in thread 2
(9.51,52) >1(g', 51, S2) (9.51,52) >2(9', 51, 5%)

Reachability problem for
concurrent boolean program

Given (g, sy, S,), are there s'; and s, such that
(9. s1, s») reaches (error, s';, s',) via an
execution with at most ¢ contexts?

10

Aggregate transition relation
(9, ss1,5,) ={ (g, s1,8,) | s;€ 851,85, € 5S,}

(9, s51) = (g, ss;) in thread 1

(9. ss1, 852) =1 (g, 551, 58,)

(9. 8s,) = (g, s5%,) in thread 2
(9. 551, 55,) =, (g, 551, 55'2)

Algorithm: 2 threads, c contexts
lgoﬁ (9. {s}. {s2})
Depthc lgo% C?Og

O

e @

Compute the set of reachable aggregate states.
Report an error if (g, ssy, SS,) is reachable and
g = error, ss; is nonempty, and ss, is nonempty.

Complexity: 2 threads, ¢ contexts

&Oﬁz (9. {s1}. {s2})

bepth e o‘i//o\\% é1//0\\120

Depth of tree = context bound ¢

Branching factor bounded by G x 2 (6 = # of global stores)
Number of edges bounded by (6 x 2) (D

Each edge computable in polynomial time

Results

+ Algorithm for checking if a concurrent
boolean program P fails an assertion via
an execution with at most ¢ contexts

+ Algorithm for checking if a concurrent
boolean program P with unbounded fork-
Jjoin parallelism fails an assertion via an
execution with at most ¢ contexts

11

