Part 3: Safety and liveness

Safety vs. liveness

Safety: something "bad" will never happen

Liveness: something "good" will happen
(but we don't know when)

Safety vs. liveness for sequential programs

Safety: the program will never produce a
wrong result ("partial correctness"”)

Liveness: the program will produce a result
(“termination")

Safety vs. liveness for sequential programs

Safety: the program will never produce a
wrong result (“partial correctness”)

Liveness: the program will produce a result
("termination")

Safety vs. liveness for state-transition graphs

Safety: those properties whose violation always
has a finite witness

("if something bad happens on an infinite run,

then it happens already on some finite prefix")

Liveness: those properties whose violation never
has a finite witness

("no matter what happens along a finite run,

something good could still happen later")

This is much easier.
,
/

/
/
/
/

Safety: the properties that can be
checked on finite executions

Liveness: the properties that cannot be
checked on finite executions

(they need to be checked on
infinite executions)

Example: Mutual exclusion

It cannot happen that both processes are in
their critical sections simultaneously.

Example: Mutual exclusion

It cannot happen that both processes are in
their critical sections simultaneously.

Safety

Example: Bounded overtaking

Whenever process P1 wants to enter the critical
section, then process P2 gets to enter at most
once before process P1 gets to enter.

Example: Bounded overtaking

Whenever process P1 wants to enter the critical
section, then process P2 gets to enter at most
once before process P1 gets to enter.

Safety

Example: Starvation freedom

Whenever process P1 wants to enter the critical
section, provided process P2 hever stays in the
critical section forever, P1 gets to enter eventually.

Example: Starvation freedom

Whenever process P1 wants fo enter the critical
section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.

Liveness

Example: Starvation freedom

Whenever process P1 wants to enter the critical
section, provided process P2 never stays in the

critical section forever, P1 gets to enter eventually.

Liveness

LTL (Linear Temporal Logic)

-safety & liveness

-linear time

[Pnueli 1977; Lichtenstein & Pnueli 1982]

LTL Syntax

0 = alorol =0l OO0l eUg

LTL Model

infinite trace t =1yt 1, ...
(sequence of observations)

O

92 q3

Runt g1 >qs>q—>q3>9 >G> G~

Trace: a > b >a—-> b > a->ab—>ab-—

Language of deadlock-free state-transition graph K
at state q:

L(K,q) = set of infinite traces of K starting at q

K =" iff foral tel(Kq), tl=0¢
(Kq)l=7¢ iff exists teL(Kg), t1=¢

LTL Semantics

t|=a iff aet,
tl=ony iff tl=0 and t|=y
t = -0 iff not tl=0
t1:00 itz
t = oUy iff exists n>0 s.t.
1. forallO<i<n, t,t,;..|=0

2. thtpr e 5y

(K.q) Iz ¢ iff = (K.q) |=7 —o

Defined modalities

Important properties

Invariance Oa safety

0O — (pcl=in A pc2=in)

Sequencing aWbWcWd safety
O (pclzreq =
(pc2=#in) W (pc2=in) W (pc2=in) W (pcl=in))

Response O(@ =< b) liveness

O (pclzreq = < (pcl=in))

Example: Starvation freedom

Whenever process P1 wants to enter the critical
section, provided process P2 hever stays in the
critical section forever, P1 gets to enter eventually.

0O (pe2=in = O (pc2=out)) =
O (pclzreq = < (pcl=in))

O X next
V] V) until
O = trueUo F eventually
Og = =0 -0 G always
oWy = (pUy)ve W waiting-for (weak-until)
Composed modalities
OO a infinitely often a
COa almost always a
State-transition graph
Q set of states {9:.92.95}
A set of atomic observations {a,b}
—>cQxQ ftransition relation 91— Q2
[]: Q> 2% observation function [q1] = {a}

(Kq) =" o
Tableau construction
@ (Vardi-Wolper)
(K', q', BA) where BA c K
Is there an infinite path starting from q'

that hits BA infinitely often?

Is there a path from q' to p € BA such that pisa
member of a strongly connnected component of K?

dfs(s) {
add s to dfsTable
for each successor t of s
if (t ¢ dfsTable) then dfs(t)
if (s € BA) then { seed := s; ndfs(s) }
}

ndfs(s) {
add s to ndfsTable
for each successor t of s
if (t ¢ ndfsTable) then ndfs(t)
else if (t = seed) then report error

