
Kill-Safe Synchronization Abstractions

Matthew Flatt

University of Utah

Robert Bruce Findler

University of Chicago

1

Sibling Food-Sharing Protocol

2

Sibling Food-Sharing Protocol

3

Sibling Food-Sharing Protocol

4

Sibling Food-Sharing Protocol

5

Sibling Food-Sharing Protocol

6

Sibling Food-Sharing Protocol

7

Sibling Food-Sharing Protocol

• By inspection, the protocol is fair

• No parental supervision required

8

Sharing among Processes

9

Sharing among Processes

10

Sharing among Processes

11

Sharing among Processes

12

Sharing among Processes

• Queue should be safe and fair

• Should require no kernel supervision

13

Sharing in Java

synchronized

14

Sharing in Java

synchronized

Thread.stop ⇒ synchronized isn't enough

15

Sharing in Java

synchronized

Thread.stop ⇒ synchronized isn't enough

16

Sharing in Java

synchronized

...

Thread.stop ⇒ synchronized isn't enough

17

Sharing in Java

synchronized

...

Thread.stop ⇒ synchronized isn't enough

∴ Java has no Thread.stop

18

Why Terminate?

• Execute code in a programming environment (DrScheme)

19

Why Terminate?

• Execute code in a programming environment (DrScheme)

• Cancel actions that allocate resources (HTML browser)

20

Why Terminate?

• Execute code in a programming environment (DrScheme)

• Cancel actions that allocate resources (HTML browser)

• Stop misbehaving servlets (web server)

21

Building Kill-Safe Abstractions

abstractionabstraction

thread-safe
abstraction
thread-safe
abstraction

kill-safe
thread-safe
abstraction

kill-safe
thread-safe
abstraction

22

Building Kill-Safe Abstractions

abstractionabstraction Programmer effort
 — but generally understood

thread-safe
abstraction
thread-safe
abstraction

kill-safe
thread-safe
abstraction

kill-safe
thread-safe
abstraction

23

Building Kill-Safe Abstractions

abstractionabstraction Programmer effort
 — but generally understood

thread-safe
abstraction
thread-safe
abstraction

Programmer effort
 — the subject of this talk

kill-safe
thread-safe
abstraction

kill-safe
thread-safe
abstraction

24

Building Kill-Safe Abstractions

abstractionabstraction Start with Concurrent ML
[Reppy 88]

thread-safe
abstraction
thread-safe
abstraction

kill-safe
thread-safe
abstraction

kill-safe
thread-safe
abstraction

25

Building Kill-Safe Abstractions

abstractionabstraction Start with Concurrent ML
[Reppy 88]

thread-safe
abstraction
thread-safe
abstraction

Add MzScheme's custodians
and a little more

kill-safe
thread-safe
abstraction

kill-safe
thread-safe
abstraction

26

Sharing in Concurrent ML

27

Sharing in Concurrent ML

28

Sharing in Concurrent ML

29

Sharing in Concurrent ML

Abstraction-as-process naturally supports termination

30

Sharing in Concurrent ML

Abstraction-as-process naturally supports termination

Remaining problem: who controls the abstraction's process?

31

Managing Processes and Threads

32

Managing Processes and Threads

33

Managing Processes and Threads

= custodian =
capability to
execute

34

Managing Processes and Threads

= custodian =
capability to
execute

35

Managing with Custodians

36

Managing with Custodians

37

Managing with Custodians

38

Managing with Custodians

39

Managing with Custodians

Queue terminated with servlet

40

Thread-Safe Abstractions

A language to support abstractions:

• Concurrent ML primitives for thread communication

• Custodians for process hierarchy

Each abstraction:

• Manager thread for state

41

Towards Kill Safety with Custodians

42

Towards Kill Safety with Custodians

43

Towards Kill Safety with Custodians

Not kill-safe among servlets

44

Kill Safety through Joint Custody

45

Kill Safety through Joint Custody

46

Kill Safety through Joint Custody

47

Kill Safety through Joint Custody

48

Kill Safety through Joint Custody

Queue runs exactly
as long as servlets

49

Why a Thread can have Multiple Custodians

50

Why a Thread can have Multiple Custodians

51

Why a Thread can have Multiple Custodians

52

Why a Thread can have Multiple Custodians

53

Why a Thread can have Multiple Custodians

 Queue is only mostly dead

54-55

Why a Thread can have Multiple Custodians

 Queue is only mostly dead

56

Why a Thread can have Multiple Custodians

Use queue ⇒ grant custodian

57

Kill-Safe Abstractions

A language to support abstractions:

• Concurrent ML primitives for thread communication

• Custodians for process hierarchy

• Operation to grant a thread another custodian

Each abstraction:

• Manager thread for state

• Each action grants custodian to manager thread

58

Non-Solution #1 — Atomic Region

= atomic

59

Non-Solution #1 — Atomic Region

= atomic Queue might harm
other servlets

60

Non-Solution #2 — Disjoint Process

61

Non-Solution #2 — Disjoint Process

62

Non-Solution #2 — Disjoint Process

Queue runs forever

63-64

Non-Solution #3 — Meta-Servlet

Merely moves
the “kernel”

65-66

Solution — Joint Custody

67

Details (See Paper)

• Custodians granted through thread-resume

• CML's guard-evt a natural place for thread-resume

• Improved nack-guard-evt for two-step protocols

• Kill-safe does not always imply break-safe, nor vice-versa

68

A Thread-Safe Queue

(define-struct safe-q
 (put-ch get-ch))

(define (safe-queue)
 (define q (queue))
 (define get-ch (channel))
 (define put-ch (channel))
 (define (q-loop)
 (sync

(choice-evt
(wrap-evt
(channel-send get-ch (peek q))
 (lambda () (get q)))
 (wrap-evt
(channel-recv put-ch)
 (lambda (v) (put q v)))))

 (q-loop))
 (spawn q-loop)
 (make-safe-q put-ch get-ch))

(define (safe-get sq)
 (channel-recv

(safe-q-get-ch sq)))

(define (safe-put sq v)
 (channel-send

(safe-q-put-ch sq) v))

69

A Kill-Safe Queue

(define-struct safe-q
 (manager-t put-ch get-ch))

(define (safe-queue)
 (define q (queue))
 (define get-ch (channel))
 (define put-ch (channel))
 (define (q-loop)
 (sync

(choice-evt
(wrap-evt
(channel-send get-ch (peek q))
 (lambda () (get q)))
 (wrap-evt
(channel-recv put-ch)
 (lambda (v) (put q v)))))

 (q-loop))
 (define manager-t (spawn q-loop))
 (make-safe-q manager-t put-ch get-ch))

(define (safe-get sq)
 (resume sq)
(channel-recv
(safe-q-get-ch sq)))

(define (safe-put sq v)
 (resume sq)
(channel-send
(safe-q-put-ch sq) v))

(define (resume sq)
 (thread-resume

(safe-q-manager-t sq)
 (current-thread)))

70

