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Sibling Food-Sharing Protocol

• By inspection, the protocol is fair

• No parental supervision required
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Sharing among Processes

• Queue should be safe and fair

• Should require no kernel supervision
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Sharing in Java

synchronized

...

Thread.stop  ⇒   synchronized isn't enough

∴  Java has no Thread.stop
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Why Terminate?

• Execute code in a programming environment (DrScheme)

• Cancel actions that allocate resources (HTML browser)

• Stop misbehaving servlets (web server)
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Building Kill-Safe Abstractions

abstractionabstraction Programmer effort
  — but generally understood
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abstraction
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Programmer effort
  — the subject of this talk
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Building Kill-Safe Abstractions

abstractionabstraction Start with Concurrent ML
[Reppy 88]

thread-safe
abstraction
thread-safe
abstraction

Add MzScheme's custodians
and a little more
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Sharing in Concurrent ML

Abstraction-as-process naturally supports termination

Remaining problem: who controls the abstraction's process?
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Managing Processes and Threads

= custodian =
capability to
execute
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Managing with Custodians

Queue terminated with servlet
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Thread-Safe Abstractions

A language to support abstractions:

• Concurrent ML primitives for thread communication

• Custodians for process hierarchy

Each abstraction:

• Manager thread for state
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Towards Kill Safety with Custodians

Not kill-safe among servlets
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Kill Safety through Joint Custody

Queue runs exactly
as long as servlets
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Why a Thread can have Multiple Custodians

 Queue is only mostly dead
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Why a Thread can have Multiple Custodians

 Queue is only mostly dead
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Why a Thread can have Multiple Custodians

Use queue ⇒  grant custodian 
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Kill-Safe Abstractions

A language to support abstractions:

• Concurrent ML primitives for thread communication

• Custodians for process hierarchy

• Operation to grant a thread another custodian

Each abstraction:

• Manager thread for state

• Each action grants custodian to manager thread
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Non-Solution #1 — Atomic Region

= atomic 
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Non-Solution #1 — Atomic Region

= atomic Queue might harm
other servlets
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Non-Solution #2 — Disjoint Process

Queue runs forever
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Non-Solution #3 — Meta-Servlet

Merely moves
the “kernel”
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Solution — Joint Custody
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Details (See Paper)

• Custodians granted through thread-resume

• CML's guard-evt a natural place for thread-resume

• Improved nack-guard-evt for two-step protocols

• Kill-safe does not always imply break-safe, nor vice-versa
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A Thread-Safe Queue

(define-struct safe-q
  (put-ch get-ch))
 
(define (safe-queue)
  (define q (queue))
  (define get-ch (channel))
  (define put-ch (channel))
  (define (q-loop)
  (sync

(choice-evt
(wrap-evt
(channel-send get-ch (peek q))
 (lambda () (get q)))
 (wrap-evt
(channel-recv put-ch)
 (lambda (v) (put q v)))))

  (q-loop))
  (spawn q-loop)
  (make-safe-q put-ch get-ch))

(define (safe-get sq)
  (channel-recv

(safe-q-get-ch sq)))
 
(define (safe-put sq v)
  (channel-send

(safe-q-put-ch sq) v))
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A Kill-Safe Queue

(define-struct safe-q
  (manager-t put-ch get-ch))
 
(define (safe-queue)
  (define q (queue))
  (define get-ch (channel))
  (define put-ch (channel))
  (define (q-loop)
  (sync

(choice-evt
(wrap-evt
(channel-send get-ch (peek q))
 (lambda () (get q)))
 (wrap-evt
(channel-recv put-ch)
 (lambda (v) (put q v)))))

  (q-loop))
  (define manager-t (spawn q-loop))
  (make-safe-q manager-t put-ch get-ch))

(define (safe-get sq)
  (resume sq)
(channel-recv
(safe-q-get-ch sq)))

 
(define (safe-put sq v)
  (resume sq)
(channel-send
(safe-q-put-ch sq) v))

 
(define (resume sq)
  (thread-resume

(safe-q-manager-t sq)
 (current-thread)))
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