Static Race Detection for C

Jeff Foster
University of Maryland

Introduction

+ Concurrent programming is hard

- Google for "notoriously difficult” and "concurrency”
+ 58,300 hits

+ One particular problem: data races

- Two threads access the same location
"simultaneously,” and one access is a write

Consequences of Data Races

+ Data races cause real problems
- 2003 Northeastern US blackout

- One of the “top ten bugs of all time" due to races
* http://www.wired.com/news/technology/bugs/1,69355-0.html
+ 1985-1987 Therac-25 medical accelerator

* Race-free programs are easier to understand
- Many semantics for concurrent languages assume
correct synchronization
- It's hard to define a memory model that supports
unsynchronized accesses
+ C.f. The Java Memory Model, recent added to Java Spec

Avoiding Data Races

+ The most common fechnique:
- Locations r
- Locks |
- Correlation: r @ |
+ Location r is accessed when | is held
- Consistent correlation
+ Any shared location is only ever correlated with one lock
- We say that that lock guards that location
+ Implies race freedom
*+ Not the only technique for avoiding races!
- But it's simple, easy to understand, and common

Eraser [Savage et al, TOCS 1997]

+ A dynamic tool for detecting data races based
on this technique
- Locks_held(t) = set of locks held by thread t
- For each r, set C(r) := { all locks }
- On each access fo r by thread t,
+ C(r) := C(r) m locks_held(t)
+ If C(r) = O, issue a warning

An Improvement

Unsynchronized reads of a
shared location are OK
rdhwr, first

- As long as ho on writes wr thread

to the field after it > e

thread
becomes shared @ -
thread Modified
Track state of each field @‘
- Only enforce locking

protocol when location "
shared and written

Safety and Liveness Tradeoffs

+ Programs should be safe, so that they do not
have data races

- Adding locking is one way to achieve safety
- (Note: not the only way)

* Programs should be /ive, so that they make
progress

- Removing locking is one way to achieve liveness!

Data Races in Practice

+ Programmers worry about performance
- A good reason fo write a concurrent program!
- Hence want to avoid unnecessary synchornization
+ ==> Ok to do unsafe things that "don't matter”
- Update a counter
+ Often value does not need to be exact
+ But what if it's a reference count, or something critical?
- Algorithm works ok with a stale value
+ The algorithm will “eventually” see the newest values

+ Need deep reasoning here, about algorithm and platform
- And others

8

Concurrent Programming in C

* Many important C programs are concurrent
- E.g., Linux, web servers, etc

+ Concurrency is usually provided by a library
- Not baked into the language

- But there is a POSIX thread specification
- Linux kernel uses its own model, but close

A Static Analysis Against Races

Goal: Develop a ool for determining whether
a C program is race-free

+ Design criteria:
- Be sound: Complain if there is a race
- Handle locking idioms commonly-used in C programs
- Don't require many annotations

+ In particular, do not require the program to describe
which locations are guarded by what locks

- Scale to large programs

Oops — We Can't Do This!

+ Rice's Theorem: No computer program can
precisely determine anything interesting
about arbitrary source code
- Does this program terminate?

- Does this program produce value 42?
- Does this program raise an exception?
- Is this program correct?

The Art of Static Analysis

* Programmers don't write arbitrarily
complicated programs

* Programmers have ways to control complexity
- Otherwise they couldn't make sense of them

+ Target: Be precise for the programs that
programmers want fo write

- It's OK to forbid yucky code in the name of safety

Outline

A Hypothetical Program: Part 1

+ C locking idioms
+ Alias analysis
- Anoverview
- Alias analysis via type systems
+ Extend to infer correlations
* Making it work in practice for C
+ Context-sensitivity via CFL reachability
+ Using alias analysis to detect sharing

lock_t log_lock; /* guards logfd, bw */
int logfd, bw = O;
void log(char *msg) {
int len = strlen(msg);
lock(&log_lock);
bw += len;
write(logfd, msg, len);
unlock(&log_lock):
}

Acquires log_lock to protect access to logfd, bw
However, assumes caller has necessary locks to guard *msg

14

A Hypothetical Program: Part 2

A Hypothetical Program: Part 3

struct job {
lock_t j_lock: /* guards worklist and cnt */
struct job *next;
void *worklist;
unsigned cnt;
¥
lock_t list_lock; /* guards list backbone */
struct job *joblist;

Data structures can include locks

Sometimes locks guard individual elements, sometimes they
guard sets of elements (and sometimes even more complex)

15

void logger() { ...
lock(&list_lock);
for (j = joblist; j!= NULL: j = j->next) {
cnt++;
if (trylock(&j->job_lock)) {

sprintf(msg, "...", cnt, j->cnt);
log(msg);
unlock(&j->job_lock);

}
} unlock(&list_lock); ...}

trylock returns false (and does not block) if lock already held

locking appears at arbitrary program points 6

A Hypothetical Program: Part 4

Summary: Key Idioms

int main(int argc, char **argv) {...
for (i=0;i<n; i++){
struct job *x = malloc(sizeof(struct job)):
/* initialize x */
fork(worker, x);
}
}

x is thead-local during initialization, and only becomes shared
once thread is forked

and all of this happens within a loop

+ Locks can be acquired or released anywhere
- Not like synchronized blocks in Java

+ Locks protect static data and heap data
- And locks themselves are both global and in data

structures

+ Functions can be polymorphic in the
relationship between locks and locations

* Much data is thread-local
- Either always, or up until a particular point
- No locking needed while thread-local

Other Possible Idioms (Not Handled)

+ Locking can be path-sensitive
- if (foo) lock(&x) ... if (foo) unlock(&x)

+ Reader/writer locking

+ Ownership of data may be transferred

- E.g., thread-local data gets put into a shared
buffer, then pulled out, at which point it becomes
thread-local to another thread

First Task: Understand Pointers

+ We need to know a lot about pointers to build
a tool to handle these idioms
- We need to know which locations are accessed

- We need to know what locks are being acquired and
released

- We need to know which locations are shared and
which are thread local

+ The solution: Perform an alias analysis

20

Alias Analysis

Introduction

* Aliasing occurs when different names refer to
the same thing

- Typically, we only care for imperative programs
- The usual culprit: pointers
+ A core building block for other analyses
- ..*p = 3: // What does p point to?
+ Useful for many languages
- C — lots of pointers all over the place
- Java — “objects" point to updatable memory
- ML — ML has updatable references

May Alias Analysis

+ pand q may alias if it's possible that p and q
might point fo the same address

+ If not (p may alias q), then a write through p
does not affect memory pointed to by q
- ..%p = 3. x =*q; // write through p doesn't affect x

* Most conservative may alias analysis?
- Everything may alias everything else

Must Alias Analysis

* pand q must alias if p and q do point to the
same address

- If p must alias q, then p and q refer to the same
memory

-.*p=3:x=%q //xis 3

+ What's the most conservative must alias
analysis?
- Nothing must alias anything

Early Alias Analysis (Landi and Ryder)

+ Expressed as computing alias pairs

- E.g., (*p, *q) means p and q may point to same
memory

+ Issues?
- There could be many alias pairs
- (*p. *q). (p>a. g->a), (p->b, g->b), ...
- What about cyclic data structures?
+ (*p, p->next), (*p, p->next->next), ...

Points-to Analysis (Emami, Ghiya, Hendren)

+ Determine set of locations p may point o
- E.g., (p, {&x}) means p may point to the location x
- To decide if p and q alias, see if their points-to
sets overlap
* More compact representation

+ Need to name locations in the program
- Pick a finite set of possible location names
+ No problem with cyclic structures
- x = malloc(...); // where does x point t0?
+ (x, {malloc@257}) “the malloc at line 257"

26

Flow-Sensitivity

* Ananalysis is flow-sensitive if it tracks state
changes
- E.g., data flow analysis is flow-sensitive

+ Ananalysis is flow-insensitive if it discards
the order of statements
- E.g., type systems are flow-insensitive

+ Flow-sensitivity is much more expensive, but
also more precise

Example

p = &x;

p = 4&y:

*p =&z

Flow-sensitive: Flow-insensitive:

p=é&x:// (p,{&x}) (p. {&x, &y})
p=d&y:// (p.{&y}) (x, &2)
*p=&z: /7 (p.{&y}). (v, {&z}) (v, &2)

A Simple Language

+ We'll develop an alias analysis for ML
- We'll talk about applying this to C later on

ez x variables
|n integers
| \x:te functions
lee application
| ifO e thene else e conditional
|letx=eine binding
| refe allocation
|le derefernce

leize assignment

Aliasing in this Language

* ref creates an updatable reference
- It's like malloc followed by initialization

+ That pointer can be passed around the
program
let x = ref O in
lety=xin
y:=3; // updates Ix

Label Flow for Points-to Analysis

+ We're going to extend references with labels
-eu=..|refre|..
- Here r labels this particular memory allocation
+ Like malloc@257, identifies a line in the program
+ Drawn from a finite set of labels R
- For now, programmers add these
* Goal of points-to analysis: determine set of
labels a pointer may refer to
let x = refRx 0 in
lety=xin
y.i=. 3. //y may point to { Rx } o

Type-Based Alias Analysis

+ We're going to build an alias analysis out of
type inference

- If you're familiar with ML type inference, that
what we're going to do

+ We'll use /abeled types in our analysis
-tuzint |t >t | refrt
- If we have Ix or x := ..., we can decide what location
X may point to by looking at its ref type

A Type Checking System

A Type Checking System (cont'd)

A |--x: A(X) A |--n:int
A xt|--e:t Al-elitot Al-e2:t
Al--\xte:t >t Al-ele2:t

Al--el:int Al--e2:1 A|-e3:t
A |--ifOel thene2elsee3: t

Al-e:t
A |--refre:refrt

Al--e:refrt
Al-le:t

Al-el:irefrt Al|--e2:t
Al-elize2:+

Example

let x = refRx 0 in
lety=xin
y:=3;

- X has type refRx int

- y must have the same type as x

- Therefore at assignment, we know which location y
refers to

Another Example

let x =refROin

lety=refROin

let w=reffvQin

let z = if0 42 then x else y in
z:=3;

- x and y both have type ref® int

+ They must have this type because they are conflated by if
- At assignment, we write to location R

+ Notice that we don't know which of x, y we write to

+ But we do know that we don't affect w

Yet Another Example

let x = refR 3

lety = refRy x

let z = refR 4
y =24

- Both x and z have the same label
-y has type refR¥ (refR int)

* Notice we don't know after the assignment whether y
points o x or z

Things to Notice

- We have a finite set of labels
- One for each occurrence of ref in the program
- A label may stand for more than one run-time loc
+ Whenever two labels "meet” in the type
system, they must be the same
- Where does this happen in the rules?
+ The system is flow-insensitive
- Types don't change after assignment

The Need for Type Inference

+ In practice, we don't have labeled programs
- We need inference

* Given an unlabeled program that satisfies a
standard type system, does there exist a valid
labeling?

- That labeling is our alias analysis

Type Checking vs. Type Inference

+ Let's think about C's type system
- Crequires programmers to annotate function types

- ..but not other places

+ E.g., when you write down 3 + 4, you don't need to give that
a type

- So all type systems trade off programmer
annotations vs. computed information

+ Type checking = it's "obvious" how to check
+ Type inference = it's "more work" to check

40

A Type Inference Algorithm

+ We'll follow the standard approach

- Introduce /abel variables a, which stand for
unknowns
+ Now r may be either a constant R or a variable a

+ Traverse the code of the unlabeled program
* Generate a set of constraints

+ Solve the constraints to find a labeling
- No solution ==> no valid labeling

41

Step 1: Introducing Labels

+ Problem 1: In the ref rule, we don't know what
label to assign to the ref

- Solution: Introduce a fresh unknown
+ Why do we need to pick a variable rather than a constant?

Al--e:t afresh

A |-- refee: refat

)

Step 1: Introducing Labels (cont'd)

- Problem 2: In the function rule, we don't know
what type to give to the argument
- Assume we are given a standard type s (no labels)

- Make up a new type with fresh labels everywhere
+ We'll write this as fresh(s)

A, xit|--e:t 1=fresh(s)

Al--\xse:t—>1

43

Step 2: Adding Constraints

+ Problem 3: Some rules implicitly require types
to be equal
- We will make this explicit with equality constraints

Al-el:int A|--e2:1t2 A|--e3:13
12 = 13
A |--ifOel thene2 else e3: 12

44

Step 2: Adding Constraints (cont'd)

Al--el:refrt Al--e2:12
t=12
Al-elize2:+

* Notice we're assuming that el is a ref

- That was part of our assumption — we assumed the
program was safe according to the standard types

45

Step 2: Adding Constraints (cont'd)

Al-el:t—>1 Al-e2:12 t:=t2
Al-ele2:t

+ Again, we're assuming el is a function

Constraint Resolution

+ After applying the rules, we are left with a
set of equality constraints
- tl=12

+ We'll solve the constraints via rewriting

- We'll simplify more complex constraints into
simpler constraints
- 5==>5' rewrite constraints S to constraints S'

47

Constraint Resolution via Unification

+ S+{int=int}==>5
s S+{tlo2=11'>12'}==>
S+{tl'=11}+{12=12"}
+ S+{refdtl=ref?t2}==>
S+{tl=12}+{al=a2}
+ S+ { mismatched constructors } ==> error
- Can't happen if program correct w.r.t. std types

+ Claim 1: This algorithm always terminates

+ Claim 2: When it terminates, we are left with

equalities among labels "

Constraint Resolution via Unification (cont'd)

* Last step:

- Computes sets of labels that are equal (e.g., using
union-find)

- Assign each equivalence class its own constant label

49

Example
let x =ref Oin // x: refdint
lety=ref Oin /7'y : ref® int
let w=refQin // w: refcint
let z = if0O 42 then x elsey in // z: refe, refe= ref®
z:=3; // write to refa

- Solving constraint refe = ref® yields a = b
- So we have two equivalence classes

« {a,b} and {c}

+ Each one gets a label, e.g., R1 and R2

Example
let x = ref Oin // x i refRlint
lety=ref Oin /7y :refflint
letw=ref Oin // w: refR2int
let z=ifO 42 then x elsey in // z: ref®
z:=3; // write to refR!

- Solving constraint refe = ref® yieldsa=b
- So we have two equivalence classes

+ {a,b} and {c}

+ Each one gets a label, e.g., R1 and R2

Steensgaard's Analysis

- Flow-insensitive
+ Context-insensitive
+ Unification-based
- = Steensgaard's Analysis

- (Inpractice, Steensgaard's analysis includes stuff
for type casts, efc)

* Properties
- Very scalable
+ Complexity?
~-Somewhat imprecise 52

Limitation of Unification

* Modification of previous example:

let x = ref Oin // x : refRlint

lety=ref Qin /7y :refflint

let z = if0 42 then x elsey in // z: refR
z:=3; // write to refR!
x:=2; // write to refRl

+ We're equating labels that may alias

- Gives "backward flow" -- the fact that x and y are
merged "downstream” (in z) causes x and y o be
equivalent everywhere

Subtyping

+ We can solve this problem using subtyping

- Each label variable now stands for a sef of labels
+ Inunification, a variable could only stand for one label

- We'll write [a] for the set represented by a
« And [R] = {R} for a constant R

+ Ex: let x have type refe int
- Suppose [a] = {R1, R2}
- Then x may point to location R1 or R2

- ..and R1 and R2 may themselves stand for multiple

locations “

Labels on ref

+ Slightly different approach to labeling
- Assume that each ref has a unique constant label
+ Generate a fresh one for each syntactic occurrence
- Add a fresh variable, and generate a subtyping
constraint between the constant and variable
+ al < a2 means [al] ¢ [a2]

Al--e:t R<a afresh

A |--refRe:refet

Subtype Inference

+ Same basic approach as before
- Walk over source code, generate constraints
- Now want to allow subsets rather than equalities

Al--el:int A|--e2:refr2t A|--e3:refr3t
r2<r r3<r
A |-- ifO el then e2 else €3 : refr t

Subtyping Constraints

* Need to generalize to arbitrary types

- Think of types as representing sets of values
+ E.g., int represents the set of integers

+ So refr int represents the set of pointers to integers that
are labeled with [r]

- Extend < o a relation t < t on types

rl<r2 int<int

int < int refrlint < refr2 int

Subsumption

+ Add one new rule to the system
- And leave remaining rules alone

Al-e:t t<f
Al-e:t

- If we think that e has type t, and t is a subtype of
t', then e also has type t'

- We can use a subtype anywhere a supertype is
expected

Example

// x :refeint,Rx < a
//y:reftint,Ry<b

let x = refRx 0 in

lety = reffv 1in

let z = if 42 then x else y in
x:=3

- At conditional, need types of x and y to match
asc
A |-- x : refeint refeint < refcint
A |-- x : refcint
- Thus we have z : refcint witha<cand b<c
+ Thus can pick a = {Rx}, b = {Ry}, ¢ = {Rx, Ry} 5

Subtyping References (cont'd)

+ Let's try generalizing to arbitrary types

rl<r2 t1<t2

refr! t1 < refr2 +2

+ This rule is broken
let x = refRx (reffR< 0)in // x : refe (refb int), Rx' < b

lety=xin /!y : refe (refdint),b<d
y = refOps 0 // Oops ¢ d
lIx =3 // dereference of b

+ Can pick b = {Rx}, d = {Rx’, Oops}
- Then write via b doesn't look like it's writing Oops
60

10

You've Got Aliasing!

+ We have multiple names for the same memory
location
- But they have different types
- Andwe can write into memory at different types

61

Solution #1: Java's Approach

+ Java uses this subtyping rule
- If Sis asubclass of T, then S[]is a subclass of T[]

+ Counterexample:
- Foo[] a = new Foo[5];
- Object[]b=a;
- b[0] = new Object():
- a[0].foo();
- Write to b[0] forbidden at runtime, so last line
cannot happen

62

Solution #2: Purely Static Approach

* Require equality "under” a ref

rl<r2 t1<t2 t2<+tl
refr! t1 < refr2 +2

or

rl<r2 tl1:=+%12
refr! +1 < refr2 +2

63

Subtyping on Function Types

* What about function types?

?

t112<1l' 512

*+ Recall: Sisasubtype of Tif an S can be used
anywhere a T is expected
- When can we replace a call *f x" with a call "g x"?

64

Replacing “f x” by “g x"

* Whenistl' 5> t2'<t1 > 12?2
— T’

9

*+ Return type:

- We are expecting 12 (f's return type)
- So we can only return at most t2
- t2'<t2

+ Example: A function that returns a pointer to
{R1, R2} can be treated as a function that
returns a pointer to {R1, R2, R3}

65

Replacing “f x" by “g x” (cont'd)

+ Whenistl' 5> t2'<tl > 12 ?
H_I T’
g

* Argument type:
- We are supposed to accept t1 (f's argument type)
- So we must accept af least 1
- i<t

+ Example: A function that accepts a pointer to
{R1, R2, R3} can be passed a pointer to {R1,
R2}

66

Subtyping on Function Types

1<+l t2<t2
t112<1l' 512

+ We say that - is
- Covariant in the range (subtyping dir the same)
- Contravariant in the domain (subtyping dir flips)

67

Where We Are

+ We've built a unification-based alias analysis

+ We've built a subtyping-based alias analysis
- But it's still only a checking system

+ Next steps

- Turning this into inference
- Adding context-sensitivity

68

The Problem: Subsumption

Al-e:t t<t
Al-e:t
+ We're allowed to apply this rule at any time
- Makes it hard to develop a deterministic algorithm
- Type checking is not syntax driven
+ Fortunately, we don't have that many choices

- For each expression e, we need to decide
+ Do we apply the "regular” rule for e?
+ Or do we apply subsumption (how many times)?

69

Getting Rid of Subsumption

+ Lemma: Multiple sequential uses of
subsumption can be collapsed into a single use
- Proof: Transitivity of <

+ S0 how we need only apply subsumption once
after each expression

70

Getting Rid of Subsumption (cont'd)

+ We can get rid of the separate subsumption rule

- Integrate into the rest of the rules
Al-el:t>1 Al|-e2:12 t=12

Al-ele2:t
becomes
Al--el:t>t Al-e2:12 t2<t
Al-ele2:t

+ Apply the same reasoning to the other rules
- We're left with a purely syntax-directed system?

Constraint Resolution: Step 1

- S+{int<int}==>S5

s S+{flot2<tl' 512"} ==>
S+{tl'<t1}+{1t2<t2'}

« S+{reflttl<refr2t2}==>
S+{tl<t2}+{1t2<t1}+{rl<r2}

+ S +{ mismatched constructors } ==> error

2

12

Constraint Resolution: Step 2

+ Our type system is called a structural
subtyping system
- If + <t', then t and 1" have the same shape

+ When we're done with step 1, we're left with
constraints of the form rl <r2
- Where rl and r2 are constants R or variables a
- This is called an atomic subtyping system
- That's because there's no “structure” left

Finding a Least Solution

+ Our goal: compute a least solution fo the
remaining constraints

- For each variable, compute a minimal set of
constants satisfying the constraints

+ One more rewriting rule: transitive closure
- S+{rl<r2}+{r2<r3}+={rl<r3}
+ +==> means add rhs constraint without removing lhs constraints
- Apply this rule until ho new constraints generated
- Then[a]={R | R<aisaconstraintin S}

Graph Reachability

* Think of a constraint as a directed edge

Rl<a
R2<b RS ST

(

a<c b
R2—

b<a

- Use graph reachability to compute solution
- Compute set of constants that reach each variable
- Eg., [c] = [a] = {R1, R2}, [b] = {R2}
+ Complexity?

Andersen's Analysis

* Flow-insensitive
+ Context-insensitive
+ Subtyping-based
- = Andersen's analysis
- ~= Das's "one-level flow"
* Properties
- Still very scalable in practice
- Much less coarse than Steensgaard's analysis
- Can still be improved (will see later)

Back to Race Detection

Programming Against Races

+ Recall our model:
- Locations r
- Locks |
- Correlation: r @ |
+ Location r is accessed when | is held
- Consistent correlation
+ Any shared location is only ever correlated with one lock

- We say that that lock guards that location
+ Implies race freedom

78

13

Applying Alias Analysis

+ Recall our model:
- Locations r
+ Drawn from a set of constant labels R, plus variables a
- We'll get these from (may) alias analysis
- Locks |
+ Hm...need to think about these
+ Draw from a set of constant lock labels L, plus variables m
- Correlation: r @ |

* Hm...need to associate locks and locations somehow
+ Let's punt this part

Lambda-Corr

A small language with “locations” and “locks"
eu=x|n|\xite|ee|ifOetheneelsee

| newlockt create a new lock
reff e allocate "share emor
| refR llocate “shared” mem:
[lee dereference with a lock held
|e:=ce assign with a lock held

tuzint [t =1t |lock || refrt

- No acquire and release
+ All accesses have explicit annotations (superscript) of the lock
- This expression evaluates to the lock to hold
- No thread creation
+ ref creates "shared” memory

+. Assume any access needs to hold the right lock 30

Example

let k1 = newlock!! in
let k2 = newlockl2 in
let x = refRxQ in
lety = reffv 1in

x =K 3;

x =K 4; // ok — Rx always accessed with L1
y =KL 5;

y:=k2 6 // bad — Ry sometimes accessed

with L1 or L2

Type Inference for Races

+ We'll follow the same approach as before
- Traverse the source code of the program
- Generate constraints
- Solve the constraints

+ Solution ==> program is consistently correlated
+ No solution ==> potential race
+ Notice that in alias analysis, there was always a solution

+ For now, all rules except for locks and deref,
assignment will be the same

Type Rule for Locks

+ For now, locks will work just like references
- Different set of labels for them
- Standard labeling rule, standard subtyping
- Warning: this is broken! Will fix later...

L<m mfresh

A |-- newlockt : lock m

11<12
lock 11 < lock 12

Correlation Constraints for Locations

- Generate a correlation constraintr @ | when
location r is accessed with lock | held

Al--elirefrt Al|-e2:lockl r@|
A |--le2el: t

Al--el:refrt A|--e2:t A|--e3:lockl r@]|

Al-eli=e3e2: 1

14

Constraint Resolution

+ Apply subtyping until only atomic constraints
- r1 <r2 — location subtyping
- 11 <12 — lock subtyping
- r @ | — correlation

* Now apply three rewriting rules
- S+{rl<r2}+{r2<r3}+==>{rli<r3}
- S+{l1<12}+{12<I3}+==>{11<13}
- S+{rl<r2}+{l1<R}+{r2@12}+==>{r1 @11}
+ If rl1“flows 0" r2 and I1 “flows to" 12 and r2 and |2 are
correlated, then so are rl and r2
+ Note: r<randl<|

Constraint Resolution, Graphically

Consistent Correlation

+ Next define the correlation set of a location
-SR)={L|R@L}

+ The correlation set of R is the set of locks L that are
correlated with it after applying all the rewrite rules

+ Notice that both of these are constants

- Consistent correlation: for every R, |S(R)| = 1
- Means location only ever accessed with one lock

NN
rl r2 r3
™
ri r2
@ @
NN
11 12 13 11 12
N~——"
86
Example
let k1 = newlock!! in // kl:lockm,L1<m
let k2 = newlockl? in // k2 :lockn, L2 <n
let x = refRx 0 in // x : refa(int), Rx <a
lety =reff1in //y : refb(int), Ry <b
x =kl 3; //a@m
x =kl 4; //a@m
y :=K 5; //b@m
y:=k2 6 //b@n

- Applying last constraint resolution rule yields
c{Rx@L1}+{Rx@L1}+{Ry@L1}+{Ry@L2}
+ Inconsistent correlation for Ry

Consequences of May Alias Analysis

+ We used may aliasing for locations and locks
- One of these is okay, and the other is not

May Aliasing of Locations

let k1 = newlock:
let x = refRx 0

lety = reffRy 0
let z = if0 42 then x else y
z:=K1'3

- Constraint solving yields {Rx @ L}+{Ry @ L }

- Thus any two locations that may alias must be
protected by the same lock

- This seems fairly reasonable, and it is sound

90

15

May Aliasing of Locks

let k1 = newlock!!
let k2 = newlockl2
let k = ifO 42 then ki else k2
let x = refRx 0
x =k 3; x :=k1 4

-{Rx@L1}+{Rx@L2}+{Rx@L1}

- Thus Rx is inconsistently correlated

- That's not so bad — we're just rejecting an odd
program

91

May Aliasing of Locks (cont'd)

let k1 = newlock:
let k2 = newlock- // fine according to rules
let k = ifO 42 then kil else k2
let x = refRx0
x =k 3; x 1=kl 4

-{Rx@L}+{Rx@L}+{Rx@L}
- Uh-oh! Rx is consistently correlated, but there's a
potential “race”
+ Note that k and k1 are different locks at run time

- Allocating a lock in a loop yields same problem

The Need for Must Information

+ The problem was that we need to know exactly
what lock was “held" at the assignment

- It's no good to know that some lock in a set was
held, because then we don't know anything

- We need to ensure that the same lock is always
held on access

+ We need must alias analysis for locks

- Static analysis needs to know exactly which run-
time lock is represented by each static lock label

93

Must Aliasing via Linearity

+ Must aliasing not as well-studied as may
- Many early alias analysis papers mention it

- Later ones focus on may alias
+ Recall this is really used for *must not"

+ One popular technique: linearity

- We want each static lock label o stand for exactly
one run-time location

- I.e., we want lock labels to be /inear
- Term comes from linear logic
- “Linear" in our context is a little different

Enforcing Linearity

+ Consider the bad example again
let k1 = newlock-
let k2 = newlock-
- Need to prevent lock labels from being reused

+ Solution: remember newlockd labels
- And prevent another newlock with the same label

- We can do this by adding effects to our type
system

95

Effects

* An effect captures some stateful property
- Typically, which memory has been read or written
+ We'll use these kinds of effects soon
- In this case, track what locks have been creates

fu=0 no effect
| eff effect variable
| {1} lock | was allocated
| f+f union of effects
| feof disjoint union of effects

96

16

Type Rules with Effects

L<m mfresh

A |-- newlockt : lock m; {m}

Judgments now assign
a type and effect

97

Type Rules with Effects (cont'd)

Al-x:A(X): 0

Al-el:irefrt;fl Al|--e2:t;f2
Al-eli=e2:1 flof2
Al-el:int;fl Al|-e2:tf2 Al|--e3:1t f3
A |--ifOel thene2elsee3 : t; f1 @ (f2 + £3)

Only one branch taken 98

Rule for Functions

+ Is the following rule correct?

A xt|--e:t)f

Al-\xite:t =1 f

- No!
- The fn's effect doesn't occur when it's defined
+ It occurs when the function is called
- So we need to remember the effect of a function

99

Correct Rule for Functions

+ Extend types to have effects on arrows
tuzint [t =ft | lock || refrt

A xt|--e:t)f

Al--\xite:t =10

Al--el:tft, fl Al|--e2:1 f2
Al-ele2:t.fleafeaef

100

One Minor Catch

+ What if two function types need to be equal?
- Can use subsumption rule

Al--e:t f t<t' feeff
Al--e:) eff

- We always use a variable Safe to assume

as an upper bound
- Otherwise how would we solve constraints like
c{L1}+{L2}+f<{L1}+g+h ?

have more effects

101

Another Minor Catch

+ We don't have types with effects on them

Standard type

A xs|-e:t)f t= fresh(sz

Al--\xise:t—>f1:0

Fresh label variables an
effect variables

102

17

Effect Constraints

+ The same old story!
- Walk over the program

- Generate constraints
crlcr2
< 11<l2
+ feeff
- Effects include disjoint unions
- Solution ==> locks can be treated linearity

- No solution ==> reject program

103

Effect Constraint Resolution

+ Step 1: Close lock constraints
-S+{I1<I2}+{12<I3}+==>{11<I3}

- Step 2: Count!
oceurs(l,0)=0
oceurs(l, {I}) = 1
oceurs(l,{IHh)=0 =1
occurs(l, f1 ® f2) = occurs(l, f1) + occurs(l, f2)
occurs(l, f1 + £2) = max(occurs(l, f1), occurs(l, £2))
occurs(l, eff) = max occurs(l, f) for f < eff
- For each effect f and for every lock |, make sure

that occurs occurs(l, f) <1

104

Example

let k1 = newlockt
let k2 = newlockt // violates disjoint union
let k = ifO 42 then ki else k2 // k1, k2 have same type
let x = reffx 0
x =k 3; x =k 4

- Example is now forbidden
- Still not quite enough, though, as we'll see...

Applying this in Practice

+ That's the core system
- But need a bit more to handle those cases we saw
way back at the beginning of lecture
- InC,
1. We need to deal with €
2. Held locks are not given by the programmer
— Locks can be acquired or released anywhere
— More than one lock can be held at a time
3. Functions can be polymorphic in the relationship
between locks and locations
4. Much data is thread-local

106

Variables in C

+ The first (easiest) problem: C doesn't use ref
- It has malloc for memory on the heap

- But local variables on the stack are also updateable:
void foo(int x) {
inty;
y=Xx+3;
y++,'
x = 42;

+ The C types aren't quite enough
- 3 :int, but can't update 3!

107

L-Types and R-Types

+ C hides important information:
- Variables behave different in |- and r-positions
+ | = left-hand-side of assignment, r = rhs
- On |hs of assignment, x refers to /location x

- Onrhs of assignment, x refers to contents of
Jocation x

108

18

Mapping to ML-Style References

+ Variables will have ref types:
- x: ref <contents type>
- Parameters as well, but r-types in fn sigs

+ Onrhs of assignment, add deref of variables
- Address-of uses ref type directly

void foo(int x) { foo (x:int):void =
let x = ref x in
inty; lety=ref Oin
y=x+3; y = (Ix)+ 3;
Y y=(y)+L
x=42; X = 42;
)9(&y): q(y)

109

Computing Held Locks

+ Create a control-flow graph of the program
- We'll be constraint-based, for fun!
- A program point represented by state variable S

- State variables will have kinds to tell us what
happened in the state (e.g., lock acquire, deref)

+ Propagate information through the graph using
dataflow analysis

110

Computing Held Locks by Example

pthread_mutex_t k1=..; //kl:lock L1
int x; // &x:reffint
// i lock 1, p i refR? (refe int)
s void munge(pthread_mutex_t *I, int *p) {
1"‘ pthread_mutex_lock(l):

out,

squI
munge(&K1, &x);

ret 11

Solving Constraints

—
(v)
o
3
o

o

Rel @
scuH

Sret Rel

112

More than One Lock May Be Held

+ We can acquire multiple locks at once
pthread_mutex_lock(&k1);
pthread_mutex_lock(&k2);

*p=3;..

+ This is easy — just allow sets of locks, right?
- Constraints r @ {I1, ..., In}
- Correlation set S(R) = {{I1, ..., In} | r@{I1,...In}}
- Consistent correlation: for every R, [nS(R)| > 1

113

Back to Linearity

+ How do we distinguish previous case from
let k = ifO 42 then kil else k2
pthread_mutex_lock(&k)

*p=3..
- Can't just say p correlated with {k1, k2}
- Some lock is acquired, but don't know which

114

19

Solutions (Pick One)

+ Acquiring a lock | representing more than one
concrete lock L is a no-op
- We're only interested in races, so okay to forget
that we've acquired a lock
* Get rid of subtyping on locks
- Interpret < as unification on locks
- Unifying two disjoint locks not allowed

- Disjoint unions prevent same lock from being
allocated twice

- ==> Can hever mix different locks together

115

Context-Sensitivity

Limitations of Subtyping

+ Subtyping gives us a kind of polymorphism
- A polymorphic type represents multiple types

- Inasubtyping system, T represents t and all of 1's
subtypes

+ As we saw, this flexibility helps make the

analysis more precise
- But it isn't always enough...

117

Limitations of Subtype Polymorphism

+ Let's look at the identity function on int ptrs:
- let id = \xiref®int . x
- 5o id has type ref® int — ref® int rl r2

+ Now consider the following: '
- let x = id (ref 0) !
_ - ~
- lety = id (refr2 0) . ay

- It looks like ax and ay point to {r1, r2}
- This is a context-insensitive analysis
118

The Observation of Parametric Polymorphism

+ Type inference on id yields a proof like this:

This is a proof free

id:a—>a

119

The Observation of Parametric Polymorphism

+ We can duplicate this proof for anya,d’, in any
type environment

id:a—>d

20

The Observation of Parametric Polymorphism

+ Thus when we use id...

R1
v Sy
idia—>a

\/i
121

The Observation of Parametric Polymorphism

+ We can “inline" its type, with a different a
each time R1

RS 5 b, W
idia—>ad

122

Hindley - Milner Style Polymorphism

+ Standard type rules (hot quite for our system)
- Generalize at let

Al-el:tl A, f:Vatl|--e2:12 a=fv(tl) - fv(A)

Al--letf=eline2:12
- Instantiate at uses

Take the original type
A(f) = Va.tl
A |-- f : t1[t\a]__| Substitute bound vars
(arbitrarily)

123

Polymorphically Constrained Types

+ Notice that we inlined not only the fype (as in
ML), but also the constraints

+ We need polymorphically constrained types
X i Va.t where C

- For any labels a where constraints C hold, x has
type t

Polymorphically Constrainted Types

* Must copy constraints at each instantiation
- Looks inefficient
- (And hard to implement)

=

foo \a

foo \a %
foo i\

Comparison to Type Polymorphism

+ ML-style polymorphic type inference is
EXPTIME-hard
- Inpractice, it's fine
- Bad case can't happen here, because we're
polymorphic only in the labels
+ That's because we'll apply this to C

126

21

A Better Solution: CFL Reachability

+ Can reduce this to another problem
- Equivalent to the constraint-copying formulation
- Supports polymorphic recursion in qualifiers
- It's easy to implement
- It's efficient: O(n3)

+ Previous best algorithm O(n®) [Mossin, PhD thesis]

+ Idea due to Horwitz, Reps, and Sagiv
[POPL'95], and Rehof, Fahndrich, and Das
[POPL'01]

127

The Problem Restated: Unrealizable Paths

ri r2
let id = \x:refe int . x .
let x = id (refr! 0) ‘1‘
lety = id (refr2 0) b
7\
ax ay

* No execution can exhibit that particular

call/return sequence

128

Only Propagate Along Realizable Paths

rl r2
let id = \x:refe int . x e
let x = id! (refr! 0) ‘f
lety = id? (refr2 0))b 32
ax” ay

+ Add edge labels for calls and returns

- Only propagate along valid paths whose returns

balance calls
129

Parenthesis Edges

+ Paren edges represent substitutions

-id:Va,b.a—>bwherea<b rl\\
- let x = id! (refr! 0) a
+ At call 1 to id, we instantiate type of id

.

- (@a=>b)[rl\a, ax\b] = rl—ax ,/
—_— ax
Renaming for call 1
+ Edges with)1 or (1 represent renaming 1
- b)% axb instantiated to ax, and b flows to ax
- rl»(a ainstantiated to rl, and rl flows to a

130

a
|
b

Instantiation Constraints

+ Edges with parentheses are called
instantiation constraints

* They represent:
- A renaming
- Plus a “flow"

+ We can extend instantiation constraints from
labels to types in the standard way

131

Propagating Instantiation Constraints

« S+{int>int}==>5
« S+{int~>(int}==>5

« S+ {refrlt1-0refr2+2}==>
S+ {rlo0r2}+ {11012} + {12) 11}

« S+ {refrlt1-)irefr2+2}==>
S+{rloWr2)« (11112} {12011}

22

Propagating Instantiation Constraints (cont'd)

c S+H{tl>12 D 11' > 12"} ==>
S+ {1212} + {t1'>(11}

s S+H{11> 12 »(11" 5> 12"} ==>
S+{t2-012'}+ {11') 11}

133

Type Rule for Instantiation

+ Now when we mention the name of a function,
we'll instantiate it using the following rule

A(f)=t 1= fresh(t) t-0
Al--fo ot

134

A Simple Example

let id = \x.x in
lety = id; (refRv0)

let z = id, (refRz0)
a K
\
X 1

Two Observations

+ We are doing constraint copying

- Notice the edge from c to a got “copied” to Ry toy
+ We didn't draw the transitive edge, but we could have

+ This algorithm can be made demand-driven

- We only need to worry about paths from constant
qualifiers

- Good implications for scalability in practice

136

CFL Reachability

+ We're trying to find paths through the graph
whose edges are a language in some grammar
- Called the CFL Reachability problem
- Computable in cubic time

137

Grammar for Matched Paths

M= (i M) forany i
| MM
| d regular subtyping edge
| empty

+ Also can include other paths, depending on application

138

23

Global Variables

+ Consider the following identity function
letid=\x.(z:=x; 12)
- Here z is a global variable

+ Typing of id, roughly speaking:

idia—>b

139

Global Variables

let foo = \y. ((id' y); 1z) in
foo? (refRx 0)
(Apply id toy, then return the value y via z)

O ———— y———Rx

¢ @

- Uhoh! (2 (1)2is not a valid flow path
But Rx may certainly reach d

140

Thou Shalt Not Quantify a Global Variable

+ We violated a basic rule of polymorphism
- We generalized a variable free in the environment
- Ineffect, we duplicated z at each instantiation

+ Solution: Don't do that!

141

Our Example Again

@i,)i ¢ @

+ We want anything flowing into z, on any path,
to flow out in any way

- Add a self-loop to z that consumes any mismatched
parentheses

142

Typing Rules, Fixed

* Track unquantifiable vars at generalization
Al--el:tl A ,x:(11,b)|--e2:1t2 b =fv(A)
Al--letx=eline2: 12

+ Add self-loops at instantiation
Af)= (t,b) 1= fresh(f))t
b-Jb b-ib
Al--f: f

143

Label Constants

+ Also use self-loops for label constants
- They're global everywhere

144

24

Efficiency

Constraint generation yields O(n) constraints
- Same as before

- Important for scalability

Context-free language reachability is O(n3)

- But a few tricks make it practical (not much
slowdown in analysis times)

+ For more details, see
- Rehof + Fahndrich, POPL'01

145

Example

pthread_mutex_t kit1= . k22 = ;
int xRx, yRy;
void munge(pthread_mutex_t!*

. inte *p) {
pthread_mutex_lock(l);

) o
y L1 L2
. \\@(

Sharing Inference

Adapting to Correlation

+ Previous propagation rule, but match ()'s

)i

(
ri r2 rl r2
@ @ @ @
11 12 11 12
\/ . ~_—
Unification i
of locks
146
Example: Using Context-Sensitivity
pthread_mutex_t kit1= . k22 = ;
int xRx, yRy;
void munge(pthread_mutex_t'*J, inte *p) {
pthread_mutex_lock(l);
=3 e e
pthread_mut ; m
} RXx Ry L1 L2
mungel(&k1, &x); N\(z 1//
munge?(&k2, &y): (@

148

Thread-Local Data

+ Even in multi-threaded programs, lots of data
is thread local

- No need to worry about synchronization
- A good design principle

+ We've assumed so far that everything is
shared

- Much too conservative

150

25

Sharing Inference

+ Use alias analysis to find shared locations

* Basic idea:
- Determine what locations each thread may access
+ Hm, looks like an effect system...

- Shared locations are those accessed by more than
one thread

+ Intersect effects of each thread
+ Don't forget to include the parent thread

151

Initialization

* A common pattern:
struct foo *p = malloc(...);
// initialize *p
fork(<something with p>). // p becomes shared
// parent no longer uses p

- If we compute

<effects of parent> N <effects of child>
then we'll see p in both, and decide it's shared

152

Continuation Effects

+ Continuation effects capture the effect of
the remainder of the computation
- Le., of the continuation

- So in our previous example, we would see that in
the parent's continuation after the fork, there are
no effects

+ Effects on locations
-fu=0|{r}leff|f+f

+ Empty, locations, variables, union

153

Judgments

direction of flow

Afl-e:itf

Effect of rest of program, Effect of rest of program|

including evaluation of e after evaluating e

154

Type Rules

No change from
before to after

A fl-x:t AX): f

Left-to-right order

of evaluation

A f|--el:irefrt: fl A:fl|--e2:1; f2

/{ r } «f2
(" Memory write " _A: f |--eli=e2:t;f2
happens after
el and e2

155
evaluated

Rule for Fork

A figpig |-- et 10 ff
A Flia < Foarent ¢ £\
A f |-~ forkie :int; fig ont

Child's effect

included in parent after the fork

in the parent

Label each fork

156

Include everything

26

Computing Sharing

+ Resolve effect constraints
- Same old constraint propagation
- Let S(f) = set of locations in effect f

+ Then the shared locations at forki are
- Si= S(fichild) ol S(fiparenf)

+ And all the shared locations are
- shared = u; Si

157

Including Child's Effect in Parent

+ Consider:
let x = refRxQ in
fork! (Ix);
fork? (x:=2);

+ Then if we didn't include child's effects in
parent, we wouldn't see that parallel child
threads share data

158

Race Detection, Results

void* and Aggregates

160

Error Messages are Important

Possible data race on
&bwritten(aget_comb.c:943)
References:
dereference at aget_comb.c:1079
locks acquired at dereference:
&bwritten_mutex(aget_comb.c:996)
in: FORK at aget_comb.c:468 ->
http_get aget_comb.c:468

dereference at aget_comb.c:984

locks acquired at dereference:
(none)

in: FORK at aget_comb.c:193 ->
signal_waiter(aget_comb.c:193) ->
sigalrm_handler(aget_comb.c:957)

161

Experimental Results

Benchmark Size Time Warn Unguraded Races

(kloc)
aget 16 0.8s 15 15 15
ctrace 1.8 0.9s 8 8 2
pfscan 17 0.7s 5 0 0
engine 15 12s 7 0 0
smtprc 6.1 6.0s 46 1 1
knot 17 15s 12 8 8

162

27

Experimental Results

Benchmark Size

(kloc)
plip 19.1
eql 165
3c501 17.4
sundance 199
5is900 204
slip 227
hp100 203

Time Warn Unguraded Races

249s 11 2 1
3.2s 3 0 0
240.1s 24 2 2
982s 3 1 0
610s* 8 2 1
16.5s* 19 1 0
31.8s* 23 2 0

* = disabled linearity checksies

Conclusion

+ Alias analysis is a key building block
- Lots and lots of stuff is variations on it

+ We can perform race detection on C code
- Bring out the toolkit of constraint-based analysis
- Scales somewhat, still needs improvement
- Handles idioms common to C
+ Including some things we didn't have time for

164

28

