Dynamic Software Updating:
Introduction and Foundation

Presented by

Michael Hicks
Oregon Summer School 2006

Developing for DSU

accept.c

cold.c 9
TR » Start: existing source
data.c

file.c

libhttpd.c

loop.c

main.c

maint.c

match.c

name.c

nameconvert.c

readreq.c

tdate parse.c

ngeloping for DSU

common. ¢ « Start: existing source
data.c « Modify program as needed

file.c

libhttpd.c » Compile it and test it

main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate parse.c
timer.c

Dynamic Software Updating
(DSU)

» Update a program with new
code and data
- Preserves state and processing

« Critical for non-stop systems

- Air-traffic control, financial transaction
processing, network components, ...

» Convenient for other systems
- No need to reboot your OS after a patch!

Developing for DSU

common. ¢ « Start: existing source
data.c o

e o » Modify program as needed
libhttpd.c

main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate parse.c

timer.c [::::]

Developing for DSU

common .c « Start: existing source
data.c « Modify program as needed

file.c

libhttpd.c « Compile it and test it
main.c » Develop dynamic patches

maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate parse.c
timer.c

Developing for DSU Advantages

accept.c
cold.c

P — « Start: existing source

Som » General-purpose
ata.c 1
fila.c Modify program as needed - Preserves arbitrary application state

libhttpd.c Compile it and test it between updates

,t::iz Develop dynamic patches . Load-bal.anc?ng approach reguires state
maint . externalization (e.g., DB, file system)
o Apply patches to running

name.c system » No redundant hardware
nameconvert.c —_——————————————————————

readreq.c - Application is updated in place
EERE) DS - Important for operating systems, etc.

e]
dir slave.c

The Challenges Goal

« Flexibility « Update an operating system on-the-fly
- The changes | make to the source code | - Hard! Concurrency, low-level data
want to make on-line. representation, limited resources
« Safety But compelling. No more reboots of your
- My program shouldn’t fail when I do it! operating system for security patches,
« Ease of Use new features, etc.
- No need for unusual app restructuring. * Really matters in the Enterprise; big
- Minimize per-update programmer work. administrative cost.

. : Outline
Initial Assumptions

« Programs are single-threaded What changes we support and how
» External API of the program doesn’t
change The interaction between update times and
- Or is a behavioral subtype changing the types of definitions
Formalism and proof

» Moving beyond these assumptions is Extensions

the subject of the next lecture

- Will learn much from the sequential case
to inform our approach Case studies: vsftpd, opensshd, zebra

Performance costs

Software Evolution Trends

» Observed changes in popular apps
- OpenSSH, vsftpd, Linux, Bind, Apache
» Results

- Many functions added, existing functions
change frequently, few functions deleted
- Type signatures change, generally simply
« Less often: typedefs, structs
« More often: function prototypes
« Almost never: global variables

Compilation Techniques

: compiler adds an
indirection between each caller and called
function

- Each function call will always be to the most
recent version

: compiler makes accesses to
values of named type to be through special
functions

- May run type transformers on the accessed value
if its type has been updated

Example: Type wrapping

struct T {
unsigned int version;
union { struct _ TO data;
char slop[..]; } u;
};

struct _ TO* _ con_T(struct T* abs){
__DSU_transform(abs) ;
return &abs->u.data;

Dynamic Updates: Form

» Replace, add, or delete definitions
- Functions, globals, and type definitions
- Updated functions may have different types

» To update a type definition t, user
provides a type transformer function c

- Used by the runtime to convert values of
type t to the new representation

Example

struct T { int x; int y; };
void foo(int* x) { *x = 1; }

void call() {
struct T t = {1,2};
foo(&t.x) ;

Alternative: Add Indirection

struct _ TO { int x; int y; };

struct T {

unsigned int version;

};

struct _ TO* _ con T(struct T* abs) {

__DSU_transform(abs) ;

Example: Accessing Types

void call() {
struct T t = {1,2};
foo(&t.x) ;

Example: Accessing Types

void call() {
struct T t =
{ 0, {.data={1,2}} };
foo(&(__con T(&t))->x);
}

Example: Function Indirection

void _ foo vO(int* x) { *x = 1; }

void _ call vO() {
struct T t = ...;
foo(&(__con T(&t))->x);
}

Example: Accessing Types

void call() {
struct T t =
{ 0, {.data={1,2}} };
foo (&t.x) ;

Example: Function Indirection

void foo(int* x) { *x = 1; }

void call() {
struct T t = ...;
foo(&(__con T(&t))->x);
}

Example: Function Indirection

struct _ fun { void* fptr; ..};
struct _ fun foo = { _ foo vO0,..};

void _ foo vO(int* x) { *x = 1; }

void _ call vO() {
struct T t = ...;
foo(&(__con T(&t))->x);
}

Example: Function Indirection

struct _ fun { void* fptr; ..};
struct _ fun foo = { _ foo vO0,..};

void _ foo vO(int* x) { *x =

void _ call vO() {

struct T t = ...;

(foo.fptr) (&(__con T(&t))->x);
}

Loop extraction

 Extract out loop body into function

- Argument is loop state: consists of all
locals and parameters in the host function

 Loop actions (break, continue, etc.)
become return codes handled in host

» Reuses existing updateability mechs.

» Can be used for arbitrary code S by
changing that code to be
- while (1) { S; break; }

Example: vsftpd

main() { standalone_main() {

.. init init listen sock [...

if (tunable_listen) while (1) {

standalone_main(); if (x = acceptconn(l))

k and ret
... handle conn ...).‘or (_m reurn
in child

Updating code on the stack

« Dynamic updates take effect at
function calls
- A function call is always to the most
recent version
» What about code that is on the stack?
- Long running loops
- Code that is returned to

Example: vsftpd

main() { standalone_main() {
... Init init listen sock [...
if (tunable_Llisten) while (1) {
standalone_main(); if (x = acceptconn(l))
... handle conn ... fork and return
3 in child

Notes on Mechanisms

» Compilation is not the only way to
effect changes
- Could rewrite program text to redirect
function calls
- Could overwrite data in-place, at update-
time
» But it’s simple and flexible, so we use
it for now

Problem: Bad Timing

» Updating t when some existing code
still expects the old representation
could lead to a type error.

- This situation is timing dependent.

Example: version 2

struct T { int *x; int y; };
void foo(int* x) { *x =

void call() {
int z = 1;
struct T t = {&z,2};
foo(&t.x) ;

Attempting update now
struct T { int x; int y; };

void foo(int* x) { *x = 1; }

void call() {

struct T t = {1,2};
> foo(&t.x);
}

Example

struct T { int x; int y; };
void foo(int* x) { *x = 1; }

void call() {
struct T t = {1,2};
foo(&t.x) ;

Starting execution
struct T { int x; int y; };

void foo(int* x) { *x = 1; }

void call() {
> struct T t = {1,2};
foo (&t.x) ;

Run type transformer

struct T { int *x; int y; };

void foo(int* x) { *x = 1; }

void call() {
struct T t =

> foo (&t.x);

}

Taking the address
struct T { int *x; int y; };

void foo(int* x) { *x =

void call() {

struct T t = {7
> foo();
) L

Doing the assignment: error!

struct T { ; int y; };

void foo(int* x) {>* = 1; }

void call() {
struct T t =
foo()

Possible Solution #1

» Copy and transform values whose types
have changed to the new code, leaving
the existing ones as is (Hicks 2001).

» Problem

- Old code could operate on stale data, or
call old versions of functions

- Update point must be chosen carefully

Call foo()

struct T { int *x; int y; };

void call ()
struct T t
foo()

The problem

» The new program was type correct

« But the old version of call was active
at the time of the update, and
expected the old struct T rep

- It uses it concretely

« A similar situation occurs when
changing the types of functions or
global variables

Possible Solution #2

« Allow it, but require backward type
transformers for each updated type T
(Duggan 2002) and stubs for functions
that changed type (Segal 1990)

e Problems

- May not be possible to convert a type
backwards, particularly since type
changes often add information

- Hard to reason about program behavior

« Convert forward, back, forward = ?

Possible Solution #3

« Disallow updates to active code
(Gilmore 1997, Malabarba 2000, ...)

 Problems:
- Updates less available (loops)

Example revisited

void foo (int* x) {
*x = 1;
}

void call() {
struct T t = {1,2};

foo (&t.x) ;

Example revisited

void foo (int* x) {

———— No type dependencies
|

|
/
/

void call() { ya
struct T t = {1,2};

— e

foo (&t.x)

= \

Dependence on type of

T and foo

Our Approach: Safety Analysis

o __con_T functions identify when a type
is used

» Dynamically prevent updates that
could lead to old code concretely using
a transformed value
- Calculate dependencies at compile-time

- Apply same idea to function calls, global
variable references

Example revisited

void foo(int* x) {

void call() {
struct T t

— —

foo (&t.x) ;

\ Dependence on type of

T and foo

Formalism: Proteus

» Soundness (POPL 2005)
- Type system of a simple imperative
language called Proteus
» Update points made explicit in program text
« Efficient constraint-based inference
- Well-formed and well-timed updates will
not cause the program to go wrong

» Adapted approach to updating security
policies (FCS 2005, CSFW 2006)

Proteus Typing Judgments

AT |-e:t;) A

e Aisa
- set of type names that can be accessed
concretely
» Read judgment as:

- e can be typed with capability A, and the
evaluation of e results in capability A’

Typing: App (Intuition)

» We would expect that to call a
function f, it must have an input
capability the caller must satisfy

- This is unnecessary: at update-time we
ensure that all functions are consistent
with the current type definitions
(condition shown later).

- However, Function f’s output capability
will impact the capability of the caller,
since f could perform an update.

Abstraction-violating Aliases

o Cannot transform a value when there
exists an alias into it

- Reveals its representation indirectly

 An alias into a value of type T should
prevent T’s update

Typing: Con and Update

AT -e:t; AN Tlu(t)=1
A; T |-conge:t; A

Ac A’
A; T |- update?’ : int; A’

Typing: App

A;T |-e;:1y>%1; A
AT |-e,:1; A
AT |-epe;: 1 AV N AL

Example revisited

foo (int* x) {

void call() {
struct T t = {1,2};

foo (&t.x) ;

Example revisited
void foo (int* ; x) {

*x = 1; ~—— Parameter is suspect

}

void call() {
struct T t = {1,2};

foo(&t.x) ; " Creates suspect alias

Example revisited

void foo (int* x) {

— Suspect alias active

void call() {
struct T t = {1,2};

foo (&t}.i{) — No active suspect aliases

Implementation

o Compiler
- implemented using CIL framework
« Safety analysis

- Extended to support changes to function
types and the & operator

« Patch generation tool
- Constructs default type transformers
o DLOPEN library for loading patches

Example revisited

void foo (int* x) {

— Suspect alias active

void call() {
struct T t = {1,2};

foo(&t.x) ;

Combining the Analyses

void foo (int* x) {

void call() {
struct T t = {1,2};

foo (&t.x);

Three Years of Changes

35p1
102002
550001
203 4291
0312005 0972005

_—
3 years 3 years 4 years
13 releases 11 releases 6 releases

10

Sshd Evolution History Dynamic Update Catalysts

Or: why does DSU work??

« Functions
+ 131 added, 19 deleted

« 85 proto changed q
« 752 body changed o QU]escence

« Types 2 s
i A . Functional state transformation

=19 ch d
e s . Type-safe programs

+ 70 added, 19 deleted g
-29iha§ged eee . Robust design

11 releases

Quiescence Quiescent Points Are Easy to Find

while (1) {
No in-flight transactions piepriviyssnin
Consistent global state
Shallow stack
Quiescent point — update point

update () ; «——— quiescent point

Functional State

Transformation USRI AER e

L Good news: C programmers generally
» Assumption: can convert global state adhere to type safe programming style

- New_state = f(Old_state
- (Old_) Low-level idioms hamper updateability

e No guarantees Illegal casts, inline assembly

. . Non-updateable types
- Assumption might not hold (2 out of 27 Resii: e 0 (ke

updates) e void *
- Can recover/compensate C lacks polymorphism
Usually benign

Robust Design

e Global invariants
Updates must preserve invariants
Usually implicit
Explicit invariants - assert

e Test suites

Programming Effort

Application | Type+state
changes transformers

Multi-threaded Problems

» Cannot apply an update at the first-
reached update point in some thread
- Other threads could be at arbitrary points
- How should safety analysis treat thread-

spawn?

» Lazy transformation of named-type
values may introduce data races not in

the original program

- Atomic operations compiled to non-atomic

ones

Experiments

Throughput

- Transfer rate in vsftpd, sshd: unaffected
Overhead

- Connection setup+tear in vsftpd, sshd: 0..32%
- Route setup/route redist in zebra: 4..12%
Memory footprint

- 0..40% (no old code/data unloading)

Update application time

- Less than 5 ms

Challenging Assumptions

So far, we have assumed that dynamically
updateable programs
- Are sequential, not multi-threaded

- Do not change their external (communication)
interfaces

But many long-running programs are multi-
threaded, and upgrade their communication
protocols

- Medium-term goal: robust upgrades of OSs

Basic Approach

» Require all threads to reach safe
update points (or terminate) before
applying the dynamic patch

- Updates will occur at well-defined points

» Eagerly transform named-type data
while program is paused

- No change to data representation

12

Review: the (App) rule

A;T |-e;:1y>%et,; A
AT |-e,:15 A
AT |-e et AN A,

Eager Transformation

» Need a way to “find” the data in the
program so that it can be changed

- Use the factory pattern to keep track of
typed data when it is created

- At update-time, iterate over all of the
data and transform it

Observation

» We can improve availability by only
pausing threads whose actions might
conflict with a dynamic patch

« This is a separation property
- a la separation logic

- But rather than reasoning about heap
locations, we reason about concrete uses
of named-type data or definitions

Thread-spawn rule

AT |-e, i1y o1, A
AT |-e,:1; A
A; T |- spawn e, e, : 155 A”’

» The output capability of e, does not
affect the caller’s output capability

Tradeoffs

« Fairly simple departure from
sequential approach, but

» Forces program to wait while
- All threads barrier synchronize
- All data is transformed

» Could create an unacceptable pause
- Or deadlock

Thread separation

» No need to pause any thread whose
definitions/types are disjoint with a
patch’s definitions/types

typet=r1
fun fi%8 (x:int) : int = ... (con, €) ... in
fun main() = spawn f x; update?; ...

13

ADT Separation

o ADTs’ maintain internal invariants
distinct from the rest of the program
- Abstract type & attendant functions
- Object, as in Java or C++

« Idea: permit updating an ADT while the
ADT code is inactive
- Ensures invariants are preserved

K42 Implementation

« Designed to scale to large SMP

machines

- Preemptive kernel

- Actions performed by lightweight, short-
lived threads

- Uses an object translation table to insert
a level of indirection between callers of
object methods and the objects

Interposition

| |

'
LRU

K42 Operating System

» OS components written as individual

objects in C++

- File cache manager

- Scheduler
» Permits hot-swapping individual

objects at run time

- To fix bugs

- To improve performance

Enforcing ADT separation

» Hot-swapping in K42 only occurs when
the object is inactive
- Enforced by a dynamic quiescence protocol
o Two mechanisms [Soules et al 2003]

- Interposition of a mediator object, to
shepherd the update

- Means to track when threads are accessing
a given object using thread epochs

Interposition

Object Translation Table

14

Applications of Interposition

Counters
» Timers
Logging
Debugging
- Check arguments coming in
- Modify arguments coming in
Replication

Quiescence in K42

Monitoring Code

'

Current Generation: 8

Quiescence in K42

99

I/Ic nltorlng Code

Current Generation: 9

Quiescence in K42

» Use a thread generation count
- Maintain a global generation marker
- Mark each new thread with a generation

- Keep a counter of live threads for each
active generation

o Implements a form of Read-Copy-
Update (RCU) synchronization

Quiescence in K42

27?2 99
11

| Aonitoring Code

Current Generation:

Quiescence in K42

99 91010

. i Ac nltorlng Code

Current Generation:

15

|
|

Quiescence in K42

10 10 10

Monitoring Code

Vot

Current Generation: 10

Hot-swapping

Object Translation Table

e Interpose a

Mediator .
Mediator

Hot-swapping

Object Translation Table

« Call appropriate

Mediator
state-transfer

Hot-swapping

Object Translation Table

FIFO

Hot-swapping

Object Translation Table

I

Mediator * Perform

quiescence

vt
FIFO

Hot-swapping

Object Translation Table

lobject
object

translation table

[
FIFO

16

Hot-swapping

Object Translation Table

| Forward blocked
calls to FIFO

Mediator

Adapting K42 approach

» Define an ADT as a type t and the set of
functions f,, f,, ..., f, that use t
concretely

- they contain an operation (con, e)

« A call to an ADT function logically
represents a transaction
- Object invariant satisfied on entry and exit

Common DSU structure ...

while (1) {
update;
// perform processing

3

Caveats

RCU/thread generation reduces overhead
Problems updating multiple objects
simultaneously

- Could lead to deadlock

- Possible I/0 invariants violations

Not straightforward to change method types

- Requires a “stub” to mediate old caller to new
method

Warning! What follows is half-baked ...

Updates & Transactions

Earlier, we said that dynamic updates must

occur when the program is quiescent

- K42 allows updating object o when it is quiescent
(inactive)

In our DSU system, we can think of an

update occurring at a transaction boundary

- Enforces atomicity of program versions (vs.
atomicity of heap effects)

... viewed as a transaction

while (1) {
update;

// perform processing

17

Updating Rule Nested Transactions

» An update within a transaction must + To support the finer-granularity
not change any code or data within transactions of ADTs, we are likely to
that transaction have nesting
- In our example, the update point was - But the prior rule would have outer

' . ’ transactions subsume inner ones

defined outside the transaction boundary, X .

e » Rule amendment: outer transactions
P s y do not restrict updates to code within

nested transactions

- Modulo restrictions to ensure type safety

- When might updates inside be sensible?

Synchronizing Updates Synchronizing Updates

« Strategy 1: optimism and rollback « Strategy 2: roll-forward and block
- When an update is available, abort the the - Conflicting threads proceed until ok
transaction(s) in each thread until the update

rule is satisfied - Nonconflicting threads proceed until they
« Benefit: updates take place very quickly are about to conflict, and then bloFk.
« Drawbacks: overhead to support undo; may - Update when all threads non-conflicting
not be able to undo side-effects (1/0) » Benefit: no need to support rollback,
no worry about undoing effects

« Drawback: longer to converge

Detecting conflicts Adding Flow Sensitivity

o Cannot wait until a transaction While the whole of a transaction may
completes to know whether it might conflict with an update, it may be
conflict - The part of the transaction that conflicts has

X already completed
. OtherW].Se would have to roll back the - The part of the transaction that will conflict has
update itself

not yet taken place
« Instead: use static analysis « In both cases, we can perform the update
- Soundly approximate all of those safely right away
functions, types, etc. that could be - The former simulates no-op roll-forward
accessed during the transaction - The latter simulates no-op rollback

Updating Model

« The prior discussion has assumed that updates
always “march forward”
- The old program transitions to the new program (almost)
immediately
- Challenge is to reduce pauses by being fine-grained about
where/when updates can take place

« What if we need pieces of the program to have
different versions?

- E.g., in a distributed system, different nodes under
different administrative control

Modeling Distributed Updates

» Each node has a single object
- Simple, but good for abstract thinking

» Each message sent to a node is an RPC
» Objects have versions

» Messages to nodes include the sender’s
expected version

Implementing Simulation

» Messages whose version is not the
current version N handled by
simulation objects

- Past SO: one for each version L < N
- Future SO: one for each version F > N

» Typically implemented by delegation

to the current object

Updating Distributed Systems
[Ajmani et al 2006]

» Upgrade the entire system in a
decentralized way
- No synchronization required

« Implication: different nodes might be
running different versions of the
software

¢ Question: how do we reason about this
situation to ensure it’s OK?

Simulation

» Each node/object has a “current version”
but may simulate the other versions

» An upgrade from T 4 to T,., Yields an object
with a compound type T, 4anew
- contains the state of both objects
- has the methods of both types

Multi-version Nodes

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

19

Specifying Upgrades

« Consists of 3 parts: an invariant |

- 1(Og1qsOnew) Where Oy 42 Tyg and O, T Must
hold on method entry and exit

» Mapping function MF: T,y = Te
- Defines the initial state of the current object
after an upgrade

- 1(Og4,MF(O44)) must hold
+ Shadow methods

- Describes the effects of mutators for T 4 on the
state of O,,, and vice versa

Example: Invariants

Replace O, : ColorSet, a set of colored
integers, with O,.,,: FlavorSet, a set of
flavored integers

Invariant: sets contain the same integers
- {X | <X,C> Fould}z{x | <X)f> € onew}
Stronger: relate colors/flavors

- <x,blue> ¢ O,y & <x,grape> < O,

- <x,red> € O,y & <x,cherry> < O,
Weaker: subsets of integers

- {x | <x,c>e0uq3c{x| <xf>c O}

Satisfying Invariants

» Some invariants hard to satisfy

- When T 4anew iS N0t a behavioral subtype
of both T, 4 and T,
- Example: upgrade a GrowSet (no deletes
allowed) with IntSet
e Invariant: X € Oy 4y & X € Opeyy

« What is the effect on O,y by executing
T ew-delete? l.e., how to define shadow
method T, Sdelete?

Shadow Methods

¢ T,o.SM explains the effect on O,
from running T 4.m
- Vice versa for T,4Sp
» Requirements
. prem(oold) and I(ooldronew) = presm(onew)
. I(Oold’onew) = I(Oold'm(args):onewsm(args))
- (and vice versa)
- Given MF requirement, can prove that the
invariant holds throughout simulation

Example: MF and Shadows

«0 = MF(oold) = { <X,grape> | X e Oold }

new

« void ColorSet.SinsertFlavor(x,f)
- (=3<x,¢> e this,.) =
thisyes = this, . w {<x,blue>}
« void ColorSet.SdeleteFlavor(x)
- thisp,g = this, - {<x,c>}

Disallowing Calls

* RPCs can fail. Take advantage of that by causing
calls that would violate the invariant to fail
- After an upgrade from GrowSet to Intset, which methods
to disallow?
« Not delete; that was presumably part of the point of
upgrading!
« Disallow GrowSet.isIn, since this would reveal the presence of
the delete method
« Weakening the invariant can reduce the need to
disallow calls
- Invariant’: x € O,y = X € Oyy

20

Multiple Upgrades

 Can be tricky since they may require
additional shadow methods
- Shadows of shadows!
» Some ways to avoid this
- Force upgrades to finish before the next
may be applied
- Force upgrades to be behavioral subtypes
« Typical in practice

Single-Node Upgrades

« This reasoning framework is abstract
enough to apply to single-node
upgrades

- Allow multiple versions of an object to
coexist in a program

- But no way for calls to fail (in general):
requires behavioral subtyping to use

» Can make upgrades more available
since no sync required

Summary

« If updates “march forward” we can use
transactions to offer more update
points
- A transaction must execute the same

version of the code throughout
- Implement transactions via static analysis
and “roll forward.”
» Might be flow-sensitive

Implementation

 Prototype infrastructure called Upstart

- Several implementation analogues to the
specification described before

- Supports ways to coordinate upgrades across the
system

» Used to upgrade one real application

- Implemented “Null upgrade” of Dhash on
PlanetLab.

- Demonstrated that the process was low
overhead, but did not exercise SOs

Summary

o Multi-threaded and distributed
programs are harder to make safe
because

- A naive approach that would synchronize
all threads could be too slow or introduce
deadlock

Summary

» Can allow multiple object versions to
coexist to be even more available
- But must reason that interactions make

sense. May require restricting some
functionality.

21

Related Work

» Dynamic Software Updating
- K42 @ IBM
- Erlang @ Ericsson
- Various others
« Safety analysis
- Gupta (TSE "96)
- Duggan (Acta Inf. "02)
- Boyapati et al. (OOPSLA "03)
- CL (POPL "99)

For More Information

» Papers
- POPL 2005 paper on analysis
« FCS 2005 paper on application to security
- PLDI 2006 paper for implementation and
experience with C

o Compiler and tools available

Other Work

« Live Updating of Operating Systems
using Virtual Machines (VEE 2006)
- Uses VM to sync whole system
- Almost no notion of safety

« OPUS: updating multi-threaded
programs (simply) to fix security bugs
- Only applies to code

22

