Summer School on
Language-Based Techniques for
Concurrent and Distributed Software

Introduction

Dan Grossman
University of Washington
12 July 2006

Welcome!

1st of 32 lectures (4/day * 10 days =32 ©)
— As an introduction, different than most

» A few minutes on the school, you, etc.

» A few minutes on why language-based concurrency
» Some lambda-calculus and naive concurrency

* Rough overview of what the school will cover

| get 2 lectures next week on software transactions
— Some of my research

12 July 2006 Dan Grossman, 2006 Summer School

©

A simple plan

* 11 speakers from 9 institutions
« “36” of you (28 PhD students, 5 faculty, 3 industry)
» Lectures at a PhD-course level
— More tutorial/class than seminar or conference
— Less homework and cohesion than a course
— Not everything will fit everyone perfectly
« Early stuff more theoretical
+ Advice

— Make the most of your time surrounded by great
students and speakers

— Be inquisitive and diligent
— Have fun

12 July 2006 Dan Grossman, 2006 Summer School 3

Thanks!

» Jim: none of us would be here without him
» Jeff: the co-organizer
» Steering committee
— Zena Ariola, David Walker, Steve Zdancewic
* Sponsors
— Intel
— National Science Foundation
— Google
— ACM SIGPLAN
— Microsoft

12 July 2006 Dan Grossman, 2006 Summer School 4

Why concurrency

PL summer school not new; concurrency focus is

1. Concurrency/distributed programming now mainstream
* Multicore
* Internet
» Not just scientific computing

2. And it’s really hard (much harder than sequential)

3. There is a lot of research (could be here 10 months)

4. Akey role for PL to play...

12 July 2006 Dan Grossman, 2006 Summer School 5

Why PL

“what does it mean for computations to happen at the
same time and/or in multiple locations”

“how can we best describe and reason about such
computations”

Biased opinion: Those are PL questions and PL has the
best intellectual tools to answer them

» “Learn concurrency in O/S class” a historical accident
that will change soon

12 July 2006 Dan Grossman, 2006 Summer School 6

Why do people do it

If concurrent/distributed programming is so difficult,
why do it?

« Performance

(exploit more resources; reduce data movement)
» Natural code structure

(independent communicating tasks)
+ Failure isolation (task termination)
» Heterogeneous trust (no central authority)

It’s not just “parallel speedup”

12 July 2006 Dan Grossman, 2006 Summer School 7

Outline

1. Lambda-calculus / operational semantics tutorial

2. Naively add threads and mutable shared-memory

3. Overview of the much cooler stuff we'll learn

“Starting with sequential” is only one approach

Remember this is just a tutorial/overview lecture
» No research results in the next hour

Lambda-calculus in n minutes

» To decide “what concurrency means” we must start
somewhere

» One popular sequential place: a lambda-calculus

» Can define:
— Syntax (abstract)
— Semantics (operational, small-step, call-by-value)
— A type system (filter out “bad” programs)

12 July 2006 Dan Grossman, 2006 Summer School 9

12 July 2006 Dan Grossman, 2006 Summer School 8

Syntax

Syntax of an untyped lambda-calculus
Expressions:ie ::= x |Ax. e |e e |c | e+e
“Constants: ¢ ::= .. | -1] 0| 1| .”
“Variables: x ::=x | y | x1 | y1| ..”
Values: v ::=Ax.e | ¢

Defines a set of trees (ASTs)

Conventions for writing these trees as strings:

* Ax. el e2 is Ax. (el e2), not (Ax. el) e2
*« ele2el3is (e1e2)e3, notet (e2e3)

» Use parentheses to disambiguate or clarify

12 July 2006 Dan Grossman, 2006 Summer School 10

Semantics

« One computation step rewrites the program to
something “closer to the answer”

e—e¢
« Inference rules describe what steps are allowed

el — et’ e2 — e2’

ele2— el’e2 ve2 - ve2’ (Ax.e) v — e{v/x}

el — et’ e2— e2’ “c1+c2=c3”

ef+e2 — el’te2 v+e2 — v+e2’ c1+c2 — c3

12 July 2006 Dan Grossman, 2006 Summer School 11

Notes

* These are rule schemas

— Instantiate by replacing metavariables consistently
» A derivation tree justifies a step

— A proof: “read from leaves to root”

— An interpreter: “read from root to leaves”
» Proper definition of substitution requires care
» Program evaluation is then a sequence of steps

e0 »el—-e2— ...

» Evaluation can “stop” with a value (e.g., 17) or a
“stuck state” (e.g., 17 Ax. x)

12 July 2006 Dan Grossman, 2006 Summer School 12

More notes

| chose left-to-right call-by-value
— Easy to change by changing/adding rules

+ | chose to keep evaluation-sequence deterministic
— Also easy to change; inherent to concurrency

* | chose small-step operational
— Could spend a year on other semantics

» This language is Turing-complete (even without
constants and addition)

— Therefore, infinite state-sequences exist

12 July 2006 Dan Grossman, 2006 Summer School 13

Types

A 2nd judgment |-e1 11 gives types to expressions
— No derivation tree means “does not type-check”
— Use a context to give types to variables in scope

“Simply typed lambda calculus” a starting point
Types: T ::=int | 1o
Contexts: I ::= . | INx:t

r I-el:int r |-e2:int

rl-c : int rl-e1+e2:int rl-x:
I (x)
Fx: tl | e:t2 lhel:ti—»12 T fe2:11
Chixeriviog2 [Fel e2:t2 .

Outline

1. Lambda-calculus / operational semantics tutorial
2. Naively add threads and mutable shared-memory
3. Overview of the much cooler stuff we'll learn
“Starting with sequential” is only one approach

Remember this is just a tutorial/overview lecture
* No research results in the next hour

Adding concurrency

« Change our syntax/semantics so:
— A program-state is n threads (top-level expressions)
— Any one might “run next”
— Expressions can fork (a.k.a. spawn) new threads

Expressions: e ::= .. | fork e
States: P ::= . | eP
Exp options: 0 ::= None | Some e

Changee — e’toe — e’,0
Add P — P’

12 July 2006 Dan Grossman, 2006 Summer School 16

12 July 2006 Dan Grossman, 2006 Summer School 15
Semantics
el — el’ o e2— e2’, 0

ele2— el’e2,0 ve2— ve2’,0 (M.e)v— e{v/x}, None

el— el’, 0 e2— e2’, o “c1+c2=c3”

el+e2 —» el’+e2, 0 v+e2 — v+e2’, 0 c1+c2 — ¢3, None

fork e— 42, Some e

ei — ei’, None ei — ei’, Some e0

et;..;ei;...;en;. — efl;..;ei’;...;en;. el;..ei..en;. — e0;el;.. ei’;..;en,.

12 July 2006 Dan Grossman, 2006 Summer School 17

Notes

In this simple model:
» At each step, exactly one thread runs
» “Time-slice” duration is “one small-step”
» Thread-scheduling is non-deterministic
— So the operational semantics is too?
* Threads run “on the same machine”
* A“good final state” is some v1;...;vn;.
— Alternately, could “remove done threads”:

el;...;ei; v; g ...;en;. — el;...;ei; gj; ...;en;.

12 July 2006 Dan Grossman, 2006 Summer School 18

Not enough

« These threads are really uninteresting; they can’t
communicate

— One thread’s steps can'’t affect another

— All final states have the same values
* One way: mutable shared memory

— Many other communication mechanisms to come!
* Need:

— Expressions to create, access, modify mutable
locations

— A map from mutable locations to values in our
program state

12 July 2006 Dan Grossman, 2006 Summer School 19

Changes to old stuff

Expressions: e ::= ..| ref e|el:=e2| 'e| 1
Values: v o= .| 1

Heaps: H ::= | H,1-v

Thread pools: P : := | e;P

States: H,P

Change e — e’,oto He — H’,e’,0
Change P — P’ to H,P — H’,P’
Change rules to modify heap (or not). 2 examples:

H,e1— Het’, o “c1+c2=c3”

Het1e2— H’,et1’e2 o H, ¢1+c2 — H, ¢3, None

12 July 2006 Dan Grossman, 2006 Summer School 20

New rules

1notinH

H,retv—H,1-v,1,None H,'1-H,H(1)None

H,1:=v—H,1-v, 42, None

He— He’ o He— He’ o

H1'e—-H 1¢e’ 0 H, refe —» H’ ref e’ o

He— He’ o He— H'e’ o

He1:=e2—->H’,e1’:=e20 Hyv:=e2—-H' v:=e2,0

12 July 2006 Dan Grossman, 2006 Summer School 21

Now we can do stuff

We could now write “interesting examples” like

» Fork 10 threads, each to do a different computation
* Have each add its answer to an accumulator 1

* When all threads finish, 1 is the answer

Problems:

1. If this is not the whole program, how do you know
when all 10 threads are done?

* Solution: have them increment another counter

Races

1 :=11+ 35

An interleaving that produces the wrong answer:

Thread 1 reads 1

Thread 2 reads 1

Thread 1 writes 1

Thread 2 writes 1 — “forgets” thread 1’s addition
Communicating threads must synchronize
Languages provide synchronization mechanisms,
e.g., locks...

12 July 2006 Dan Grossman, 2006 Summer School 23

2. Ifeachdoes1l := '1 + e,there areraces...
12 July 2006 Dan Grossman, 2006 Summer School 22
Locks

Two new expression forms:
* acquire e
if e is a location holding 0, make it hold 1
(else block: no rule applies; thread temporarily stuck)
(test-and-set is atomic)
* release e
same as e := 0; added for symmetry
Adding formal inference rules: “exercise”
Using this for our example: “exercise”
Adding condition variables: “more involved exercise”

12 July 2006 Dan Grossman, 2006 Summer School 24

Locks are hard

Locks can avoid races when properly used
+ Butit's up to the programmer

* And “application-level races” may involve multiple
locations

— Example: “11 > Oonlyif12 = 17"

Locks can lead to deadlock
Trivial example:

Summary

We added

1. Concurrency via fork and non-deterministic
scheduling

2. Communication via mutable shared memory
3. Synchronization via locking
There are better models; this was almost a “straw man”

Even simple concurrent programs are hard to get right
— Races and deadlocks common

And this model is much simpler than reality
— Distributed computing; relaxed memory models

12 July 2006 Dan Grossman, 2006 Summer School 26

acquire 11 acquire 12

acquire 12 acquire 11

release 12 release |1

release 11 release 12
12 July 2006 Dan Grossman, 2006 Summer School 25
Outline

1. Lambda-calculus / operational semantics tutorial
2. Naively add threads and mutable shared-memory
3. Overview of the much cooler stuff we'll learn
“Starting with sequential” is only one approach

Remember this is just a tutorial/overview lecture
* No research results in the next hour

12 July 2006 Dan Grossman, 2006 Summer School 27

Some of what you will see

Richer foundations (theoretical models)
Dealing with more complicated realities

Other communication/synchronization primitives

Rl

Techniques for improving lock-based programming

[This is not in the order we will see it]

12 July 2006 Dan Grossman, 2006 Summer School 28

Foundations

* Process-calculi [Sewell]
— Inherently parallel (rather than an add-on)
— Communication over channels

* Modal logic [Harper]
— Non-uniform resources
— Types for distributed computation

« Provably efficient job scheduling [Leiserson/Kuszmaul]
— Optimal algorithms for load-balancing

12 July 2006 Dan Grossman, 2006 Summer School 29

Realities

« Distributed programming [Sewell] [Harper]
— Long latency, lost messages, version mismatch, ...

* Relaxed memory models [Dwarkadas]
— Hardware does not give globally consistent memory

» Dynamic software updating [Hicks]
— Cannot assume fixed code during execution

* Termination [Flatt]
— Threads may be killed at inopportune moments

12 July 2006 Dan Grossman, 2006 Summer School 30

Ways to synchronize, communicate

» Fork-join [Leiserson/Kuszmaul]
— Block until another computation completes

+ Futures [Hicks]
— Asynchronous calls (less structured fork/join)

* Message-passing a la Concurrent ML [Flatt]

— First-class synchronization events to build up
communication protocols

« Software transactions, a.k.a. atomicity...

12 July 2006 Dan Grossman, 2006 Summer School 31

Atomicity

An easier-to-use and harder-to-implement
synchronization primitive:
atomic { s }
Must execute s as though no interleaving, but still
ensure fairness.

» Language design & software-implementation issues
[Grossman]
* Low-level software & hardware support [Dwarkadas]

» As a checked/inferred annotation for lock-based code
[Flanagan]

12 July 2006 Dan Grossman, 2006 Summer School 32

Analyzing lock-based code

« Type systems for data-race and atomicity detection
[Flanagan]

— Static & dynamic enforcement of locking protocols

« Analysis for multithreaded C code; “what locks what”
[Foster]

— Application to systems code; incorporating alias
analysis

« Model-checking concurrent software [Qadeer]
— Systematic state-space exploration

12 July 2006 Dan Grossman, 2006 Summer School 33

Some of what you will see

Richer foundations (theoretical models)
Dealing with more complicated realities

Other communication/synchronization primitives

Rl

Techniques for improving lock-based programming
[This is not in the order we will see it]

Thanks in advance for a great summer school!

12 July 2006 Dan Grossman, 2006 Summer School 34

