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Welcome!

1st of 32 lectures (4/day * 10 days =32 ©)
— As an introduction, different than most

» A few minutes on the school, you, etc.

» A few minutes on why language-based concurrency
» Some lambda-calculus and naive concurrency

* Rough overview of what the school will cover

| get 2 lectures next week on software transactions
— Some of my research
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©

A simple plan

* 11 speakers from 9 institutions
« “36” of you (28 PhD students, 5 faculty, 3 industry)
» Lectures at a PhD-course level
— More tutorial/class than seminar or conference
— Less homework and cohesion than a course
— Not everything will fit everyone perfectly
« Early stuff more theoretical
+ Advice

— Make the most of your time surrounded by great
students and speakers

— Be inquisitive and diligent
— Have fun
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Thanks!

» Jim: none of us would be here without him
» Jeff: the co-organizer
» Steering committee
— Zena Ariola, David Walker, Steve Zdancewic
* Sponsors
— Intel
— National Science Foundation
— Google
— ACM SIGPLAN
— Microsoft
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Why concurrency

PL summer school not new; concurrency focus is

1. Concurrency/distributed programming now mainstream
*  Multicore
* Internet
» Not just scientific computing

2. And it’s really hard (much harder than sequential)

3. There is a lot of research (could be here 10 months)

4. Akey role for PL to play...
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Why PL

“what does it mean for computations to happen at the
same time and/or in multiple locations”

“how can we best describe and reason about such
computations”

Biased opinion: Those are PL questions and PL has the
best intellectual tools to answer them

» “Learn concurrency in O/S class” a historical accident
that will change soon
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Why do people do it

If concurrent/distributed programming is so difficult,
why do it?

« Performance

(exploit more resources; reduce data movement)
» Natural code structure

(independent communicating tasks)
+ Failure isolation (task termination)
» Heterogeneous trust (no central authority)

It’s not just “parallel speedup”
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Outline

1. Lambda-calculus / operational semantics tutorial

2. Naively add threads and mutable shared-memory

3. Overview of the much cooler stuff we'll learn

“Starting with sequential” is only one approach

Remember this is just a tutorial/overview lecture
» No research results in the next hour

Lambda-calculus in n minutes

» To decide “what concurrency means” we must start
somewhere

» One popular sequential place: a lambda-calculus

» Can define:
— Syntax (abstract)
— Semantics (operational, small-step, call-by-value)
— A type system (filter out “bad” programs)
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Syntax

Syntax of an untyped lambda-calculus
Expressions:ie ::= x |Ax. e |e e |c | e+e
“Constants: ¢ ::= .. | -1 ] 0| 1| .”
“Variables: x ::=x | y | x1 | y1| ..”
Values: v ::=Ax.e | ¢

Defines a set of trees (ASTs)

Conventions for writing these trees as strings:

* Ax. el e2 is Ax. (el e2), not (Ax. el) e2
*« ele2el3is (e1e2)e3, notet (e2e3)

» Use parentheses to disambiguate or clarify
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Semantics

« One computation step rewrites the program to
something “closer to the answer”

e—e¢
« Inference rules describe what steps are allowed

el — et’ e2 — e2’

ele2— el’e2 ve2 - ve2’ (Ax.e) v — e{v/x}

el — et’ e2— e2’ “c1+c2=c3”

ef+e2 — el’te2 v+e2 — v+e2’ c1+c2 — c3
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Notes

* These are rule schemas

— Instantiate by replacing metavariables consistently
» A derivation tree justifies a step

— A proof: “read from leaves to root”

— An interpreter: “read from root to leaves”
» Proper definition of substitution requires care
» Program evaluation is then a sequence of steps

e0 »el—-e2— ...

» Evaluation can “stop” with a value (e.g., 17) or a
“stuck state” (e.g., 17 Ax. x)
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More notes

| chose left-to-right call-by-value
— Easy to change by changing/adding rules

+ | chose to keep evaluation-sequence deterministic
— Also easy to change; inherent to concurrency

* | chose small-step operational
— Could spend a year on other semantics

» This language is Turing-complete (even without
constants and addition)

— Therefore, infinite state-sequences exist
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Types

A 2nd judgment |-e1 11 gives types to expressions
— No derivation tree means “does not type-check”
— Use a context to give types to variables in scope

“Simply typed lambda calculus” a starting point
Types: T ::=int | 1o
Contexts: I ::= . | INx:t

r I-el:int r |-e2:int

rl-c : int rl-e1+e2:int rl-x:
I (x)
Fx: tl | e:t2 lhel:ti—»12 T fe2:11
Chixeriviog2 [ Fel e2:t2 .

Outline

1. Lambda-calculus / operational semantics tutorial
2. Naively add threads and mutable shared-memory
3. Overview of the much cooler stuff we'll learn
“Starting with sequential” is only one approach

Remember this is just a tutorial/overview lecture
* No research results in the next hour

Adding concurrency

« Change our syntax/semantics so:
— A program-state is n threads (top-level expressions)
— Any one might “run next”
— Expressions can fork (a.k.a. spawn) new threads

Expressions: e ::= .. | fork e
States: P ::= . | eP
Exp options: 0 ::= None | Some e

Changee — e’toe — e’,0
Add P — P’
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Semantics
el — el’ o e2— e2’, 0

ele2— el’e2,0 ve2— ve2’,0 (M.e)v— e{v/x}, None

el— el’, 0 e2— e2’, o “c1+c2=c3”

el+e2 —» el’+e2, 0 v+e2 — v+e2’, 0 c1+c2 — ¢3, None

fork e— 42, Some e

ei — ei’, None ei — ei’, Some e0

et;..;ei;...;en;. — efl;..;ei’;...;en;. el;..ei..en;. — e0;el;.. ei’;..;en,.
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Notes

In this simple model:
» At each step, exactly one thread runs
» “Time-slice” duration is “one small-step”
» Thread-scheduling is non-deterministic
— So the operational semantics is too?
* Threads run “on the same machine”
* A“good final state” is some v1;...;vn;.
— Alternately, could “remove done threads”:

el;...;ei; v; g ...;en;. — el;...;ei; gj; ...;en;.
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Not enough

« These threads are really uninteresting; they can’t
communicate

— One thread’s steps can'’t affect another

— All final states have the same values
* One way: mutable shared memory

— Many other communication mechanisms to come!
* Need:

— Expressions to create, access, modify mutable
locations

— A map from mutable locations to values in our
program state
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Changes to old stuff

Expressions: e ::= ..| ref e|el:=e2| 'e| 1
Values: v o= .| 1

Heaps: H ::= | H,1-v

Thread pools: P : := | e;P

States: H,P

Change e — e’,oto He — H’,e’,0
Change P — P’ to H,P — H’,P’
Change rules to modify heap (or not). 2 examples:

H,e1— Het’, o “c1+c2=c3”

Het1e2— H’,et1’e2 o H, ¢1+c2 — H, ¢3, None
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New rules

1notinH

H,retv—H,1-v,1,None H,'1-H,H(1)None

H,1:=v—H,1-v, 42, None

He— He’ o He— He’ o

H1'e—-H 1¢e’ 0 H, refe —» H’ ref e’ o

He— He’ o He— H'e’ o

He1:=e2—->H’,e1’:=e20 Hyv:=e2—-H' v:=e2,0
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Now we can do stuff

We could now write “interesting examples” like

» Fork 10 threads, each to do a different computation
* Have each add its answer to an accumulator 1

*  When all threads finish, 1 is the answer

Problems:

1. If this is not the whole program, how do you know
when all 10 threads are done?

* Solution: have them increment another counter

Races

1 :=11+ 35

An interleaving that produces the wrong answer:

Thread 1 reads 1

Thread 2 reads 1

Thread 1 writes 1

Thread 2 writes 1 — “forgets” thread 1’s addition
Communicating threads must synchronize
Languages provide synchronization mechanisms,
e.g., locks...
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2. Ifeachdoes1l := '1 + e,there areraces...
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Locks

Two new expression forms:
* acquire e
if e is a location holding 0, make it hold 1
(else block: no rule applies; thread temporarily stuck)
(test-and-set is atomic)
* release e
same as e := 0; added for symmetry
Adding formal inference rules: “exercise”
Using this for our example: “exercise”
Adding condition variables: “more involved exercise”
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Locks are hard

Locks can avoid races when properly used
+ Butit's up to the programmer

* And “application-level races” may involve multiple
locations

— Example: “11 > Oonlyif12 = 17"

Locks can lead to deadlock
Trivial example:

Summary

We added

1. Concurrency via fork and non-deterministic
scheduling

2. Communication via mutable shared memory
3. Synchronization via locking
There are better models; this was almost a “straw man”

Even simple concurrent programs are hard to get right
— Races and deadlocks common

And this model is much simpler than reality
— Distributed computing; relaxed memory models
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acquire 11 acquire 12

acquire 12 acquire 11

release 12 release |1

release 11 release 12
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Outline

1. Lambda-calculus / operational semantics tutorial
2. Naively add threads and mutable shared-memory
3. Overview of the much cooler stuff we'll learn
“Starting with sequential” is only one approach

Remember this is just a tutorial/overview lecture
* No research results in the next hour
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Some of what you will see

Richer foundations (theoretical models)
Dealing with more complicated realities

Other communication/synchronization primitives

Rl

Techniques for improving lock-based programming

[This is not in the order we will see it]
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Foundations

* Process-calculi [Sewell]
— Inherently parallel (rather than an add-on)
— Communication over channels

* Modal logic [Harper]
— Non-uniform resources
— Types for distributed computation

« Provably efficient job scheduling [Leiserson/Kuszmaul]
— Optimal algorithms for load-balancing
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Realities

« Distributed programming [Sewell] [Harper]
— Long latency, lost messages, version mismatch, ...

* Relaxed memory models [Dwarkadas]
— Hardware does not give globally consistent memory

» Dynamic software updating [Hicks]
— Cannot assume fixed code during execution

* Termination [Flatt]
— Threads may be killed at inopportune moments
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Ways to synchronize, communicate

» Fork-join [Leiserson/Kuszmaul]
— Block until another computation completes

+ Futures [Hicks]
— Asynchronous calls (less structured fork/join)

* Message-passing a la Concurrent ML [Flatt]

— First-class synchronization events to build up
communication protocols

« Software transactions, a.k.a. atomicity...
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Atomicity

An easier-to-use and harder-to-implement
synchronization primitive:
atomic { s }
Must execute s as though no interleaving, but still
ensure fairness.

» Language design & software-implementation issues
[Grossman]
* Low-level software & hardware support [Dwarkadas]

» As a checked/inferred annotation for lock-based code
[Flanagan]
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Analyzing lock-based code

« Type systems for data-race and atomicity detection
[Flanagan]

— Static & dynamic enforcement of locking protocols

« Analysis for multithreaded C code; “what locks what”
[Foster]

— Application to systems code; incorporating alias
analysis

« Model-checking concurrent software [Qadeer]
— Systematic state-space exploration
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Some of what you will see

Richer foundations (theoretical models)
Dealing with more complicated realities

Other communication/synchronization primitives

Rl

Techniques for improving lock-based programming
[This is not in the order we will see it]

Thanks in advance for a great summer school!
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