Summer School on
Language-Based Techniques for
Concurrent and Distributed Software

Software Transactions: Software
Implementations

Dan Grossman
University of Washington
18 July 2006

Atomic

An easier-to-use and harder-to-implement primitive

withLk: atomic:
lock->(unit->a) ->a (unit->a) ->a
let xfer src dst x = let xfer src dst x =

withLk src.lk (fun()-> atomic (fun()->

withLk dst.lk (fun()-> src.bal <- src.bal-x;
src.bal <- src.bal-x; dst.bal <- dst.bal+x
dst.bal <- dst.bal+x)

))

lock acquire/release (behave as if)
no interleaved computation

18 July 2006 Dan Grossman, 2006 Summer School 2

Implementation issues

* How to start, commit, and abort a transaction
* How to do a read/write in a transaction
» How to do a read/write outside a transaction
» How to detect and/or avoid conflicts
— How optimistically (go now, maybe abort later)
» What granularity to use for conflicts
* What about “really long” transactions?

Will mostly skim over important details:
* Obstruction-free?
« Support for strong atomicity?

18 July 2006 Dan Grossman, 2006 Summer School

Our plan

» Atomicity on a uniprocessor (AtomCaml)

» Sketch seminal language work: Harris/Fraser's WSTM
— Optimistic reads and writes
— More recent RSTM is faster (Dwarkadas lecture 3)

» Sketch more recent approaches: PLDI0O6
— Optimistic reads, pessimistic writes

» Optimizations to avoid read/write overhead
— Particularly strong atomicity

18 July 2006 Dan Grossman, 2006 Summer School 4

Interleaved execution

The “uniprocessor” assumption:
Threads communicating via shared memory don't
execute in “true parallel”
Important special case:
* Many language implementations assume it
(e.g., OCaml)
* Many concurrent apps don’t need a multiprocessor
(e.g., a document editor)
* Uniprocessors are dead? Where’s the funeral?
« The O/S may give an app one core (for a while)

18 July 2006 Dan Grossman, 2006 Summer School

Implementing atomic

Key pieces:
» Execution of an atomic block logs writes

* If scheduler pre-empts a thread in atomic, rollback
the thread

» Duplicate code so non-atomic code is not slowed by
logging

* Smooth interaction with GC

18 July 2006 Dan Grossman, 2006 Summer School 6

Logging example

let x : ref 0 » Executing atomic block

1 f

ety = ref 0 in b builds a LIFO log of
let £() = 1d val .

let z = old values:

'ref((!y)+1)

in y:0f—z:? f—jx:0[—y:2]

x =z
let g() = Rollback on pre-emption:
y = (!x)+1 + Pop log, doing assignments
let h() = » Set program counter and
atomic (fun() -> stack to beginning of atomic
¥()= ’ On exit from atomic: drop log
g())
18 July 2006 Dan Grossman, 2006 Summer School 7

Logging efficiency

y:0f—jz:?[—ix: 0 —y:2]

Keeping the log small:

» Don't log reads (key uniprocessor optimization)

» Need not log memory allocated after atomic entered
— Particularly initialization writes

» Need not log an address more than once

— To keep logging fast, switch from array to
hashtable after “many” (50) log entries

18 July 2006 Dan Grossman, 2006 Summer School 8

Duplicating code

let x = ref 0 .
It 57 = = @ Duplicate code so callees know
let £() = to log or not:
let z = » For each function £, compile
_;ief((ly)+1) £ atomic and £ normal
i _ !

x := lz; « Atomic blocks and atomic
let g() = functions call atomic functions
y = (!'x)+1 = Function pointers compile to

let h() = pair of code pointers
atomic (fun()->
y = 2;
£();
g())
18 July 2006 Dan Grossman, 2006 Summer School 9

Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OCamil:
add 3, push, ..
|header |code ptr |free variables..
18 July 2006 Dan Grossman, 2006 Summer School 10

Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

AtomCaml: bigger closures

add 3, push, .. E O, an
o s

header [code ptrl]code ptr2 [free variables..

Note: atomic is first-class, so it is one of these too!

18 July 2006 Dan Grossman, 2006 Summer School 11

Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

AtomCaml alternative: slower calls in atomic

add 3, push, ..
code ptr2

[header |code ptril [free variables.. |

e

Note: Same overhead as OO dynamic dispatch

18 July 2006 Dan Grossman, 2006 Summer School 12

Interaction with GC

What if GC occurs mid-transaction?
» Pointers in log are roots (in case of rollback)
» Moving objects is fine
— Rollback produces equivalent state
— Naive hardware solutions may log/rollback GC!

What about rolling back the allocator?

« Don't bother: after rollback, objects allocated in
transaction are unreachable!

+ Naive hardware solutions may log/rollback
initialization writes

18 July 2006 Dan Grossman, 2006 Summer School

Qualitative evaluation

Strong atomicity for Caml at little cost
— Already assumes a uniprocessor

* Mutable data overhead

» Choice: larger closures or slower calls in transactions
» Code bloat (worst-case 2x, easy to do better)
» Rare rollback

18 July 2006 Dan Grossman, 2006 Summer School 14

Performance

Cost of synchronization is all in the noise

* Microbenchmark: short atomic block 2x slower than
same block with lock-acquire/release

— Longer atomic blocks = less slowdown

— Programs don’t spend all time in critical sections
» PLANet: 10% faster to 7% slower (noisy)

— Closure representation mattered for only 1 test
« Sequential code (e.g., compiler)

— 2% slower when using bigger closures

See paper for (boring) tables

18 July 2006 Dan Grossman, 2006 Summer School

Our plan

» Atomicity on a uniprocessor (AtomCaml)

» Sketch seminal language work: Harris/Fraser's WSTM
— Optimistic reads and writes
— More recent RSTM is faster (Dwarkadas lecture 3)

» Sketch more recent approaches: PLDI0O6
— Optimistic reads, pessemistic writes

» Optimizations to avoid read/write overhead
— Particularly strong atomicity

18 July 2006 Dan Grossman, 2006 Summer School 16

The Set-Up

Caveats:
« Some simplifications (lies & omissions)
* Weak atomicity only

Key ideas:
« For every word, there exists a version number

» Transactions don’t update memory or version
numbers until commit

— Must consult/update thread-local log

18 July 2006 Dan Grossman, 2006 Summer School

Memory picture

Java heap Version numbers Transaction logs

a0
|

address

old value

old version number
current value
written to?

(Size trades-off space
& false-sharing)

18 July 2006 Dan Grossman, 2006 Summer School 18

Most operations easy

» Read/write outside transaction: no change
» Read/write inside transaction: consult/modify log
+ Abort: drop log, reset control
+ Start: new log
« Commit: hmm... Conceptually
— If any version # in log is out-of-date, abort

— Else do all the updates, incrementing version #s
for writes

Nice properties: parallel reads don’t cause aborts, no
synchronization until commit

18 July 2006 Dan Grossman, 2006 Summer School 19

Ah, commit

All the fanciness to allow parallel commits
— Scalable parallelism must avoid a “choke point”
Simple version:
* Replace all relevant version #s with thread-id
— (low-order bit to distinguish)
» (Change to read/write: abort if find a thread-id)
» Then update heap values
» Then write back (new) version #s

Commit point:
The last change from version # to thread-id

18 July 2006 Dan Grossman, 2006 Summer School 20

Actually...

Many TM implementations, WSTM included, are
obstruction-free:

Any thread can make progress in absence of contention
(even if another thread dies/gets-unscheduled)

So we “can’t” wait for a version # to return
— Instead, go into the log and get the “right” value
— Old value if before commit point
— New value if after commit point

Algorithm similar to multiword CAS from single CAS

18 July 2006 Dan Grossman, 2006 Summer School 21

Optimism

This algorithm has optimistic reads and writes
» Just get the data and version #

» Hope it won’'t get bumped before commit

« Else abort

(Backoff to avoid livelock)

But there’s actually a subtle problem...

Hint: A bound-to-fail transaction may be operating on an
inconsistent view of the world

u
3

18 July 2006 Dan Grossman, 2006 Summer School

Needing validate

// x and y start 0

atomic { atomic {
if (x!'=y) ++x;
for(;;) ++y;
} }
18 July 2006 Dan Grossman, 2006 Summer School 23

Needing validate

// x and y start 0

atomic { atomic {
if (x!'=y) ++x;
for(;;) ; +ty;
}

Punch-line: Can’t wait until end to abort, if you might
never get there due to need to abort

Fix: Periodically validate: check that you could commit,
but do not commit

18 July 2006 Dan Grossman, 2006 Summer School 24

Our plan

+ Atomicity on a uniprocessor (AtomCaml)

« Sketch seminal language work: Harris/Fraser's WSTM
— Optimistic reads and writes
— More recent RSTM is faster (Dwarkadas lecture 3)

» Sketch more recent approaches: PLDI06
— Optimistic reads, pessimistic writes

+ Optimizations to avoid read/write overhead
— Particularly strong atomicity

18 July 2006 Dan Grossman, 2006 Summer School 25

Some better trade-offs

» Better to update memory in place
— No log-lookup on read/write
— Worth giving up obstruction-freedom
» Better to keep version #s “nearby”
— Better caching, but avoid space blow-up
— One version # for objects’ fields
» Obstruction-freedom not necessary (debatable)
— Optimistic reads, pessimistic writes
— Rollback (cf. AtomCaml) on abort

18 July 2006 Dan Grossman, 2006 Summer School 26

Memory picture (simplified)

Objects

[I I I]
version # class-ptr fields...
[I I I I]

Transaction logs:
» Read log: object-address, version #

» Write log: object-address, old-value, version #

18 July 2006 Dan Grossman, 2006 Summer School 27

Most operations easy

» Read inside transaction: adjust read log
— Grab the current version #
» Write inside transaction: get ownership, adjust write log
— abort if version # is another transaction-id
Abort: rollback, reset control
* Commit: hmm
— If any version # in log is out-of-date, abort

— Else do all the updates, incrementing version #s for
writes

— Easy: Already own everything
Nice property: parallel reads don’t cause aborts

18 July 2006 Dan Grossman, 2006 Summer School 28

Some details

* Version # wraparound an A-B-A problem:
— Check on commit unsound (value may be wrong)

— Fix: Once every 2729 transactions, validate all
active transactions (abuse GC)

18 July 2006 Dan Grossman, 2006 Summer School 29

Some details

» Avoid extra 32-bits per object
— Use same word for hashcode and lock
— Modern version of an old trick...

0...0 00

version or id|00|| Iockvowner |01|| hashc;o:je |10|

~ | -
Y Pl

lock owner
hashcode

18 July 2006 Dan Grossman, 2006 Summer School 30

Our plan

+ Atomicity on a uniprocessor (AtomCaml)

« Sketch seminal language work: Harris/Fraser's WSTM
— Optimistic reads and writes
— More recent RSTM is faster (Dwarkadas lecture 3)

» Sketch more recent approaches: PLDI06
— Optimistic reads, pessimistic writes

+ Optimizations to avoid read/write overhead
— Particularly strong atomicity

18 July 2006 Dan Grossman, 2006 Summer School 31

Strong performance problem

Recall AtomCaml overhead:

In general, with parallelism:

Start way behind in performance, especially in
imperative languages (cf. concurrent GC)

18 July 2006 Dan Grossman, 2006 Summer School 32

AtomJava

Novel prototype recently completed

+ Source-to-source translation for Java
— Run on any JVM (so parallel)
— At VM'’s mercy for low-level optimizations

+ Atomicity via locking (object ownership)
— Poll for contention and rollback
— No support for parallel readers yet @

* Hope whole-program optimization can get
“strong for near the price of weak”

18 July 2006 Dan Grossman, 2006 Summer School 33

Optimizing away barriers

Threac sed in atomic

Want static (no overhead) and dynamic (less overhead)
Contributions:

» Dynamic thread-local: never release ownership until
another thread asks for it (avoid synchronization)

« Static not-used-in-atomic...

18 July 2006 Dan Grossman, 2006 Summer School 34

Not-used-in-atomic

Revisit overhead of not-in-atomic for strong atomicity,
given information about how data is used in atomic

18 July 2006 Dan Grossman, 2006 Summer School 35

Analysis sketch

This is a novel use of conventional analysis results:

0 (Atleast conceptually) do code-duplication so each
new, read, and write is “in-atomic” or “not-in-atomic”

1. For each read/write, compute (approximation of)
which news could have produced the object whose
field is being accessed.

« Classic pointer-analysis problem
» See Foster’s lecture

2. In one pass over “atomic” code, use results of (1) to
compute in-atomic access for each new

3. In one pass over “non-atomic” code, use results of
(2) to compute whether a barrier is needed

18 July 2006 Dan Grossman, 2006 Summer School 36

Theses/conclusions

1. Atomicity is better than locks, much as garbage
collection is better than malloc/free [Tech Rpt Apr06]

2. “Strong” atomicity is key, preferably w/o language
restrictions

3. With 1 thread running at a time, strong atomicity is fast
and elegant [ICFP Sep05]

4. With multicore, strong atomicity needs heavy compiler
optimization; we’'re making progress [Tech Rpt May06]

18 July 2006 Dan Grossman, 2006 Summer School 37

