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Atomic

An easier-to-use and harder-to-implement primitive

withLk: atomic:
lock->(unit->a) ->a (unit->a) ->a
let xfer src dst x = let xfer src dst x =

withLk src.lk (fun()-> atomic (fun()->

withLk dst.lk (fun()-> src.bal <- src.bal-x;
src.bal <- src.bal-x; dst.bal <- dst.bal+x
dst.bal <- dst.bal+x )

))

lock acquire/release (behave as if)
no interleaved computation
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Implementation issues

* How to start, commit, and abort a transaction
* How to do a read/write in a transaction
» How to do a read/write outside a transaction
» How to detect and/or avoid conflicts
— How optimistically (go now, maybe abort later)
» What granularity to use for conflicts
* What about “really long” transactions?

Will mostly skim over important details:
* Obstruction-free?
« Support for strong atomicity?
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Our plan

» Atomicity on a uniprocessor (AtomCaml)

» Sketch seminal language work: Harris/Fraser's WSTM
— Optimistic reads and writes
— More recent RSTM is faster (Dwarkadas lecture 3)

» Sketch more recent approaches: PLDI0O6
— Optimistic reads, pessimistic writes

» Optimizations to avoid read/write overhead
— Particularly strong atomicity
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Interleaved execution

The “uniprocessor” assumption:
Threads communicating via shared memory don't
execute in “true parallel”
Important special case:
* Many language implementations assume it
(e.g., OCaml)
* Many concurrent apps don’t need a multiprocessor
(e.g., a document editor)
* Uniprocessors are dead? Where’s the funeral?
« The O/S may give an app one core (for a while)
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Implementing atomic

Key pieces:
» Execution of an atomic block logs writes

* If scheduler pre-empts a thread in atomic, rollback
the thread

» Duplicate code so non-atomic code is not slowed by
logging

* Smooth interaction with GC
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Logging example

let x : ref 0 » Executing atomic block

1 f

ety = ref 0 in b builds a LIFO log of
let £() = 1d val .

let z = old values:

'ref((!y)+1)

in y:0f—z:? f—jx:0[—y:2]

x =z
let g() = Rollback on pre-emption:
y = (!x)+1 + Pop log, doing assignments
let h() = » Set program counter and
atomic (fun() -> stack to beginning of atomic
¥()= ’ On exit from atomic: drop log
g())
18 July 2006 Dan Grossman, 2006 Summer School 7

Logging efficiency

y:0f—jz:?[—ix: 0 —y:2]

Keeping the log small:

» Don't log reads (key uniprocessor optimization)

» Need not log memory allocated after atomic entered
— Particularly initialization writes

» Need not log an address more than once

— To keep logging fast, switch from array to
hashtable after “many” (50) log entries
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Duplicating code

let x = ref 0 .
It 57 = = @ Duplicate code so callees know
let £() = to log or not:
let z = » For each function £, compile
_;ief( (ly)+1) £ atomic and £ normal
i _ !

x := lz; « Atomic blocks and atomic
let g() = functions call atomic functions
y = (!'x)+1 = Function pointers compile to

let h() = pair of code pointers
atomic (fun()->
y = 2;
£();
g())
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Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

OCamil:
add 3, push, ..
|header |code ptr |free variables..
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Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

AtomCaml: bigger closures

add 3, push, .. E O, an
o s

header [code ptrl]code ptr2 [free variables..

Note: atomic is first-class, so it is one of these too!
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Representing closures/objects

Representation of function-pointers/closures/objects
an interesting (and pervasive) design decision

AtomCaml alternative: slower calls in atomic

add 3, push, ..
code ptr2

[header |code ptril [free variables.. |

e

Note: Same overhead as OO dynamic dispatch
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Interaction with GC

What if GC occurs mid-transaction?
» Pointers in log are roots (in case of rollback)
» Moving objects is fine
— Rollback produces equivalent state
— Naive hardware solutions may log/rollback GC!

What about rolling back the allocator?

« Don't bother: after rollback, objects allocated in
transaction are unreachable!

+ Naive hardware solutions may log/rollback
initialization writes
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Qualitative evaluation

Strong atomicity for Caml at little cost
— Already assumes a uniprocessor

* Mutable data overhead

» Choice: larger closures or slower calls in transactions
» Code bloat (worst-case 2x, easy to do better)
» Rare rollback
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Performance

Cost of synchronization is all in the noise

* Microbenchmark: short atomic block 2x slower than
same block with lock-acquire/release

— Longer atomic blocks = less slowdown

— Programs don’t spend all time in critical sections
» PLANet: 10% faster to 7% slower (noisy)

— Closure representation mattered for only 1 test
« Sequential code (e.g., compiler)

— 2% slower when using bigger closures

See paper for (boring) tables
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Our plan

» Atomicity on a uniprocessor (AtomCaml)

» Sketch seminal language work: Harris/Fraser's WSTM
— Optimistic reads and writes
— More recent RSTM is faster (Dwarkadas lecture 3)

» Sketch more recent approaches: PLDI0O6
— Optimistic reads, pessemistic writes

» Optimizations to avoid read/write overhead
— Particularly strong atomicity
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The Set-Up

Caveats:
« Some simplifications (lies & omissions)
* Weak atomicity only

Key ideas:
« For every word, there exists a version number

» Transactions don’t update memory or version
numbers until commit

— Must consult/update thread-local log
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Memory picture

Java heap Version numbers Transaction logs

a0
|

address

old value

old version number
current value
written to?

(Size trades-off space
& false-sharing)
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Most operations easy

» Read/write outside transaction: no change
» Read/write inside transaction: consult/modify log
+ Abort: drop log, reset control
+ Start: new log
« Commit: hmm... Conceptually
— If any version # in log is out-of-date, abort

— Else do all the updates, incrementing version #s
for writes

Nice properties: parallel reads don’t cause aborts, no
synchronization until commit
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Ah, commit

All the fanciness to allow parallel commits
— Scalable parallelism must avoid a “choke point”
Simple version:
* Replace all relevant version #s with thread-id
— (low-order bit to distinguish)
» (Change to read/write: abort if find a thread-id)
» Then update heap values
» Then write back (new) version #s

Commit point:
The last change from version # to thread-id
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Actually...

Many TM implementations, WSTM included, are
obstruction-free:

Any thread can make progress in absence of contention
(even if another thread dies/gets-unscheduled)

So we “can’t” wait for a version # to return
— Instead, go into the log and get the “right” value
— Old value if before commit point
— New value if after commit point

Algorithm similar to multiword CAS from single CAS
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Optimism

This algorithm has optimistic reads and writes
» Just get the data and version #

» Hope it won’'t get bumped before commit

« Else abort

(Backoff to avoid livelock)

But there’s actually a subtle problem...

Hint: A bound-to-fail transaction may be operating on an
inconsistent view of the world

u
3
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Needing validate

// x and y start 0

atomic { atomic {
if (x!'=y) ++x;
for(;;) ++y;
} }
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Needing validate

// x and y start 0

atomic { atomic {
if (x!'=y) ++x;
for(;;) ; +ty;
}

Punch-line: Can’t wait until end to abort, if you might
never get there due to need to abort

Fix: Periodically validate: check that you could commit,
but do not commit
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Our plan

+ Atomicity on a uniprocessor (AtomCaml)

« Sketch seminal language work: Harris/Fraser's WSTM
— Optimistic reads and writes
— More recent RSTM is faster (Dwarkadas lecture 3)

» Sketch more recent approaches: PLDI06
— Optimistic reads, pessimistic writes

+ Optimizations to avoid read/write overhead
— Particularly strong atomicity
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Some better trade-offs

» Better to update memory in place
— No log-lookup on read/write
— Worth giving up obstruction-freedom
» Better to keep version #s “nearby”
— Better caching, but avoid space blow-up
— One version # for objects’ fields
» Obstruction-freedom not necessary (debatable)
— Optimistic reads, pessimistic writes
— Rollback (cf. AtomCaml) on abort
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Memory picture (simplified)

Objects

[ I I I ]
version # class-ptr fields...
[ I I I I ]

Transaction logs:
» Read log: object-address, version #

» Write log: object-address, old-value, version #
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Most operations easy

» Read inside transaction: adjust read log
— Grab the current version #
» Write inside transaction: get ownership, adjust write log
— abort if version # is another transaction-id
Abort: rollback, reset control
* Commit: hmm
— If any version # in log is out-of-date, abort

— Else do all the updates, incrementing version #s for
writes

— Easy: Already own everything
Nice property: parallel reads don’t cause aborts
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Some details

* Version # wraparound an A-B-A problem:
— Check on commit unsound (value may be wrong)

— Fix: Once every 2729 transactions, validate all
active transactions (abuse GC)
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Some details

» Avoid extra 32-bits per object
— Use same word for hashcode and lock
— Modern version of an old trick...

0...0 00

version or id|00|| Iockvowner |01|| hashc;o:je |10|

~ | -
Y Pl

lock owner
hashcode
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Our plan

+ Atomicity on a uniprocessor (AtomCaml)

« Sketch seminal language work: Harris/Fraser's WSTM
— Optimistic reads and writes
— More recent RSTM is faster (Dwarkadas lecture 3)

» Sketch more recent approaches: PLDI06
— Optimistic reads, pessimistic writes

+ Optimizations to avoid read/write overhead
— Particularly strong atomicity
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Strong performance problem

Recall AtomCaml overhead:

In general, with parallelism:

Start way behind in performance, especially in
imperative languages (cf. concurrent GC)
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AtomJava

Novel prototype recently completed

+ Source-to-source translation for Java
— Run on any JVM (so parallel)
— At VM'’s mercy for low-level optimizations

+ Atomicity via locking (object ownership)
— Poll for contention and rollback
— No support for parallel readers yet @

* Hope whole-program optimization can get
“strong for near the price of weak”
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Optimizing away barriers

Threac sed in atomic

Want static (no overhead) and dynamic (less overhead)
Contributions:

» Dynamic thread-local: never release ownership until
another thread asks for it (avoid synchronization)

« Static not-used-in-atomic...
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Not-used-in-atomic

Revisit overhead of not-in-atomic for strong atomicity,
given information about how data is used in atomic
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Analysis sketch

This is a novel use of conventional analysis results:

0 (Atleast conceptually) do code-duplication so each
new, read, and write is “in-atomic” or “not-in-atomic”

1. For each read/write, compute (approximation of)
which news could have produced the object whose
field is being accessed.

« Classic pointer-analysis problem
» See Foster’s lecture

2. In one pass over “atomic” code, use results of (1) to
compute in-atomic access for each new

3. In one pass over “non-atomic” code, use results of
(2) to compute whether a barrier is needed
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Theses/conclusions

1. Atomicity is better than locks, much as garbage
collection is better than malloc/free [Tech Rpt Apr06]

2. “Strong” atomicity is key, preferably w/o language
restrictions

3. With 1 thread running at a time, strong atomicity is fast
and elegant [ICFP Sep05]

4. With multicore, strong atomicity needs heavy compiler
optimization; we’'re making progress [Tech Rpt May06]
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