Summer School on
Language-Based Techniques for Integrating with the External World

Types for Safe C-Level Programming
Part 1: Quantified-Types Background

Dan Grossman
University of Washington
18 July 2007

C-level

» Most PL theory is done for safe, high-level languages
» Alot of software is written in C
« Jeff: how to interface with C
» Me: Adapt and extend our theory to make a safe C
— Today: review the theory (useful crash course)
— Next week: Some theory underlying Cyclone
* Love to talk about the engineering off-line
« Parametric polymorphism (“generics”)
« Existential types
« Region-based memory management

18 July 2007 Dan Grossman, 2006 Summer School

©

How is C different?

A brief teaser before our PL theory tutorial...
» C has “left expressions” and “address-of” operator
{ int* y[7]; int x = 17; y[0] = &x; }
» C has explicit pointers, “unboxed” structures
struct T vs. struct T *
« C function pointers are not objects or closures
void apply_to_list(void (*f) (void*,int),
void*, IntList);
* C has manual memory management
low-level issues distinct from safety stuff like array-bounds

Lambda-calculus in 1 hour (or so)

» Syntax (abstract)
» Semantics (operational, small-step, call-by-value)
» Types (filter out “bad” programs)

All have inductive definitions using a
mathematical metalanguage

Will likely speed through things (this is half a graduate
course), but follow up with me and fellow students

18 July 2007 Dan Grossman, 2006 Summer School 4

18 July 2007 Dan Grossman, 2006 Summer School 3
Syntax
Syntax of an untyped lambda-calculus
Expressions:e ::= x |Ax. e |e e |c | e+e
Constants: ¢ ::= .. | -1 | 0 | 1 |
Variables: x ::= .. | x1 | x' | y |
Values: v ::=Ax.e | ¢

Defines a set of trees (ASTs)

Conventions for writing these trees as strings:

e Ax. el e2 is Ax. (el e2), not (Ax. el) e2
« ele2el3is (e1e2)e3, notel (e2e3)

+ Use parentheses to disambiguate or clarify

18 July 2007 Dan Grossman, 2006 Summer School 5

Semantics

» One computation step rewrites the program to
something “closer to the answer”

e—e’
 Inference rules describe what steps are allowed

el — ef’ e2 — e2’

ele2— el’e2 ve2 - ve2’ (Ax.e) v — e{v/x}

el — ef’ e2— e2’ “c1+c2=c3”

el+e2 — el’+e2 v+e2 — v+e2’ c1+c2 — c3

18 July 2007 Dan Grossman, 2006 Summer School 6

Notes

* These are rule schemas

— Instantiate by replacing metavariables consistently
« A derivation tree justifies a step

— A proof: “read from leaves to root”

— An interpreter: “read from root to leaves”
» Proper definition of substitution requires care
» Program evaluation is then a sequence of steps

e0 »el—e2— ..

+ Evaluation can “stop” with a value (e.g., 17) or a
“stuck state” (e.g., 17 Ax. x)

More notes

| chose left-to-right call-by-value
— Easy to change by changing/adding rules
» | chose to keep evaluation-sequence deterministic
— Also easy to change
— | chose small-step operational
— Could spend a year on other semantics

» This language is Turing-complete (even without
constants and addition)

— Therefore, infinite state-sequences exist

18 July 2007 Dan Grossman, 2006 Summer School 8

18 July 2007 Dan Grossman, 2006 Summer School 7
Adding pairs

e =..|(ee)]|e1]|e2

v =L (vv)
el— el’ e2 - e2’ e— ¢ e—e¢

(e1,e2)—(e1’,e2) (v,e2)—(v,e2’) e.1—-e’.1 e.2—e’2

Adding mutation

Expressions: e ::= ..| ref e|el:=e2| 'e| 1
Values: v = .| 1

Heaps: H ::= . | H1->v

States: H,e

Change e — e’ to He — H'e’

Change rules to modify heap (or not). 2 examples:

Het1— H’'et’ “c1+c2=c3”
Het1e2 - H’ et’e2 H, c1+¢c2 - H, ¢3
18 July 2007 Dan Grossman, 2006 Summer School 10

(v1,v2).1 - v1 (v1,v2).2 — v2
18 July 2007 Dan Grossman, 2006 Summer School 9
New rules
1 notin H
H,refv—>H,1-v, 1 H,'1-H H()

H, 1l:=v— H,l—»V, 42

He— He’ He— He’

H1re->H) e’ H, refe > H’ refe’
He— H'e’ He— H’e’

H,e1:=e2—>H’ e1’ :=e2 H,v:=e2—>H’ v:=e2

18 July 2007 Dan Grossman, 2006 Summer School 11

Toward evaluation contexts

For each step, e — e’ or H,e — H’,e’, we have a
derivation tree (actually nonbranching) where:

» The top rule “does something interesting”
» The rest “get us to the right place”

After a step, the next “right place” could be deeper or
shallower

* Shallower: (3+4)+5
» Deeper: (3+4)+((1+2)+(5+6))
» Deeper: (AX. (((x+x)+x)+x) 2

18 July 2007 Dan Grossman, 2006 Summer School 12

Evaluation contexts

A more concise metanotation exploits this “inductive”
vs. “active” distinction

» For us, more convenient but unnecessary

» With control operators (e.g., continuations), really
adds power

Evaluation contexts: “expressions with one hole where
something interesting can happen”, so for left-to-right
lambda calculus:

E::=[] | Ee| VE |E+e | V+E
|(E,e) | (v,E) | E.1 | E.2
| ref E| E:=e | v:=E | 'E
Exactly one case per inductive rule in our old way

18 July 2007 Dan Grossman, 2006 Summer School 13

The context rule

To finish our “convenient rearrangement”:

» Define “filling a hole” metanotation (could formalize)
Ele] : the expression from E with e in its hole

» A single context rule

H,e — H’e’

H,Ele] — H’,Ee]]
» Our other rules as “primitive reductions”
He —, H’e’
* Now each step is one context rule (find right place)
and one primitive reduction (do something)

18 July 2007 Dan Grossman, 2006 Summer School 14

Summary so far

* Programs as syntax trees
— Add a heap to program state for mutation
» Semantics as sequence of tree rewrites

« Evaluations contexts separate out the “find the right
place”

Next week we'll have two different kinds of primitive
reductions (left vs. right) and two kinds of contexts (to
control which can occur where)

18 July 2007 Dan Grossman, 2006 Summer School 15

Why types?

A type system classifies (source) programs
» Ones that do not type-check “not in the language”
Why might we want a smaller language?
1. Prohibit bad behaviors

Example: never get to a state H;e where e is E['42]
2. Enforce user-defined interfaces

Example: struct T; struct T* newT(); ...
3. Simplify/optimize implementations
4. Other

18 July 2007 Dan Grossman, 2006 Summer School 16

Types

A 2nd judgment I |-e1 ;1 gives types to expressions
— No derivation tree means “does not type-check”
— Use a context to give types to variables in scope

“Simply typed lambda calculus” a starting point
Types: T ::=int | 1>t | 1T *1 | ref 1
Contexts: I' ::= . | INx:t

r |-e1:int r |-e2:int

r |-c : int r |-e1+e2:int r }-x : M (x)
rx: tl | e:t2 lhel:ti»12 T fe2:11
r |-(Ax.e) c1l— 12 r |-e1 e2:12

1o auty LU/ Al ULOSSUIALL, ZUU0 SULLILEL SCH00L v

Notes

» Our declarative rules “infer” types, but we could just
as easily adjust the syntax to make the programmer
tell us

» These rules look arbitrary but have deep logical
connections

» With this simple system:
— “does it type-check” is decidable (usually wanted)
— “does an arbitrary e terminate” is undecidable
— “does a well-typed e terminate” is “always yes” (!)
« “fix” (pun intended) by adding explicit recursion

18 July 2007 Dan Grossman, 2006 Summer School 18

The rest of the rules

Thel:t1 Tfe2:t2 Tfe:tl*t2 T} e:tl*t2

Tl(e1,e2): 11*t2 Fket:t1 Tfe2:12
rke: =

Mk refe: ref <

Fkel: ref v T}e2:t ke: ref t

Fhetl:=e2:int Tk te:t

18 July 2007 Dan Grossman, 2006 Summer School 19

Soundness

Reason we defined rules how we did:
If . }e:t and after some number of steps

.;e becomes H’;e’, then either e’ is a value v or there
exists an H”;e” such that H’;e’ — H”;e”

An infinite number of different type systems have this
property for our language, but want to show at least
ours is one of them

Also: we wrote the semantics, so we defined what the
“bad” states are. Extreme example: every type
system is sound if any H;e can step to H;42

18 July 2007 Dan Grossman, 2006 Summer School 20

Showing soundness

Soundness theorem is true, but how would we show it:

1. Extend our type system to program states (heaps
and expressions with labels) only for the proof

2. Progress: Any well-typed program state has an
expression that is a value or can take one step

3. Preservation: If a well-typed program state takes a
step, the new state is well-typed

Perspective: “is well-typed” is just an induction
hypothesis (preservation) with a property (progress)
that describes what we want (e.g., don’t do '42)

Motivating type variables

Common motivation: Our simple type system rejects too
many programs, requiring code duplication

» If xis bound to Ay .y, we can give x type int— int
or (ref int)— (ref int), but not both

» Recover expressiveness of C casts

More powerful motivation: Abstraction restricts clients
» Iff has type Va.VB. ((a—PB)*a) — B,
then if f returns a value that value comes from
applying its first argument to its second
* The key theory underlying ADTs

u
3

18 July 2007 Dan Grossman, 2006 Summer School

18 July 2007 Dan Grossman, 2006 Summer School 21
Syntax

e =c | x| Ax:t1.e | ee | Dha.e | e [1]
v = Ax:1. e | ¢ | Da. e

T =int | -1 | a | Va.

r = | Mx:t | INa

New:

« Type variables and universal types

« Contexts include “what type variables in scope”
« Explicit type abstraction and instantiation

18 July 2007 Dan Grossman, 2006 Summer School 23

Semantics

* Left-to-right small-step CBV needs only 1 new
primitive reduction

E::= .. |E[t] (Ra. e) [t1] - e{t/a}

* But: must also define e{t/a} (and t’ {t/a})
— Much like e{v/x} (including capture issues)
— N and V are both bindings (can shadow)
c eg, (ha. AB. Ax:a. Af:a—p. £ x)
[int] [int] 3 (Ay:int.y+y)

18 July 2007 Dan Grossman, 2006 Summer School 24

Typing

» Mostly just be picky: no free type variables ever
o Letll I-'I: mean all free type variables are in I’

— Rules straightforward and important but boring
* 2 new rules (and 1 picky new premise on old rule)

Male:t Fhe: Va1 T |r2

r|- (Aa. e): Va.t r |- e [t2] : t1{t2/a}

c eg. (ha.AB. Ax:a. Af:a—p. £ x)
[int] [int] 3 (Ay:int.y+y)

18 July 2007 Dan Grossman, 2006 Summer School 25

Beware mutation

Mutation and abstraction can be surprisingly difficult to
reconcile:

Pseudocode example:

let x : Va. ref (ref a) = ref null
letsr: string ref = ref “hello”
(x [string]) := sr

I(x [int]) := 42

print_string (!sr) -- stuck!

Worth walking through on paper
» Can blame any line, presumably line 1 or line 3

The other quantifier

If | want to pass around ADTSs, universal quantification
is wrong!

Example, an int-set library via a record (like pairs with n
fields and field names) of functions

» Want to hold implementation of set abstract with a
type including:

{ new_set : () — o
add to : (a * int) — ()
union (o * a) - a
member : (o * int) — bool }

+ Clearly unimplementable with Va around it

18 July 2007 Dan Grossman, 2006 Summer School 27

18 July 2007 Dan Grossman, 2006 Summer School 26
Existentials
Extend our type language with Ja. t, and intuitively
Jo.{ new_set : () — a

add to : (a * int) — ()

union :o(a * a) — o

member : (a * int) — bool }

seems right. But we need:

» New syntax, semantics, typing to make things of this
type

» New syntax, semantics, typing to use things of this
type

(Just like we did for universal types, but existentials are
less well-known)

18 July 2007 Dan Grossman, 2006 Summer School 28

Making existentials

e ::= .. | packtl,e as Ja.12
E ::= .. | packt1l,E as Ja.12
v ::= .. | packtl,v as Ja.12

(Only new primitive reduction is for using existentials)

r|- e:12{11l/a}

r|- (pack 11,e as Ja.12) : Ja.12

Intuition: Create abstraction by hiding a few t as «,
restricting what clients can do with “the package” ...

18 July 2007 Dan Grossman, 2006 Summer School 29

Using existentials

e ::= .. | unpack x,a=el in e2

E ::= .. | unpack x,a=E in e2

New primitive reduction (intuition; just a let if you ignore
the types, the point is stricter type-checking):

H; unpack x,a = (pack 1l1,v as 3p.12) in e2
— H; e2{v/x}{tl/a}

And the all-important typing rule (holds a abstract) :
Fl-elzilp.tl F,ot,x:tl(ot/p}|-e2:'r F|-'r

r |- unpack x,a=el in e2 : 1

18 July 2007 Dan Grossman, 2006 Summer School 30

Quantified types summary

Type variables increase code reuse and let
programmers define abstractions

« Universals are “generics”

 Existentials are “first-class ADTs”
— May be new to many of you
— May make more sense in Cyclone (next time)
— More important in Cyclone

» Use to encode things like objects and closures,
given only code pointers

18 July 2007 Dan Grossman, 2006 Summer School

