Summer School on
Language-Based Techniques for Integrating with the External World

Types for Safe C-Level Programming
Part 2: Quantified-Types in C

Dan Grossman
University of Washington
25 July 2007

C-level

» Most PL theory is done for safe, high-level languages
» Alot of software is written in C
» Me: Adapt and extend our theory to make a safe C
— Last week: review theory for high-level languages
— Today (+?): Theory of type variables for a safe C

— Tomorrow: Safe region-based memory
management

« Uses type variables (and more)!
— Off-line: Engineering a safe systems language

25 July 2007 Dan Grossman, 2007 Summer School

©

How is C different?

» C has “left expressions” and “address-of” operator
{ int* y[7]; int x = 17; y[0] = &x; }
» C has explicit pointers, “unboxed” structures
struct T vs. struct T *
+ C function pointers are not objects or closures
void apply to_list(void (*£f) (void*, int),
void*, IntList);
« C has manual memory management

25 July 2007 Dan Grossman, 2007 Summer School 3

Context: Why Cyclone?

A type-safe language at the C-level of abstraction
» Type-safe: Memory safety, abstract types, ...

» C-level: explicit pointers, data representation,
memory management. Semi-portable.

» Niche: Robust/extensible systems code
— Looks like, acts like, and interfaces easily with C
— Used in several research projects
— Doesn'’t “fix” non-safety issues (syntax, switch, ...)
* Modern: patterns, tuples, exceptions, ...

http://cyclone.thelanguage.org/

25 July 2007 Dan Grossman, 2007 Summer School 4

Context: Why quantified types?

* The usual reasons:
— Code reuse, container types
— Abstraction
— Fancy stuff: phantom types, iterators, ...
* Because low-level
— Implement closures with existentials
— Pass environment fields to functions
» For other kinds of invariants
— Memory regions, array-lengths, locks
— Same theory and more important in practice

25 July 2007 Dan Grossman, 2007 Summer School 5

Context: Why novel?

+ Left vs. right expressions and the & operator

» Aggregate assignment (record copy)

 First-class existential types in an imperative language
* Types of unknown size

And any new combination of effects, aliasing, and
polymorphism invites trouble...

25 July 2007 Dan Grossman, 2007 Summer School 6

Getting burned... decent company

To: sml-list@cs.cmu.edu

From: Harper and Lillibridge

Sent: 08 Jul 91

Subject: Subject: ML with callcc is
unsound

The Standard ML of New Jersey
implementation of callcc is not type
safe, as the following counterexample
illustrates:.. Making callcc weakly
polymorphic .. rules out the
counterexample

25 July 2007 Dan Grossman, 2007 Summer School

Getting burned... decent company

From: Alan Jeffrey

Sent: 17 Dec 2001

To: Types List

Subject: Generic Java type inference is
unsound

The core of the type checking system was
shown to be safe.. but the type inference
system for generic method calls was not
subjected to formal proof. In fact, it is
unsound .. This problem has been verified
by the JSR14 committee, who are working
on a revised langauge specification..

25 July 2007 Dan Grossman, 2007 Summer School 8

Getting burned... decent company

From: Xavier Leroy

Sent: 30 Jul 2002

To: John Prevost

Cc: Caml-list

Subject: Re: [Caml-list] Serious
typechecking error involving new
polymorphism (crash)

Yes, this is a serious bug with

polymorphic methods and fields. Expect a
3.06 release as soon as it is fixed.

25 July 2007 Dan Grossman, 2007 Summer School

Getting burned...I'm in the club

From: Dan Grossman

Sent: Thursday 02 Aug 2001

To: Gregory Morrisett

Subject: Unsoundness Discovered!

In the spirit of recent worms and
viruses, please compile the

code below and run it. Yet another
interesting combination of polymorphism,
mutation, and aliasing. The best fix I
can think of for now is

25 July 2007 Dan Grossman, 2007 Summer School 10

The plan from here

« Brief tour of Cyclone polymorphism
+ C-level polymorphic references
— Formal model with “left” and “right”
— Comparison with actual languages
+ C-level existential types
— Description of “new” soundness issue
— Some non-problems
+ C-level type sizes
— Not a soundness issue

25 July 2007 Dan Grossman, 2007 Summer School

“Change void* to alpha”

struct L { struct L< a> {

void* hd; "a hd;

struct L* tl; struct L< a>* tl;
}i }i
typedef typedef
struct L* 1_t; struct L< a>* 1 _t< a>;
1t 1_t<'b>
map (void* f (void¥*), map<'a, 'b>('b £('a),

1.t); 1 t<a>);

1t 1 t<a>
append (1_t, append< a>(1l_t< a>,

1 t); 1 t<a>);

25 July 2007 Dan Grossman, 2007 Summer School 12

Not much new here

- struct Lstis a recursive type constructor:
L=MAa.{a hd; (La)* tl;}

* The functions are polymorphic:
map : Va, B. (a=f,La)—> (LB)

« Closer to C than ML
— less type inference allows first-class polymorphism
and polymorphic recursion
— data representation restricts " a to pointers, int
(why not structs? why not £loat? why int?)

« Not C++ templates

25 July 2007 Dan Grossman, 2007 Summer School 13

Existential types

» Programs need a way for “call-back” types:

struct T {
int (*f) (int,void*);
void* env;

}i
» We use an existential type (simplified):

struct T { <'a>
int (*f) (int, "a);

Existential types cont'd

struct T { <'a> * creation requires a
int (*£f) (int, "a); “consistent witness”
a env;

Y « type is just struct T

« use requires an explicit “unpack” or “open”:

int apply(struct T pkg, int arg) {
let T{<'b> .f=fp, .env=ev} = pkg;
return fp(arg,ev);

}

25 July 2007 Dan Grossman, 2007 Summer School 15

‘a env;
}i
more C-level than baked-in closures/objects
25 July 2007 Dan Grossman, 2007 Summer School 14
Sizes

Types have known or unknown size (a kind distinction)

» As in C, unknown-size types can’t be used for fields,
variables, etc.: must use pointers to them

* Unlike C, we allow last-field-unknown-size:

struct T1 { [|\] l\l\ |
struct T1* tl1;

=[] N l
char data[l];
bo i A —

struct T2 {

int len;

int arr[1]; BT [sEETET
}i
25 July 2007 Dan Grossman, 2007 Summer School 16

Sizes

Types have known or unknown size (a kind distinction)

» As in C, unknown-size types can’t be used for fields,
variables, etc.: must use pointers to them

« Unlike C, we allow last-field-unknown-size:

struct T1 { struct Tl< a::A> {
struct T1* tl; struct T1< a>* tl;
char data[l]; "a data;
}i }i
struct T2 { struct T2< i::I> {
int len; tag_t<'i> len;
int arr[1]; int arr[valueof('i)];
}i };
25 July 2007 Dan Grossman, 2007 Summer School 17

The plan from here

« Brief tour of Cyclone polymorphism
» C-level polymorphic references
— Formal model with “left” and “right”
— Comparison with actual languages
» C-level existential types
— Description of “new” soundness issue
— Some non-problems
* C-level type sizes
— Not a soundness issue

25 July 2007 Dan Grossman, 2007 Summer School 18

Mutation

« el=e2 means:
— Left-evaluate e1 to a location
—Right-evaluate e2 to a value
—Change the location to hold the value

* Locations are “left values”™ x.£1.£2..fn

* Values are “right values”, include &x.£f1.£2..fn
(a pointer to a location)

» Having interdependent left/right evaluation is no
problem

25 July 2007 Dan Grossman, 2007 Summer School 19

Left vs. Right Syntax

Expressions:

e ::=x |Ax:1.e |e(e) | ¢
|e=e | & | *e | (e,e) | e.1 | e.2
Right-Values: v ::=c | Ax:1.e | &1 | (v,Vv)
Left-Values: 1 =x | 1.1] 1.2
Heaps: H = | H,x-v
Types T ::=4int | >t | (t, 1) | T*
25 July 2007 Dan Grossman, 2007 Summer School 20

Of note

Everything is mutable, so no harm in combining variables
and locations

— Heap-allocate everything (so fun-call makes a “ref”)
Pairs are “flat”; all pointers are explicit
A right value can point to a left value
A left value is (part of) a location

In C, functions are top-level and closed, but it doesn’t
matter.

25 July 2007 Dan Grossman, 2007 Summer School 21

Small-step semantics — the set-up

» Two mutually recursive forms of evaluation context

R ::= | L=e | 1=R | &L | *R
| (R,e) | (v,R) | R.1 | R.2 | R(e) | Vv(R)
L ::=[], | L.1 | L.2 | *R
He H e’ He — H' e’
H,R[e — H’ ,R[e’ H,R[e], — H',R[e’'];

» Rest-of-program is a right-expression
» Next “thing to do” is either a left-primitive-step or a
right-primitive-step

25 July 2007 Dan Grossman, 2007 Summer School

u
3

Small-step primitive reductions

H, *(&l) H 1 not a right-value

H x H, H(x)

H, (vl,v2).1 H, vl

H, (vl1,v2).2 H, v2

H, 1l=v need helper since | may be some
X.i.j.k (replace flat subtree)

H, (Ax:t1.e) (v) H x-v, e

H, *(&l) — H, 1 a left-value

25 July 2007 Dan Grossman, 2007 Summer School 23

Typing (Left- on next slide)

Type-check left- and right-expressions differently with two mutually
recursive judgments
M lel:t I hel:t
+ Today, not tomorrow: left-rules are just a subset
el:tl— 12
Mx 1l - e:12 M- e2:11

ciint | x:M(®) | Ax:tl.e: 11512 [el(e2): 12

F :;:; M-e:(tl,12) T} e:(11,12)
m) Me.l:tl r e.2:t2
flew rhex (UG
[*e:t I se:t* m

25 July 2007 Dan Grossman, 2007 Summer School 24

Typing Left-Expressions

Just like in C, most expressions are not left-expressions
» But dereference of a pointer is

r |-‘e:(t1,12) r |—1e: (11,12) [e:t*

Mhx:fx) T he.l:11 rhe.2:12 I *e:t

Now we can prove Preservation and Progress
« After extending type-checking to program states
« By mutual induction on left and right expressions
« No surprises

— Left-expressions evaluate to locations

— Right-expressions evaluate to values

25 July 2007 Dan Grossman, 2007 Summer School 25

Universal quantification

Adding universal types is completely standard:

e ::= | Na.e | e [1]
v o= | Da. e

T ::= . | a | Va. =
M::= .| 7Na

L unchanged

R ::= .. | R [1]

(ha. e) [1] e{t/a}

Mol e:t r e: Va.tl I'|-1'2

r (ha. e): Va.t r e [t2] : t1{t2/a}

25 July 2007 Dan Grossman, 2007 Summer School

Polymorphic-references?

In C-like pseudocode, core of the poly-ref problem:

(Va. o« —a) id = Aa. Ax:a. x;

int i =0;

int* p = &i;

id [int] = Ax:int. x+17;

p = (id [int*]) (p); /* set p to (&i)+17 2!21%/

Fortunately, this won’t type-check

« And in fact Preservation and Progress still hold
* So we never try to evaluate something like (&i) + 17

25 July 2007 Dan Grossman, 2007 Summer School 27

The punch-line

Type applications are not left-expressions

» There is no derivation of I' | e[t1]:12

* Really! That's all we need to do.

* Related idea: subsumption not allowed on left-
expressions (cf. Java)

Non-problems:

* Types like (Va. o list)*
— Can only mutate to “other” (Va. o« list) values
Types like (Va. ((a list)*))
— No values have this type

25 July 2007 Dan Grossman, 2007 Summer School

What we learned

 Left vs. right formalizes fine
* e[t] is not a left-expression
— Necessary and sufficient for soundness

« In practice, Cyclone (and other languages) even
more restrictive:

— If only (immutable) functions can be polymorphic,
then there’s no way to create a location with a
polymorphic type

— A function pointeris (Va. .)*, not (Va. (.. *))

25 July 2007 Dan Grossman, 2007 Summer School 29

The plan from here

« Brief tour of Cyclone polymorphism
» C-level polymorphic references
— Formal model with “left” and “right”
— Comparison with actual languages
» C-level existential types
— Description of “new” soundness issue
— Some non-problems
* C-level type sizes
— Not a soundness issue

25 July 2007 Dan Grossman, 2007 Summer School

C Meets 3

« Existential types in a safe low-level language
— why (again)
— features (mutation, aliasing)

* The problem

* The solutions

« Some non-problems

* Related work (why it's new)

25 July 2007 Dan Grossman, 2007 Summer School

Low-level languages want 3

» Major goal: expose data representation (no hidden
fields, tags, environments, ...)

» Languages need data-hiding constructs
» Don't provide closures/objects
struct T { < a>
int (*£) (int, "a);
‘a env;

}i
C “call-backs” use void*; we use J

25 July 2007 Dan Grossman, 2007 Summer School 32

Normal 3 feature: Introduction

struct T { < a>
int (*f) (int, a);
‘a env;

Y

int add (int a, int b) {return a+b; }

int addp(int a, char* b) {return a+*b;}

struct T x1 = T(add, 37);

struct T x2 = T(addp,"a");

» Compile-time: check for appropriate witness type
* Typeisjust struct T
* Run-time: create / initialize (no witness type)

25 July 2007 Dan Grossman, 2007 Summer School

Normal 3 feature: Elimination

struct T { < a>
int (*f) (int, "a);
‘a env;

Y

Destruction via pattern matching:

void apply(struct T x) {
let T{<'b> .f=fn, .env=ev} = x;
// ev : b, fn : int(*f) (int, 'b)

fn(42,ev);
}
Clients use the data without knowing the type
25 July 2007 Dan Grossman, 2007 Summer School 34

Low-level feature: Mutation

» Mutation, changing witness type

struct T fnl = £();
struct T fn2 = g{();
fnl = £fn2; // record-copy

» Orthogonality and abstraction encourage this feature

« Useful for registering new call-backs without
allocating new memory

» Now memory words are not type-invariant!

25 July 2007 Dan Grossman, 2007 Summer School

Low-level feature: Address-of field

» Let client update fields of an existential package
— access only through pattern-matching
— variable pattern copies fields

» A reference pattern binds to the field’s address:

void apply2(struct T x) {
let T{<'b> .f=fn, .env=*ev} = x;
// ev : 'b*, fn : int(* int, "b)
fn (42, *ev) ;

C uses &x.env; we use a reference pattern

25 July 2007 Dan Grossman, 2007 Summer School 36

More on reference patterns

» Orthogonality: already allowed in Cyclone’s other
patterns (e.g., tagged-union fields)

+ Can be useful for existential types:
struct Pr {<a> "a fst; ‘'a snd; };
void swap<'a>('a* x, ‘a* y);

void swapPr(struct Pr pr) {
let Pr{<'b> .fst=*a, .snd=*b} = pr;
swap (a,b) ;

25 July 2007 Dan Grossman, 2007 Summer School 37

Summary of features

» struct definition can bind existential type variables

« construction, destruction traditional
* mutation via struct assignment
« reference patterns for aliasing

A nice adaptation to a “safe C” setting?

25 July 2007 Dan Grossman, 2007 Summer School 38

Explaining the problem

* Violation of type safety

» Two solutions (restrictions)

* Some non-problems

25 July 2007 Dan Grossman, 2007 Summer School 39

Oops!

struct T {< a> void (*f) (int, a); "a env;};

void ignore(int x, int y) {}
void assign(int x, int* p) { *p = x; }

void g(int* ptr) {
struct T pkgl = T(ignore, OxBAD); //o=int
struct T pkg2 = T(assign, ptr); //0=int*
let T{<'b> .f=fn, .env=*ev} = pkg2;
//alias
rkg2 = pkgl; //mutation
£fn (37, *ev); //write 37 to 0xBAD

}

25 July 2007 Dan Grossman, 2007 Summer School 40

With pictures...

pho Pz

let T{< b> .f=fn, .env=*ev} =pkg2; //alias

fn‘ assign ‘ ev‘

25 July 2007 Dan Grossman, 2007 Summer School 41

With pictures...

—
pkg1‘ ignore ‘OXABCD‘ png‘ assign‘ ‘

fn‘ assign ‘ ev‘

pkg2 = pkgl; //mutation

fn‘ assign‘ ev‘ | ‘

25 July 2007 Dan Grossman, 2007 Summer School 42

With pictures...

1

fn‘ assign‘ ev‘ | ‘

fn (37, *ev); //write 37 to 0xABCD

call assign with 0xABCD for p:

void assign(int x, int* p) {*p = x;}

25 July 2007 Dan Grossman, 2007 Summer School 43

What happened?

let T{< b> .f=fn, .env=*ev} =pkg2; //alias
pkg2 = pkgl; //mutation
fn (37, *ev); //write 37 to 0xABCD

1. Type b establishes a compile-time equality relating
types of £n (void (*£) (int, ‘b)) and ev (b¥*)

2. Mutation makes this equality false
3. Safety of call needs the equality

We must rule out this program...

25 July 2007 Dan Grossman, 2007 Summer School 44

Two solutions

Solution #1:

Reference patterns do not match against fields of
existential packages

Note: Other reference patterns still allowed
= cannot create the type equality
Solution #2:

Type of assignment cannot be an existential type (or
have a field of existential type)

Note: pointers to existentials are no problem

= restores memory type-invariance

25 July 2007 Dan Grossman, 2007 Summer School 45

Independent and easy

 Either solution is easy to implement

» They are independent: A language can have two
styles of existential types, one for each restriction

» Cyclone takes solution #1 (no reference patterns for
existential fields), making it a safe language without
type-invariance of memory!

25 July 2007 Dan Grossman, 2007 Summer School 46

Are the solutions sufficient (correct)?

« Small formal language proves type safety

» Highlights:
— Left vs. right distinction
— Both solutions
— Memory invariant (necessarily) includes:

“if a reference pattern is used for a location, then
that location never changes type”

25 July 2007 Dan Grossman, 2007 Summer School 47

Nonproblem: Pointers to witnesses

struct T2 {< a>

eid (*f) (int, "a);
S
let T2{< b> .f=fn, = pkg2;
pkg2 = pkgl;

fn‘ assign ‘ ev‘ ‘

25 July 2007 Dan Grossman, 2007 Summer School 48

Nonproblem: Pointers to packages

struct T * p = &pkgl;
P = &pkg2;

i

Aliases are fine.
Aliases of pkg1 at the “unpacked type” are not.

25 July 2007 Dan Grossman, 2007 Summer School 49

Problem appears new

» Existential types:
— seminal use [Mitchell/Plotkin 1985]
— closure/object encodings [Bruce et al, Minimade et al, ..
— first-class types in Haskell [Laufer]
None incorporate mutation
» Safe low-level languages with 3
— Typed Assembly Language [Morrisett et al]
— Xanadu [Xi], uses 3 over ints
None have reference patterns or similar
» Linear types, e.g. Vault [DeLine, Fahndrich]
No aliases, destruction destroys the package

25 July 2007 Dan Grossman, 2007 Summer School 50

1

Duals?

« Two problems with a, mutation, and aliasing
— One used V, one used 3
— So are they the same problem?

» Conjecture: Similar, but not true duals

+ Fact: Thinking dually hasn’t helped me here

25 July 2007 Dan Grossman, 2007 Summer School 51

The plan from here

« Brief tour of Cyclone polymorphism
» C-level polymorphic references
— Formal model with “left” and “right”
— Comparison with actual languages
» C-level existential types
— Description of “new” soundness issue
— Some non-problems
* C-level type sizes
— Not a soundness issue

25 July 2007 Dan Grossman, 2007 Summer School 52

Sizein C

C has abstract types (not just void¥*):
struct T1;
struct T2 {
int len;
int arr[*];//C99, much better than [1]
}i

And rules on their use that make sense at the C-level:*

E.g., variables, fields, and assignment targets cannot
have type struct T1.

* Key corollary: C hackers don’t mind the restrictions

25 July 2007 Dan Grossman, 2007 Summer School 53

Size in Cyclone

* Kind distinction among:
1. B *pointer size” <
2. M*“known size” <
3. A*unknown size”

» Killer app: Cyclone interface to C functions
void memcopy<'a>(‘a*, a*, sizeof t<'a>);

Should we be worried about soundness?

25 July 2007 Dan Grossman, 2007 Summer School 54

Why is size an issue in C?

“Only” reason C restricts types of unknown size:
Efficient and transparent implementation:

— No run-time size passing

— Statically known field and stack offsets

This is important for translation, but has nothing to do
with soundness

Indeed, our formal model is “too high level” to motivate
the kind distinction

25 July 2007 Dan Grossman, 2007 Summer School 55

The plan from here

« Brief tour of Cyclone polymorphism
» C-level polymorphic references
— Formal model with “left” and “right”
— Comparison with actual languages
» C-level existential types
— Description of “new” soundness issue
— Some non-problems
* C-level type sizes
— Not a soundness issue
» Conclusions

25 July 2007 Dan Grossman, 2007 Summer School

Conclusions

If you see an a near an assignment statement:
* Remain vigilant
» Do not be afraid of C-level thinking

 Surprisingly:
— This work has really guided the design and
implementation of Cyclone

— The design space of imperative, polymorphic
languages is not fully explored

— “Dan’s unsoundness” has come up > n times

» Have (and use) datatypes with the “other”
solution

25 July 2007 Dan Grossman, 2007 Summer School 57

10

