Summer School on
Language-Based Techniques for Integrating with the External World

Types for Safe C-Level Programming
Part 3: Basic Cyclone-Style Region-
Based Memory Management

Dan Grossman
University of Washington
26 July 2007

C-level Quantified Types

» As usual, a type variable hides a type’s identity

— Still usable because multiple in same scope hide
the same type
» For code reuse and abstraction
» Butso far, if you have a t* (and t has known size),
then you can dereference it

— If the pointed-to location has been deallocated,
this is broken (“should get stuck”)

— Cannot happen in a garbage-collected language
= All this type-variable stuff will help us!

©

26 July 2007 Dan Grossman, 2007 Summer School

Safe Memory Management

» Accessing recycled memory violates safety (dangling
pointers)

* Memory leaks crash programs

* In most safe languages, objects conceptually live
forever

» Implementations use garbage collection
« Cyclone needs more options, without sacrificing

safety/performance

26 July 2007 Dan Grossman, 2007 Summer School 3

The Selling Points

» Sound: programs never follow dangling pointers
» Static: no “has it been deallocated” run-time checks

» Convenient: few explicit annotations, often allow
address-of-locals

» Exposed: users control lifetime/placement of objects
» Comprehensive: uniform treatment of stack and heap

» Scalable: all analysis intraprocedural

26 July 2007 Dan Grossman, 2007 Summer School 4

Regions

« ak.a. zones, arenas, ...
» Every object is in exactly one region

 All objects in a region are deallocated
simultaneously (no £ree on an object)

 Allocation via a region handle

An old idea with some support in languages (e.g., RC)
and implementations (e.g., ML Kit)

26 July 2007 Dan Grossman, 2007 Summer School 5

Cyclone Regions

» heap region: one, lives forever, conservatively GC'd
» stack regions: correspond to local-declaration blocks:
{int x; int y; s}

» dynamic regions: lexically scoped lifetime, but
growable:
{ region r; s}

 allocation: rnew (r, 3), where r is a handle

* handles are first-class
— caller decides where, callee decides how much
— heap’s handle: heap_region
— stack region’s handle: none

26 July 2007 Dan Grossman, 2007 Summer School 6

That’s the Easy Part

The implementation is dirt simple because the type
system statically prevents dangling pointers

The Big Restriction

» Annotate all pointer types with a region name (a type
variable of region kind)
« int*p can point only into the region created by the
construct that introduces p
— heap introduces py
— L:.. introduces p_
— {region r; s} introduces p,
r has type region_t<p. >

26 July 2007 Dan Grossman, 2007 Summer School 8

void £() { int* g(region_t r) {
int* x; return rnew(r,3);
if(1) | }
int y=0; void £() {
X=8&Y; int* x;
} { region r;
*x; x=g(r) ;
} }
*x;
}
26 July 2007 Dan Grossman, 2007 Summer School 7
So What?

Perhaps the scope of type variables suffices

V?ld £0 A * type of x makes no sense
int*p, x;
if(1) { * good intuition for now
L: i =0; . . .
;f;’ y 0 * but simple scoping will not
) =8y suffice in general
*x;
}
26 July 2007 Dan Grossman, 2007 Summer School 9

Where We Are

- Basic region constructs

» Type system annotates pointers with type variables
of region kind

» More expressive: region polymorphism

» More expressive: region subtyping

* More convenient: avoid explicit annotations
» Revenge of existential types

26 July 2007 Dan Grossman, 2007 Summer School 10

Region Polymorphism

Apply everything we did for type variables to region
names (only it's more important!)

void swap (int *p, x, int *p, y){
int tmp = *x;
*x = *y;
*y = tmp;

}

int*p sumptr(region_ t<p> r, int x, int y){
return rnew(r) (x+y);

}

26 July 2007 Dan Grossman, 2007 Summer School 11

Polymorphic Recursion

void fact(int*p result, int n) {
L: int x=1;
if(n > 1) fact<p.>(&x,n-1);
*result = x*n;

int g = 0;

int main() {
fact<p,>(&g,6) ;
return g;

}

26 July 2007 Dan Grossman, 2007 Summer School 12

Type Definitions

struct ILst<p,,p,> {
int*p, hd;
struct ILst<p,,p,> *p, tl;
}i
* What if we said 1Lst <p,,p,> instead?

» Moral: when you're well-trained, you can follow your
nose

26 July 2007 Dan Grossman, 2007 Summer School 13

Region Subtyping

If p points to an int in a region with name p,, is it ever
sound to give p type int* p,?

» Ifso, letint*p, < int*p,

» Region subtyping is the outlives relationship
void f() { region rl; .. { region r2; .. }}

» But pointers are still invariant:
int*p,*p < int*p,*p onlyifp, =p,

« Still following our nose

26 July 2007 Dan Grossman, 2007 Summer School 14

Subtyping cont’d

* Thanks to LIFO, a new region is outlived by all others
* The heap outlives everything

void £ (int b, int*p, pl, int*p, p2) {
L: int*p, p;

if(b) p=pl; else p=p2;

/* ...do something with p... */
}

* Moving beyond LIFO restricts subtyping, but the user
has more options

26 July 2007 Dan Grossman, 2007 Summer School 15

Where We Are

» Basic region region constructs

» Type system annotates pointers with type variables
of region kind

» More expressive: region polymorphism

» More expressive: region subtyping

* More convenient: avoid explicit annotations
» Revenge of existential types

26 July 2007 Dan Grossman, 2007 Summer School 16

Who Wants to Write All That?

* Intraprocedural inference
— determine region annotation based on uses
— same for polymorphic instantiation
— based on unification (as usual)
— so forget all those L: things

* Restis by defaults

— Parameter types get fresh region names (so
default is region-polymorphic with no equalities)

— Everything else (return values, globals, struct
fields) gets py

26 July 2007 Dan Grossman, 2007 Summer School 17

Examples

void fact(int* result, int n) {
int x = 1;
if(n > 1) fact(&x,n-1);
*result = x*n;
}
void g(int*p* pp, int*p p) { *pp = p; }

» The callee ends up writing just the equalities the
caller needs to know; caller writes nothing

» Same rules for parameters to structs and typedefs
* In porting, “one region annotation per 200 lines”

26 July 2007 Dan Grossman, 2007 Summer School 18

But Are We Sound?

» Because types can mention only in-scope type
variables, it is hard to create a dangling pointer

» But not impossible: an existential can hide type
variables

« Without built-in closures/objects, eliminating
existential types is a real loss

« With built-in closures/objects, you have the same
problem: (fn x -> (*y) + x) : int->int

26 July 2007 Dan Grossman, 2007 Summer School 19

The Problem

struct T { <0>
int (*f) (a);
a env;

}i

int read(int*p x) { return *x; }

struct T dangle() {
L: int x = 0;

struct T ans =

T (read<p,>, &x) ; //int*getaddr

return ans;

26 July 2007 Dan Grossman, 2007 Summer School 20

And The Dereference

void bad() {
let T{ .f=fp, .env=ev} = dangle();
fp (ev);

}

Strategy:

* Make the system “feel like” the scope-rule except
when using existentials

» Make existentials usable (strengthen struct T)

+ Allow dangling pointers, prohibit dereferencing them

26 July 2007 Dan Grossman, 2007 Summer School 21

Capabilities and Effects

= Attach a compile-time capability (a set of region
names) to each program point

» Dereference requires region name in capability

» Region-creation constructs add to the capability,
existential unpacks do not

» Each function has an effect (a set of region names)
— body checked with effect as capability
— call-site checks effect (after type instantiation) is a
subset of capability

26 July 2007 Dan Grossman, 2007 Summer School

u
3

Not Much Has Changed Yet...

If we let the default effect be the region names in the
prototype (and p,), everything seems fine

void fact(int*p result, int n ;{p}) {
L: int x =1;
if(n > 1) fact<p,>(&x,n-1);
*result = x*n;
}
int g = 0;
int main(;{}) {
fact<p,>(&g,6) ;
return g;

}

26 July 2007 Dan Grossman, 2007 Summer School 23

But What About Polymorphism?

struct Lst<a> {
a hd;
struct Lst<o>* tl;
Y
struct Lst<f>* map (B £(a ;??),
struct Lst<o> *p 1
i??)
» There’s no good answer
» Choosing {} prevents using map for lists of non-heap
pointers (unless £ doesn’t dereference them)
» The Tofte/Talpin solution: effect variables
a type variable of kind “set of region names”

26 July 2007 Dan Grossman, 2007 Summer School 24

Effect-Variable Approach

» Let the default effect be:
— the region names in the prototype (and py)
— the effect variables in the prototype
— a fresh effect variable

struct Lst<f>* map (
B f(a; &),
struct Lst<o> *p 1
;e + g+ (P

26 July 2007 Dan Grossman, 2007 Summer School 25

It Works

struct Lst<f>* map (
B £(a ; &),
struct Lst<o> *p 1
;e + g+ {p}h);

int read(int*p x ;{p}+e;) { return *x; }

void g(;{}) {
L: int x=0;
struct Lst<int*p, >*p, 1 =
new Lst(&x,NULL) ;
map< O=int*p, B=int p=p, &,=p, £,={} >
(read<e;={} p=p,>, 1);
}

26 July 2007 Dan Grossman, 2007 Summer School

)
S

Not Always Convenient

« With all default effects, type-checking will never fail
because of effects (!)

« Transparent until there’s a function pointer in a struct:

struct Set<a,e> {
struct Lst<o> elts;
int (*cmp) (a,a; e)
Y
Clients must know why & is there

* And then there’s the compiler-writer
It was time to do something new

26 July 2007 Dan Grossman, 2007 Summer School 27

Look Ma, No Effect Variables

 Introduce a type-level operator regions(t)

* regions(t) means the set of regions mentioned in t,
so it’s an effect

* regions(t) reduces to a normal form:
— regions(int) = {}
— regions(t*p) = regions(t) + {p}
— regions((t4,..., T,) > T =
regions(t,) + ... + regions(t,,) + regions(t)
— regions(a) = regions(a)

26 July 2007 Dan Grossman, 2007 Summer School 28

Simpler Defaults and Type-Checking

» Let the default effect be:
— the region names in the prototype (and py)
— regions(a) for all a in the prototype

struct Lst<f>* map (
B £(a ; regions(a) + regions(B)),
struct Lst<o> *p 1
; regions(a)+ regions(B) + {p});

26 July 2007 Dan Grossman, 2007 Summer School 29

map Works

struct Lst<f>* map (
B £(a ; regions(a) + regions(B)),
struct Lst<o> *p 1
; regions(a) + regions(B) + {p});

int read(int *p x ;{p}) { return *x; }

void g(;{}) {
L: int x=0;
struct Lst<int*p >*p, 1 =
new Lst (&x,NULL) ;
map<o=int*p, B=int p=p,>
(read<p=p,>, 1);
}

26 July 2007 Dan Grossman, 2007 Summer School 30

Function-Pointers Work

« With all default effects and no existentials, type-
checking still won't fail due to effects

* And we fixed the struct problem:

struct Set<a> {

struct Lst<o> elts;

int (*cmp) (a,a ; regions(q))
Y

26 July 2007 Dan Grossman, 2007 Summer School 31

Now Where Were We?

» Existential types allowed dangling pointers, so we
added effects

» The effect of polymorphic functions wasn’t clear; we
explored two solutions

— effect variables (previous work)
— regions(t)
« simpler
« better interaction with structs
» Now back to existential types
— effect variables (already enough)
— regions(t) (need one more addition)

26 July 2007 Dan Grossman, 2007 Summer School 32

Effect-Variable Solution

struct T<e>{ <a>
int (*f) (a ;e);
a env;

Y

int read(int*p x; {p}) { return

struct T<{p,.}> dangle() {
L: int x = 0;
struct T ans =
T (read<p,>, &x) ; //int*p ret addr
return ans; X

} l

26 July 2007 Dan Grossman, 2007 Summer School 33

Cyclone Solution, Take 1

struct T { <o>
int (*f) (a ; regions(qQ));
a env;

}i

int read(int*p x; {p}) { return *x; }

struct T dangle() {
L:

int x = 0;
struct T ans =
T (read<p,>, &x) ;//int*p, (ot addr
return ans;
X
26 July 2007 Dan Grossman, 2007 Summer School 34

Allowed, But Useless!

void bad() {
let T{ .f=fp, .env=ev} = dangle();
fp(ev); // need regions (B)

}

* We need some way to “leak” the capability needed to
call the function, preferably without an effect variable

« The addition: a region bound

26 July 2007 Dan Grossman, 2007 Summer School 35

Cyclone Solution, Take 2

struct T<pg> { <0> 0> pg
int (*f) (a ; regions(aQ));
a env;

}i

int read(int*p x; {p}) { return *x; }

struct T<p,> dangle() {
L: int x = 0;
struct T<p,> ans =
T (read<p,>, &x) ;//int*p

return ans;

26 July 2007 Dan Grossman, 2007 Summer School 36

Not Always Useless

struct T<pgp> { <a> a> pg
int (*f) (a ; regions(qQ));
a env;

Y

struct T<p> no_dangle(region_t<p> ;{p});
void no_bad(region_t<p> r ;{p}) {
let T{ .f=fp, .env=ev} = no_dangle(r);
fp(ev); // have p and p => regions (B)

“Reduces effect to a single region”

26 July 2007 Dan Grossman, 2007 Summer School 37

Effects Summary

» Without existentials (closures,objects), simple region
annotations sufficed

= With hidden types, we need effects

» With effects and polymorphism, we need abstract
sets of region names

— effect variables worked but were complicated and
made function pointers in structs clumsy

— regions(a) and region bounds were our technical
contributions

26 July 2007 Dan Grossman, 2007 Summer School 38

We Proved It

» 40 pages of formalization and proof
* Heap organized into a stack of regions at run-time

* Quantified types can introduce region bounds of the
form e>p

* “Outlives” subtyping with subsumption rule
» Type Safety proof shows

— no dangling-pointer dereference

— all regions are deallocated (“no leaks”)
« Difficulties

— type substitution and regions(a)

— proving LIFO preserved

26 July 2007 Dan Grossman, 2007 Summer School 39

Scaling it up (another 3 years)

Region types and effects form the core of Cyclone’s
type system for memory management

» Defaults are crucial for hiding most of it most of the
time!

* But LIFO is too restrictive; need more options
— “Dynamic regions” can be deallocated whenever
— Statically prevent deallocation while “using”
— Check for deallocation before “using”

— Combine with unique pointers to avoid leaking the
space needed to do the check

— See SCP05/ISMMO04 papers (after PLDIO2 paper)

26 July 2007 Dan Grossman, 2007 Summer School 40

Conclusion

« Making an efficient, safe, convenient C is a lot of
work

« Combine cutting-edge language theory with careful
engineering and user-interaction

* Must get the common case right

« Formal models take a lot of taste to make as simple
as possible and no simpler

— They don't all have to look like ML or TAL

26 July 2007 Dan Grossman, 2007 Summer School 41

