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C-level Quantified Types

» As usual, a type variable hides a type’s identity

— Still usable because multiple in same scope hide
the same type
» For code reuse and abstraction
» Butso far, if you have a t* (and t has known size),
then you can dereference it

— If the pointed-to location has been deallocated,
this is broken (“should get stuck”)

— Cannot happen in a garbage-collected language
= All this type-variable stuff will help us!

©
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Safe Memory Management

» Accessing recycled memory violates safety (dangling
pointers)

* Memory leaks crash programs

* In most safe languages, objects conceptually live
forever

» Implementations use garbage collection
« Cyclone needs more options, without sacrificing

safety/performance
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The Selling Points

» Sound: programs never follow dangling pointers
» Static: no “has it been deallocated” run-time checks

» Convenient: few explicit annotations, often allow
address-of-locals

» Exposed: users control lifetime/placement of objects
» Comprehensive: uniform treatment of stack and heap

» Scalable: all analysis intraprocedural
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Regions

« ak.a. zones, arenas, ...
» Every object is in exactly one region

 All objects in a region are deallocated
simultaneously (no £ree on an object)

 Allocation via a region handle

An old idea with some support in languages (e.g., RC)
and implementations (e.g., ML Kit)
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Cyclone Regions

» heap region: one, lives forever, conservatively GC'd
» stack regions: correspond to local-declaration blocks:
{int x; int y; s}

» dynamic regions: lexically scoped lifetime, but
growable:
{ region r; s}

 allocation: rnew (r, 3), where r is a handle

* handles are first-class
— caller decides where, callee decides how much
— heap’s handle: heap_region
— stack region’s handle: none
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That’s the Easy Part

The implementation is dirt simple because the type
system statically prevents dangling pointers

The Big Restriction

» Annotate all pointer types with a region name (a type
variable of region kind)
« int*p can point only into the region created by the
construct that introduces p
— heap introduces py
— L:.. introduces p_
— {region r; s} introduces p,
r has type region_t<p. >
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void £() { int* g(region_t r) {
int* x; return rnew(r,3);
if(1) | }
int y=0; void £() {
X=8&Y; int* x;
} { region r;
*x; x=g(r) ;
} }
*x;
}
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So What?

Perhaps the scope of type variables suffices

V?ld £0 A * type of x makes no sense
int*p, x;
if(1) { * good intuition for now
L: i =0; . . .
;f;’ y 0 * but simple scoping will not
) =8y suffice in general
*x;
}
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Where We Are

- Basic region constructs

» Type system annotates pointers with type variables
of region kind

» More expressive: region polymorphism

» More expressive: region subtyping

* More convenient: avoid explicit annotations
» Revenge of existential types
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Region Polymorphism

Apply everything we did for type variables to region
names (only it's more important!)

void swap (int *p, x, int *p, y){
int tmp = *x;
*x = *y;
*y = tmp;

}

int*p sumptr(region_ t<p> r, int x, int y){
return rnew(r) (x+y);

}
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Polymorphic Recursion

void fact(int*p result, int n) {
L: int x=1;
if(n > 1) fact<p.>(&x,n-1);
*result = x*n;

int g = 0;

int main() {
fact<p,>(&g,6) ;
return g;

}
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Type Definitions

struct ILst<p,,p,> {
int*p, hd;
struct ILst<p,,p,> *p, tl;
}i
* What if we said 1Lst <p,,p,> instead?

» Moral: when you're well-trained, you can follow your
nose
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Region Subtyping

If p points to an int in a region with name p,, is it ever
sound to give p type int* p,?

» Ifso, letint*p, < int*p,

» Region subtyping is the outlives relationship
void f() { region rl; .. { region r2; .. }}

» But pointers are still invariant:
int*p,*p < int*p,*p onlyifp, =p,

« Still following our nose
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Subtyping cont’d

* Thanks to LIFO, a new region is outlived by all others
* The heap outlives everything

void £ (int b, int*p, pl, int*p, p2) {
L: int*p, p;

if(b) p=pl; else p=p2;

/* ...do something with p... */
}

* Moving beyond LIFO restricts subtyping, but the user
has more options
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Where We Are

» Basic region region constructs

» Type system annotates pointers with type variables
of region kind

» More expressive: region polymorphism

» More expressive: region subtyping

* More convenient: avoid explicit annotations
» Revenge of existential types
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Who Wants to Write All That?

* Intraprocedural inference
— determine region annotation based on uses
— same for polymorphic instantiation
— based on unification (as usual)
— so forget all those L: things

* Restis by defaults

— Parameter types get fresh region names (so
default is region-polymorphic with no equalities)

— Everything else (return values, globals, struct
fields) gets py
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Examples

void fact(int* result, int n) {
int x = 1;
if(n > 1) fact(&x,n-1);
*result = x*n;
}
void g(int*p* pp, int*p p) { *pp = p; }

» The callee ends up writing just the equalities the
caller needs to know; caller writes nothing

» Same rules for parameters to structs and typedefs
* In porting, “one region annotation per 200 lines”
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But Are We Sound?

» Because types can mention only in-scope type
variables, it is hard to create a dangling pointer

» But not impossible: an existential can hide type
variables

« Without built-in closures/objects, eliminating
existential types is a real loss

« With built-in closures/objects, you have the same
problem: (fn x -> (*y) + x) : int->int
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The Problem

struct T { <0>
int (*f) (a);
a env;

}i

int read(int*p x) { return *x; }

struct T dangle() {
L: int x = 0;

struct T ans =

T (read<p,>, &x) ; //int*getaddr

return ans;
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And The Dereference

void bad() {
let T{<B> .f=fp, .env=ev} = dangle();
fp (ev);

}

Strategy:

* Make the system “feel like” the scope-rule except
when using existentials

» Make existentials usable (strengthen struct T)

+ Allow dangling pointers, prohibit dereferencing them
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Capabilities and Effects

= Attach a compile-time capability (a set of region
names) to each program point

» Dereference requires region name in capability

» Region-creation constructs add to the capability,
existential unpacks do not

» Each function has an effect (a set of region names)
— body checked with effect as capability
— call-site checks effect (after type instantiation) is a
subset of capability
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Not Much Has Changed Yet...

If we let the default effect be the region names in the
prototype (and p,), everything seems fine

void fact(int*p result, int n ;{p}) {
L: int x =1;
if(n > 1) fact<p,>(&x,n-1);
*result = x*n;
}
int g = 0;
int main(;{}) {
fact<p,>(&g,6) ;
return g;

}
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But What About Polymorphism?

struct Lst<a> {
a hd;
struct Lst<o>* tl;
Y
struct Lst<f>* map (B £(a ;??),
struct Lst<o> *p 1
i??)
» There’s no good answer
» Choosing {} prevents using map for lists of non-heap
pointers (unless £ doesn’t dereference them)
» The Tofte/Talpin solution: effect variables
a type variable of kind “set of region names”
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Effect-Variable Approach

» Let the default effect be:
— the region names in the prototype (and py)
— the effect variables in the prototype
— a fresh effect variable

struct Lst<f>* map (
B f(a; &),
struct Lst<o> *p 1
;e + g+ (P
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It Works

struct Lst<f>* map (
B £(a ; &),
struct Lst<o> *p 1
;e + g+ {p}h);

int read(int*p x ;{p}+e;) { return *x; }

void g(;{}) {
L: int x=0;
struct Lst<int*p, >*p, 1 =
new Lst(&x,NULL) ;
map< O=int*p, B=int p=p, &,=p, £,={} >
(read<e;={} p=p,>, 1);
}
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Not Always Convenient

« With all default effects, type-checking will never fail
because of effects (!)

« Transparent until there’s a function pointer in a struct:

struct Set<a,e> {
struct Lst<o> elts;
int (*cmp) (a,a; e)
Y
Clients must know why & is there

* And then there’s the compiler-writer
It was time to do something new
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Look Ma, No Effect Variables

 Introduce a type-level operator regions(t)

* regions(t) means the set of regions mentioned in t,
so it’s an effect

* regions(t) reduces to a normal form:
— regions(int) = {}
— regions(t*p) = regions(t) + {p}
— regions((t4,..., T,) > T =
regions(t,) + ... + regions(t,, ) + regions(t)
— regions(a) = regions(a)
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Simpler Defaults and Type-Checking

» Let the default effect be:
— the region names in the prototype (and py)
— regions(a) for all a in the prototype

struct Lst<f>* map (
B £(a ; regions(a) + regions(B)),
struct Lst<o> *p 1
; regions(a)+ regions(B) + {p});
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map Works

struct Lst<f>* map (
B £(a ; regions(a) + regions(B)),
struct Lst<o> *p 1
; regions(a) + regions(B) + {p});

int read(int *p x ;{p}) { return *x; }

void g(;{}) {
L: int x=0;
struct Lst<int*p >*p, 1 =
new Lst (&x,NULL) ;
map<o=int*p, B=int p=p,>
(read<p=p,>, 1);
}
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Function-Pointers Work

« With all default effects and no existentials, type-
checking still won't fail due to effects

* And we fixed the struct problem:

struct Set<a> {

struct Lst<o> elts;

int (*cmp) (a,a ; regions(q))
Y
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Now Where Were We?

» Existential types allowed dangling pointers, so we
added effects

» The effect of polymorphic functions wasn’t clear; we
explored two solutions

— effect variables (previous work)
— regions(t)
« simpler
« better interaction with structs
» Now back to existential types
— effect variables (already enough)
— regions(t) (need one more addition)
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Effect-Variable Solution

struct T<e>{ <a>
int (*f) (a ;e);
a env;

Y

int read(int*p x; {p}) { return

struct T<{p,.}> dangle() {
L: int x = 0;
struct T ans =
T (read<p,>, &x) ; //int*p ret addr
return ans; X

} l
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Cyclone Solution, Take 1

struct T { <o>
int (*f) (a ; regions(qQ));
a env;

}i

int read(int*p x; {p}) { return *x; }

struct T dangle() {
L:

int x = 0;
struct T ans =
T (read<p,>, &x) ;//int*p, (ot addr
return ans;
X
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Allowed, But Useless!

void bad() {
let T{<B> .f=fp, .env=ev} = dangle();
fp(ev); // need regions (B)

}

* We need some way to “leak” the capability needed to
call the function, preferably without an effect variable

« The addition: a region bound
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Cyclone Solution, Take 2

struct T<pg> { <0> 0> pg
int (*f) (a ; regions(aQ));
a env;

}i

int read(int*p x; {p}) { return *x; }

struct T<p,> dangle() {
L: int x = 0;
struct T<p,> ans =
T (read<p,>, &x) ;//int*p

return ans;
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Not Always Useless

struct T<pgp> { <a> a> pg
int (*f) (a ; regions(qQ));
a env;

Y

struct T<p> no_dangle(region_t<p> ;{p});
void no_bad(region_t<p> r ;{p}) {
let T{<B> .f=fp, .env=ev} = no_dangle(r);
fp(ev); // have p and p => regions (B)

“Reduces effect to a single region”
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Effects Summary

» Without existentials (closures,objects), simple region
annotations sufficed

= With hidden types, we need effects

»  With effects and polymorphism, we need abstract
sets of region names

— effect variables worked but were complicated and
made function pointers in structs clumsy

— regions(a) and region bounds were our technical
contributions
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We Proved It

» 40 pages of formalization and proof
* Heap organized into a stack of regions at run-time

* Quantified types can introduce region bounds of the
form e>p

* “Outlives” subtyping with subsumption rule
» Type Safety proof shows

— no dangling-pointer dereference

— all regions are deallocated (“no leaks”)
« Difficulties

— type substitution and regions(a)

— proving LIFO preserved
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Scaling it up (another 3 years)

Region types and effects form the core of Cyclone’s
type system for memory management

» Defaults are crucial for hiding most of it most of the
time!

* But LIFO is too restrictive; need more options
— “Dynamic regions” can be deallocated whenever
— Statically prevent deallocation while “using”
— Check for deallocation before “using”

— Combine with unique pointers to avoid leaking the
space needed to do the check

— See SCP05/ISMMO04 papers (after PLDIO2 paper)
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Conclusion

« Making an efficient, safe, convenient C is a lot of
work

« Combine cutting-edge language theory with careful
engineering and user-interaction

* Must get the common case right

« Formal models take a lot of taste to make as simple
as possible and no simpler

— They don't all have to look like ML or TAL
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