Scalable Defect Detection

Manuvir Das, Zhe Yang, Daniel Wang
Center for Software Excellence
Microsoft Corporation

Part Il
High-Quality Scalable Checking

using modular path-sensitive analysis

Zhe Yang
Center for Software Excellence

Microsoft

Secret Sauce for a Practical
Checker

Keys to high-quality scalable checkers
* Scalability: checking each function in isolation
* Quality: path sensitivity and defect prioritization

Approach proven by our experience at Microsoft

* espX: buffer-overrun checker, widely deployed
and used to get 20,000+ bugs found and fixed

* uSpaCE: checker-building SDK, used by non-
experts to build domain-rule-enforcing checkers

7/20/2007 Quality Checker via Path Ses

Scalability and Quality Overview

Scalability: Inter-Procedural Analysis?

Lecture 1 (by Manuvir): scalable inter-procedural
analysis is possible, with

* Good Techniques: summarization, etc.

* Constraints on problems: finite automata, etc.

But
* Intractable for complex states (buffer overrun).

* Mismatch with the modular reasoning by devs.
— “If an error is detected, who to blame”

7/20/2007 Quality Checker via Path Sensitive Analysis

Linear Scalability by Modular Analysis

If we can afford to analyze each function in
isolation
e Scales up linearly in # of functions and scales out
* Allows using complex states for accuracy
But it’s a big “if”.
* For example, is this function safe?
void f(int *buf, size_t n)
{ for (size_t i=0; i <= n; i ++) buf[i] =0;}
* Modular analysis requires specifications of the
usage context (e.g., “buf has n elements”).

7/20/2007 Quality Checker via Path Sensitive Analy




Assumption: specification possible

* “Did you say specifications?”
— Isn’t it a pipe dream to design practical spec langs?
— Who is going to add specs to millions of functions?
* This is the subject of Lecture 3 on SAL (by Dan)
* For now, assume functions come equipped with
necessary specifications of contexts.
— Say “void f(int *buf, size_t n)” >
“void f(int<n> *buf, size_t n)”

* So we can discuss modular checking in full detail.

7/20/2007 Quality Checker via Path Sensitive Analysis

Quality: The measures

Accurate: fix rate (% bugs fixed), false positive

rate (% of reported bugs deemed noise)

— DeV's perspective: frustrated with bogus issues.

* Comprehensive: validation rate (% of safe
code), false negative rate (% of missed issues)
— Exec’s perspective: measure of

coverage/progress.
e Clear and Actionable: easy to understand the
reported defects and take appropriate actions

7/20/2007 Quality Checker via Path Sensitive Analysis 8

Quality Measures:
Historical Perspective at Microsoft

e Early years
— Bugs found by static analysis met with excitement
— Accuracy is the obvious tool quality for devs

» After a few years of worm-induced news
— “how many bugs are left?”

— Measure of coverage calls for comprehensive
validation

e Use of symbolic abstraction improved coverage
— “l can’t understand what this message is saying.”
— “There are so many issues and so little time left.”
— Messages need to be clear and prioritized

7/20/2007 Quality Checker via Path Sensitive Analysis

Achieving Quality

Clarity for developers to take action

* Using path-sensitive analysis instead of data
flow analysis (since devs reason with paths)

Conflicting Goals: (Accurate) defect detection vs
(comprehensive) validation?

* Both: use comprehensive validation as a basis,
and then expose defects through prioritization

7/20/2007 Quality Checker via Path Sensitive Analysis 10

Detection

Safe
Unsafe

Reported

oomn

Unknown

7/20/2007 Quality Checker via Path Sensitive Analysis 1

Validation

Bl vaiidated
Bl unsafe

[ Unknown

7/20/2007 Quality Checker via Path Sensitive Analysis 12




Comprehensive checking

Validated
Unsafe

High priority

oomn

Unknown

7/20/2007 Quality Checker via Path Sensitive Analysis 13

Comprehensive checking:
espX buffer overrun numbers on Vista

Bl validated
Bl unsafe
1 High priority
[ Unknown

[ICentrally filed bugs: 20,000+
* Fix rate (=) > 84%
(]

For mutable string parameters:
Il Validated >91%
[J“How many bugs are left?” < 9%

7/20/2007 Quality Checker via Path Sensitive Analysis 14

espX: Buffer Overrun Checker

Outline of this section of talk

* Basics of a buffer-overrun checker

* Prior Art: merge-based dataflow analysis
e Our Approach: path-sensitive analysis

* Warning bucketing for prioritization

7/20/2007 Quality Checker via Path Sensitive Analysis 16

Basics: Validation of Buffer Accesses

M validated accesses
B Unsafe accesses

1 Unknown

7/20/2007 Quality Checker via Path Sensitive Analysis 17

Example 1

BYTE<n> *Alloc(size_t n);
void FillRects(RECT<n> *r, size_t n);
void FillPoints(POINT<n> *p, size_t n);

void Fill(unsigned int r, unsigned int p)

{
BYTE *buf = Alloc(r * sizeof(RECT) + p * sizeof(POINT));
FillRects((RECT *)buf, r);
buf +=r * sizeof(RECT); 16xr 8xp
FillPoints((POINT *)buf, p));

} Rectangles w

7/20/2007 Quality Checker via Path Sensitive Analysis 18




“Instrumenting” the Program

BYTE *buf = Alloc(r * sizeof(RECT) +
p * sizeof(POINT));

assume: offset(buf) =0 BYTE<n> *Alloc(size_t n);
bcap(buf) =16 xr+8xp
assert: offset(buf) + 16 x r < bcap(buf) FillRects(RECT<n> *r, size_t n);

FillRects((RECT *)buf, r);

buf +=r * sizeof(RECT);

assert: offset(buf) + 8 x p < bcap(buf) FillPoints(POINT<n> *p, size_t n);
FillPoints((POINT *)buf, p);

7/20/2007 Quality Checker via Path Sensitive Analysis 19

Analysis of Example 1

BYTE *buf = Alloc(r * sizeof(RECT) + {rz0;p=0}
p * sizeof(POINT));
assume: offset(buf) =0
bcap(buf) =16 xr+8xp
assert: offset(buf) + 16 x r < bcap(buf)
FillRects((RECT *)buf, r);

{bcap(buf) =16 xr + 8 x p;
offset(buf) = 0; r 2 0; p 2 0}
[offset(buf) + 16 x r =16 x r
< bcap(buf)] PASS

buf +=r * sizeof(RECT); {bcap(buf) =16 xr + 8 x p;
offset(buf) =16 xr; r20; p 2 0}

assert: offset(buf) + 8 x p < bcap(buf) [offset(buf) + 8 x p =

FillPoints((POINT *)buf, p); 16 xr+8 x p < becap(buf)] PASS

Need symbolic state tracking +
linear integer theorem prover

7/20/2007 Quality Checker via Path Sensitive Analysis 20

Dataflow Analysis

Task: find invariants at CFG-nodes

Find a map A:V 2 Abs
stable under T: E x Abs 2Abs
Abs: lattice of abstract values
Stability condition:
AWw) = {Tle, Atu): e = (u, v) €E}
or A = T(A) is a fixed-point of T
If T monotone, @bs complete, then
leastA= {T/(L):i=0,..}
Given flow graph (V, E) This terminates if Abs finite in
height.

212072007 iy MOrkslist algorithm used in practice.

Dataflow Analysis for Buffer Overruns
[Dor et al:PLDI 2003]

To track the symbolic states, use a dataflow analysis
¢ Abs = Set of Linear Inequality Constraints

e T :suitably abstracted from concrete semantics
But what about the join operator?

* |.e., how do you merge two sets of linear
constraints into another set of linear constraints
(that is implied by both of them)?

* Answer: Polyhedra (Cousot/Halbwachs:POPL78)

7/20/2007 Quality Checker via Path Sensitive Analysis 2

The Lattice of Polyhedra

* Geometric Interpretation:
— One linear inequality gives a half-space

— A set of linear inequalities is a (maybe-not-closed)
convex polyhedron (n-dimensional polygon)

* Join-operator needs to find the smallest
enclosing polyhedron (convex hull problem)

* Algorithm involves lots of linear programming
* infinite-height lattice: termination for loops?

7/20/2007 Quality Checker via Path Sensitive Analysis 23

What about Loops ?

7/20/2007 Quality Checker via Path Sensitive Analysis 2




Loop Widening

v
C{istiz1} (iz1)

7/20/2007 Quality Checker via Path Sensitive Analysis

Handling loops

* Use a loop widening algorithm to ensure that
the analysis terminates

— Widening operator: Weaken the constraints along
a back edge of a loop in a way that ensures that
finite number of such weakenings is sufficient

— Mathematically, any chain formed by repeated
application of the widening operator is finite.

7/20/2007 Quality Checker via Path Sensitive Analysis 2

Issues with Polyhedra

e Complexity (implementation & cost)
» Several restricted version proposed and used:
— Octagons (at most two variables; coefficients 1, -1)
— Arbitrary predetermined shapes.
* Inaccuracy
— The convex hull won’t be accurate closure
— Real-numbered coefficients would appear
— An approximation for Integer Linear Constraints
Bigger issue: feedback to developer

7/20/2007 Quality Checker via Path Sensitive Analysis 27

Example 2

BYTE<size> *Alloc(size_t size);
void StringCopy(wchar_t<n>*dest, const wchar_t {null-terminated} *src, size_t n);

void ProcessString(wchar_t *str)
{

wchar_t buf[100];
wchar_t *tmp = &buf;

int len = weslen(str) + 1;
if (len > 100)
tmp = (wchar_t *)Alloc(len);  Should be Alloc(len * sizeof(wchar_t))

StringCopy(tmp, str, len); Buffer overrun

}
{bcap(tmp) = 200; len < 100} vs {bcap (tmp) = len; len > 100}

7/20/2007 Quality Checker via Path Sensitive Analysis 28

Example 2 with Polyhedra

* Merging {bcap(tmp) = 200; len < 100} and
{bcap(tmp) = len; len > 100}

. bcap(tmp) ;
e Thatis: ’
bcap(tmp) > len
bcap(tmp)+len > 200
200¢
bcap(tmp) = len+200
* Obscure message to devs Len = 120;
) 100[— bcap(tmp) = 200
Need path-based analysis: Bogus Values!
“overflow when len 2 100” s el
7/20/2007 Quality Checker via Path Sensitive Analysis 29

Sharing in Path Sensitive Analysis

: “ ~
g £ £
i g g
v ¥
. v
v
Paths with common Paths which reach the
prefix share analysis same program point with

the same symbolic state
share a suffix

7/20/2007 Quality Checker via Path Sensitive Analysis 30




Path-Sensitive Dataflow Analysis

* Inits simplest form, path-sensitive analysis
can be characterized as a dataflow analysis

* Find A: V =2 Set(state) using t: E x state Pstate

 T: Set(state) PSet(state) is the point-wise
lifted version of t, using set-union.

* Set(state) is a complete lattice; T is monotone

e But Set(state) is infinite in height when the
universe of states is infinite.

7/20/2007 Quality Checker via Path Sensitive Analysis 31

Widening in Path-Sensitive Analysis

* |ssue: We share paths only when the symbolic
states are the same at a node; but loops induce
infinite number of states.

* “Widening? But what state to widen against?”
* |dea: at back edge, widen against the path itself

* Solution: extend the state to record the path-
history of states at each loop entry node.

* WidenedState = LoopNestinglLevel 2 State
[s1, S, s3]t state is s; now, and was s; at loop level
i

* Exercise: work out the detail

7/20/2007 Quality Checker via Path Sensitive Analysis 2

Fast Theorem Prover
for Integer Linear Inequalities?

* Not asking for: constraint solver,
completeness

* Observation 1: developers reasoning about
linear constraints in a simple way; often: a
proof is just a linear combination with small
integer coefficients.

¢ Observation 2: difference constraint theorem
prover is easy to construct. [CLR:alg-textbook]

* Exercise: figure out an algorithm.

7/20/2007 Quality Checker via Path Ses alysis

Elements of the checker

* Symbolic state tracking with linear inequalities
— Path sensitive analysis
— Path sensitive loop widening

* Fast linear integer theorem prover

7/20/2007 Quality Checker via Path Sen:

Defect Bucketing/Prioritization

Validated
Unsafe

High priority

oomn

Unknown

7/20/2007 Quality Checker via Path Sensitive Analysis 35

| Example 1 — provable error

if (CanProve (buffer index < buffer size))
Validated Access
else
if (CanProve (buffer index >= buffer size))
Provable Error
else

e e.g. passing byte count instead of element count

wcscpy_s (buf, sizeof (buf) ,s); espX Warning 26000

7/20/2007 Quality Checker via Path Sensitive Analysis 36




1 Example 2 —incorrect validation

int glob[BUF_SIZE];
bool read(int i, int *val) {
if (i > BUF_SIZE) // Off by one
return false;
assert: i < BUF_SIZE
*val = glob[i];

espX Warning 26014:
Cannot prove: i < BUF_SIZE
Can prove: i < BUF_SIZE + 1

e.g. MS01-033(Code Red), MS04-036(NNTP), MS04-035(SMTP)

7/20/2007 Quality Checker via Path Sensitive Analysis 37

|

Example 3 — missing validation

void Transform(char<size> *dest,
const char{null-terminated} *src,
size_t size) {
assert: strlen(src) + 1 <= size
memcpy (dest, src, strlen(src) + 1);

espX Warning 26015:
Constraint set does not relate size and strlen(src)

e.g. MS03-026(Blaster), MS05-039 (Zotob)

7/20/2007 Quality Checker via Path Sensitive Analysis 38

Warning bucketing criteria

¢ Are heuristics based on observations of
common coding mistakes

* Are semantic, not syntactic, in nature
— Makes them robust

 Validated by security bulletin bug data and
Watson crash data

7/20/2007 Quality Checker via Path Sensitive Analysis 39

Precision Improvements

B validated
Bl unsafe
[1 High priority
[ Unknown

7/20/2007 Quality Checker via Path Sensitive Analysis 40

Loop Invariant Inference

void StripSpaces(char<n> *dest, char *src, size_tn)
{
while (*src 1=0&&n>1) {
assume:n>1
if (*src 1=") {
assert: offset(dest) < ngy
*dest++ = *src;

Need loop invariant
offset(dest) + n =n,

n-;
}
SrcH;
}
*dest = \0’;
}
espX deduces offset(dest) and n are synchronized variables in the loop

7/20/2007 Quality Checker via Path Sensitive Analysis a1

Combining Theorem Provers

* Example: uuencode into 6-bit ASClIs

void uuencode(BYTE<n> *src,
BYTE<(n+2)/3*4> *dest, size_t n)
(Real spec added by a developer to real code)
* A second layer of theorem prover to
uninterpreted operations, integer divisions,
modular arithmetic, bitwise operations & etc.

7/20/2007 Quality Checker via Path Sensitive Analysis a2




espX Summary

* espX have made comprehensive defect detection
a reality for buffers

— Tens of thousands of bugs found and fixed

— “How many bugs are left ?”
< 9% for mutable string buffers in Vista

— Specifications also important (Details in Lecture 3)
* Achieved using

— Modular Path-sensitive analysis

— Careful warning bucketing and prioritization

— Assortment of precision-refinement techniques

7/20/2007 Quality Checker via Path Sensitive Analysis 43

Devs want to build good checkers, too

* Developers who are domain experts often
want to enforce certain domain-specific rules

* Encouraged by our work, they want to go static
* E.g.: Project Goldmine (Internationalization)

void IssueMessage ()
{
: :MessageBox (NULL, Hard-coded strings
L"Failed to load file”, < passed to user facing APl
MB_ERROR |MB_OK) ;

7/20/2007 Quality Checker via Path Sensitive Analysis a4

Developer-Generated Analyses:
puSpaCE

(Or Better: Yo )

How Do We Share Our Expertise?

* We understand static analysis well, but we
can’t solve problems for all domains

* MS solution: an SDK for domain experts to
build path-sensitive dataflow analysis

e Challenge: intelligible explanation, i.e.,
without lattice, monotone function, join, etc.

e Our explanation: based on “Path Iteration”

7/20/2007 Quality Checker via Path Sensitive Analysis 6

Path Iteration

* Get set of paths; traverse them separately
* Simulation-style code:

int £(int i, int n)

For all paths p.
{

;or all edges e in p.
Sl
* Limitation:
— Cannot have full coverage
— No sharing of analysis across paths

7/20/2007 Quality Checker via Path Sensitive Analysis a7

Path Iteration

* Get set of paths; traverse them separately
* Explicit simulation state:

int £(int i, int n)

For all paths p.
{
D = Oy
For all edges e in p.
O=t(®, e);
}
“transfer function”

» Benefit of abstraction
— Under-the-hood improvements

7/20/2007 Quality Checker via Path Sensit




Path-Sensitive Analysis

» Define transfer function with explicit abstract state
* The uSpaCE engine maintains
— A state set pr. node
— Reuses path computations
— Covers state space 100%

int £(int i, int n)

* The fine print:
— State domain needs to be finite
— Or else widening operator needed

}

7/20/2007 Quality Checker via Path Sensitive Analysis 9

MSpaCE SDK for Building Checks

* SDK: a concise core (with virtual transfer functions)
+ oracles (memory model, spec semantics, etc.)
e Multiple clients in one year
— Goldmine (C/C++/.NET): intl. checker & meta data gen.
— espC (C/C++): concurrency checker
— iCatcher (.NET): cross-site scripting checker for ASP.NET
— NullPtr (C/C++/.NET): spec-based null-ptr checker
* All these clients have found real bugs;
they are getting deployed company wide

7/20/2007 Quality Checker via Path Sensitive Analysis 50

Summary

Keys to high-quality scalable checkers
* Scalability: checking each function in isolation
* Quality: path sensitivity and defect prioritization

Approach proven by our experience at Microsoft

* espX: buffer-overrun checker, widely deployed
and used to get 20,000+ bugs found and fixed

* uSpaCE: checker-building SDK, used by non-
experts to build domain-rule-enforcing checkers

7/20/2007 Quality Checker via Path Sensitive Analysis 51

Exercises & Recommended Readings
for “High-Quality Scalable Checking using Modular Path-Sensitive Analysis'

Exercises:
L

widaning. Prove tht th gt teminates.
2

Forone defect

iryoueet e, Soutions,comment,

Recommended Readings

On Buffer Access Checking

7/20/2007 Quality Checker via Path Sensitive Analysis 52

J ) o ! e
WICTCSUIL
http://www.microsoft.com/cse

http://research.microsoft.com/users/zhey
zhe.yang@microsoft.com

© 2007 Microsoft Corporation. Al rights reserved.
This presentation is for informational purposes only.
MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

7/20/2007 Quality Checker via Path Sensitive Analysis 53




