fault-tol-er-ant \'folt-'til(- 2)-ront\
adj : able to function in the
absence of a major component

Fault Tolerant Computing

Prof. David August/Prof. David Walker

Access from freeway
Private rail yard
CPU cooling towers
. Bios Building
. 1 & 5 Central Processing Unit
ranslstors Control Building
B il Bus Building

1/0 Building #1
512 GB System RAM

Power supply - 6 steam turbines
a 1.8 GVA each

Cooling pond/ coal delivery

Network Clock/

Interface Building Control

Building #2 Buildings 7
http://www.ominous-valve.comivtsc.html ”

0il storage farm

Basic MOSFET Transistor

eaTe

conducting n-type region “body” or
forms here when gate is “substrate”
brought positive

Figure 3.5. An n-channel MOSFET.
6

Impure/Doped Semiconductors

P-type: Substitute atoms with more empty orbitals

Conduction Levels (Balcony)

0 o O o
D
@ @@ g}.’a'mf f.{.‘l'?Q’E’E@EE@OHMEM%

N-type: Substitute atoms with more filled orbitals

Ty

&

Ener

Fermi Leve e evels (Balcony)

QUN LD g OeD oI

alence Levels (Ground Floor)

1

Ene

Semiconductors

Pure semiconductors are insulating (at low temps)
= Valence levels are filled and can’t conduct
= Conduction levels are empty and can’t conduct

3 E{D AR ARA Condvchdn Levels

e r3 LI.S
Eeqy) @D 0D QA0 Ve

* Impure semiconductors can be conducting

The PN-Junction

Before P-type meets N-type:

p-tipe | |n-type
“onduction Levels (Balcony)

; [O00Q000q0 @ el

sCg0pienT) preRemEeEeSe

Levels (Ground Floor)

2

Eﬂl:’!

‘alence

After P-type meets N-type:
= Depletion region is electrically polarized

Depletion Region

CATHODE

A Diode!

Forward Conduction: Depletion region shrinks oo

p-type |p-type éﬁ
Sjmenansay
@Dgﬂgﬁb
Reverse Conduction: Depletion reglon grows

p-type |n-type
FQFJQQ\DDJE@@D@DD@ B

@D@D@@@ @@@@@@@@@

Depletion Region

FP?L.H_{L'

Depletion Region

Energy

The MOSFET Transistor

Metal Gate)

Off n-type Drain | p-type Channel | n-type Source
= \ B OC OO OO®E0]

SRR R R

Depletion Region UM"J

Metal Gate
On 200e0000E 0OBD
— n-type Drain | p-type Channel | n-type Source

the channel type

= Entire device
becomes one Depletion Region Depletion Region

Energy

= Gate charge: changes [

We have our switch!!!

Moore’s Law

transistors

Peantium” 4 Processor IDD' 000’000
Pentium® il Processor
i 10,000,000

Pantium® il Processor g

Pentium® PFW w il
4BE™ DX Processor
386™ Processor / .

286 ,//
/ 100,000
BOBE y
e
il
8080 / - 10,000

MOORE'S LAW

1,000,000

8008
a00a &4
. 1000
1970 1975 1980 1985 1990 1995 2000

Processor chip and packaging is roughly the same size, so...

Scaling Gets Tougher...

Lithography
Challenges
micron 0.1 Dimension

gs Control
Performance Mask

Technology Leakage Power Making
Challenges Active Power
Cost

0.01 10
1980 1990 2000 2010 2020

Mark Bohr: Intel 04

e 80888008 ey Fae

Eloctron @K LI AT XYL] Edectron

i T [0000000 Flow
sssessee (AL 111l]}

Mormal Silicon Latthce Sillcon Lattics
16 http:/lwww.intel.com/technology/silicon/si12031.htm

A Sequence of One-off Solutions

1000

Lithography
CoSi,, SiOF : Enablers
. Copper g
micron 0.1 300mm 193nm
NiSi, Strain, Low-k 65 Phase Shift

Technology High-k EUV
Enablers Tri-Gate

0.01 10
1980 1990 2000 2010 2020

Mark Bohr: Intel 04

Just In Time...High-k/Metal Gate

High-k materak are deposited
one molecilar layer at a tinne.

Air has k=1. "High-k" materials, such as hafnium dioxide
(HfO2), zirconium dioxide (Zr02) and titanium dioxide
(TiO2) inherently have a dielectric constant
or "k" above 3.9, the "k" of silicon dioxide.

]

kA e

http:/Aww.intel.com/technology/silicon/si11031.htm

17

Just In Time...Tri-Gate Transistor

Top Gate

Side Gate

PN

Side Gate

¥ transistor
= | |
Figure 1. Photo of a 30-nm tri-gate tra | |

Flgure 2. T E

http://www.intel.com/technology/magazine/silicon/si07031.pdf Irigo
fhows

18

Just In Time...Wafer Stacking

30 Stacking Research
Wafer Stacking

Los Alamos National Lab
ASC Q 2048-node supercomputer
crashes regularly pichatak 2005

In 2000, Sun server systems Forbe’s Magazine, November 13, 2000:
deployed to America Online,
eBay, and others crash paumann 2002

"It's ridiculous. I've got a $300,000 server
that doesn't work. The thing should be
bulletproof,” says [Bell South's] president.

home [/ TDMet naws

Technology News

R aopverlaw “it was found that a single soft
et e &P 40 fail ... was causing an entire
oot e st interleaved system farm

b e motem (hundreds of computers) to

routinety refers to its servers as “rock solid™ reliable.

77
The Palo Ao, Cakf., company said the problem, which CraSh. [Cypress Semiconductor reports in 2004, SER:
was eventually traced to a memory flaw, s rare and . -
probably affects fawer than 1% of all computers & has History, Trends, and Challenges 2004]
sold. Sinee the problam was first idertified in #s servers. °
the large computers offen used io manage databases and
handle e-commerce tasks, Sun (sunw) engineers have put
together a varisty of hardware an. vare fixes that

the ri

History Provides a Clue

1954-1957: Discovery of soft fails in
digital electronics — Nuclear Bomb

“a single soft error brought a Testing

billion-dollar automotive factory

to halt every month.” (cypress _ ,
Semiconductor reports in 2004, Mukherjee 2007] 1975 SOft errors in Satellltes frOWl SOlm’

particles — 4 errors in 17 satellite-years
— Hughes Aircraft

History Provides More Clues Today’s Problem Foretold by Profits

192 ‘;31 dDV’\;ggt;’;’f/I% i‘l’ﬁ" rors from alpha-particles - “May 1978: IBM predicts soft errors from cosmic rays
= Intel 2107 series 16Kb DRAMS.
= Trace radioactivity in ceramic packaging
= Downstream from uranium mine in CO!

“An alpha-particle can cause a sudden
1981: IBM experiences soft error problems burst of 1M electrons in a

= 16 Kbit DRAM memory chips .

= Radioactive Kr85 contaminating the packaging semiconductor over a path 1ength of

= Chemical used to clean the containers holding acid

= Approximately 2% of the modules contaminated a feW microns. ThlS was the
T dimension of the new 16Kb FET
1992: Radioactive thorium in bat guano! .
= Bat cave near Louisiana mine producing raw material for memory CeHS. [Zeigler et al. 1998]

phosphoric acid used to etch aluminum wires in chip
= Shut down semiconductor factory for 8 weeks

Causes

..and
Moore’s Law

Smaller Transistors

Interaction of a Cosmic Ray and Silicon
Drain Owde Ingulation | a4y Sourcs

P Substrate

MOS Transistor

= For a soft error to occur at a node in a
circuit, the collected charge Q at that

node must be more than Q...

* Q_itica 18 proportional to the node
capacitance and the supply voltage.

= As CMOS device sizes decrease, the
charge stored at each node decreases
(due to lower nodal capacitance and
lower supply voltages).

Recall How They Work...

Metal Gate
DOOPOOOOO OPOD

n-type Drain | p-type Channel | n-type Source
; @D@D%@D@@g@ﬂm@@ﬂ
ESSEISIsIs e sielC eSS sele!

Depletion Region Depletion Region

g

Ener

= As silicon process shrinks, the node
area decreases, lowering the
probability of a particle hitting. This
lowers per bit error rate.

= There are more bits per chip, so the
system is now less reliable.

10

Moore’s Law as it relates to reliability:

Error rate doubles every generation!

FPGA: Firm Errors

*FPGA is |OgiC based on me ory cell
./
K Incoming neutron or

—ox—Alpha particle causes
P firm error in GRM

Firm error leads to . . .

Ll _://__
GRM: General Routing Matrix > el
misrouted or missing
signal signal

Memory Forgets

Ro e A H <))\L
Column Address Wor _[Z/ o Transter Node CEBIG DRAIN
it Line- Strap
Bit Line—, — T ik

NG L% J |

Trench Capacitor

Note: Not to Scale

INSULATCR OR

P MADE HIGH
ELECTRCPOSITIVE

(LOW ELECTRONEG)
JUNGTIGN CAPACITANCE
DELIBERATELY HIGH

P B Leadhville. CO e
- .
£ i 7 Figure 8, Ziegler, et al., “IBM
‘g - DlarE experiments in soft fails in
= so00 - computer electronics (1978
g - -1994),” IBM J. of R. & D.,
- Tueson Vol. 40, No. 1, Jan. 1996.
/N:w York City
ol " " L 1
Sx 10
Cosmic ray flux =
ml 12
" — . .
£ af 7 = 3x - 5x increase in Denver
£ H
85 1 e * 100x increase in airplanes
% i underground
< ¥, (50 1t limestone)
as

11

Aircraft Control

Altitude of 30,000 feet - 100x error rate

Use four 1M 130nm SRAM-based FPGA
(0.074 upsets/day)

One system per aircraft

4,000 flights over the north pole/day
(increased neutron flux)

37 aircraft will experience an FPGA
configuration error everyday!

Logic Failures

Soft errors become hard truth for logic

By Ron Wilson David Lammers , EE Times

May 03, 2004 (9:39 AM EDT)

URL: http://v eetimes.com/article/showArticle. jhtmi?articleld = 19400052

Phoenix Those nasty neutrans that have plagued memaory chip designers for the past two
decades are now giving logic designers a headache, too. But while error correction coding has
reduced solt-error rates (SERs) in DRAMs and SRAMs, no such quick fix exists for logic, and all
current solutions involve extra cost and a drag on performance.

Logic SER may become as significant as SRAM error rates,” predicted Hans Stork, the chiet
technology officer at Texas Instruments Inc. (Dallas). in a keynote speech here last week at the
International Reliability Physics Symposium,

Soft errors in lagic devices are o growing concern tar mission -critical systems such as servers,
autometive I€s and networking equipment. Logic chip venders already are werking with system
custamers on ways to guard against the effects of cosmic rays and alpha particles emitted from

packaging
However, reliability engineers at last week's symposium said no easy solutions exist

In the case of ASIC designs, the implications are different and the countermeasures reach deeper
inta the system design,

Logic Failures

Measuring

12

Classification

ﬁﬁulw bnh‘1

enign fault;

T

@ no error bpitrc':tgi“OWD
- — detection & _ o .
A correction " -
7 detection
I _— X onl

~fault correcug{

Ic A

@ Y

no erroy'

-~ =
affects program
outcome?

_/e:ﬁects progran?)
-

outcome?

)

/bem n fault;
@ 9

no error (5) false DUE | |(8) true DUE

Measuring Faults: Interval Based

= MTTF = Mean Time to Failure / Uork [Rp (U
= MTTR = Mean Time to Repair ;(

= MTBF = Mean Time Between Failures =
MTTE + MTTR

- Availability = MTTF / MTBE)

= MITF = Mean Instructions to Failure [Mukherjee]
= MWTF = Mean Work to Failure [Reis]

= Performability = MWTF

MY

=

Important Definitions

» SDC: Silent Data Corruption

= DUE: Detected & Unrecoverable Error
= TRUE DUE: Affects Output
= FALSE DUE: Doesn’t Affect Output

= SER: Soft Error Rate (SDC + DUE)

Measuring Faults: Rate-Based

FIT = Failure in Time
1 FIT =1 failure in a billion hours
1 year MTTF =10° / (24 * 365) FIT = 114,155 FIT

SER FIT = SDC FIT + DUE FIT

13

Measuring a Chip’s FIT

Chip

Physically bombard with
neutrons from nuclear source
(Accelerated Testing)

Circuit
Models +
RTL

Obtain raw error rate
Statistical fault injection

{1

1. Neutron Bea-m Port
2. Test Board
\ 3. Epoxy shield with opening

Accelerated Testing

Fine adjustment of a cachc module in a ncutron becam. This
photograph shows adjustment of the tester to cause a beam of]
neutrons to hit a bipolar memory module. The cross-mark indicates
the desired position. The equipment in the right foreground is the
instrumentation to measure the intensity of the neutron beam when
it is turned on.

Figure 7, Ziegler, et al.,
“IBM experiments in soft
fails in computer
electronics (1978 - 1994),”
IBM J. of R. & D., Vol. 40,
No. 1, Jan. 1996.

14

Solutions

Not All Errors Result in a Problem

= Architectural Correct Execution (ACE)
* Some bits are ACE

* Some are unACE
* Logical masking
= Performance enhancing instructions
= NOPs
= Wrong-path instructions
= Idle units
* Dynamically dead instructions and registers

Masking (Benign Faults)

oo{‘: (A+B)'C
o
)
C
A2 t
i) O e
c e °
<~ —
1
AE:DI* He oot
5 /o

Instruction Queue/AVF Concept

WRONG PATH
3%

PREDICATED
FALSE
3%
DYNAMICALLY PERFORMANCE
DEAD INST
8% 1%

ACE percentage = AVF = 29%

15

Functional Units Computing FIT Rate of a Chip

SPECULATIVE Total FIT = Z (FIT per bitl X # Of bitSi X AVFI)
WRONG PATH ISUE
e ' Structure | FIT per bit |# of bits | AVF Total FIT
DYNAMICALLY
DEAD
4% Branch .001 1K 0 0
PERFORMANCE Predictor
oy Program .001 64 1 0.064
PREDICATED Counter
FALSE -
b Instruction .001 6400 0.29 ?
Queue
DATAPATH IDLE
1% Funtional .001 4000 0.09 ?
Units
LOGICAL
MASKIN
0% H H H
Total FIT of whole chi =% column
ACE percentage = AVF = 9% P

Not All Errors are Worth Fixing

Technology &

Circuit

Physical Solutions are Hard

= Shielding?
* No practical absorbent
(e.g., approximately > 10 ft of concrete)

= Radiation-hardened cells?

* Improvement possible with significant
penalty in performance, area, cost

Time Redundancy

><% MAJ ‘s OUT

D
@%)
D QP :
—) |
i Asynchronous Voting !

Temporal Sampling

'
__

(=]
T
M

-

Redundant Logic

Logic 1
0 Logic 2 . Voter —
— Logic3

Design Tradeoffs

* Chip layout area penalties
= Latch areas increase from ~3x to >5x
= Operating frequency penalties
= Setup time increases by twice the sampling

AT
= Maximum frequency dependency:

1/F, = 1/F, + 2AT

F, and F; = maximum frequencies

AT = Sampling delay time

17

Fault Protection is Expensive

= IBM historically adds 20-30% additional
logic for mainframe processors for fault
tolerance isiegel 19991

= In 2003, Fujitsu released SPARC64 with
80% of 200,000 latches covered by
transient fault protection (ando 200

Error Correcting Codes

The hamming distance between code words is 3.

[// " \”““\\ p // T ., “,
/ N / N
i ooo glo; \flO 1\ \
Tt
t I 3
\\ /)J I \\ //

S’ N

Allows:

Error DETECTION for

For errors of Hamming distances
Hamming Distance = 1.

greater than 1 an error gives a false
Error CORRECTION for correction.
Hamming Distance =1

Memory Protection

0000 i oont /oo
— ¢

ogor 1 ot

Allows:
Error DETECTION for
Hamming Distance = 2.

SECDED

Error CORRECTION for
Hamming Distance = 1.

18

Hybercubes

2-bi¥
-4

o0 o\
° 1
—0

Lo u
3“0‘:*

Error-Correcting Codes

Example: Hamming Codes

P, P, B, P, BsB, B, e.g. If B3flips
P, ®B,®B;®B,=0 1
P,®B,®B,®&B,=0 1 =3
P,®B;®B,®B,=0 0

with

2X>=m+k+1. m # data bit, k # check bit
For 64 data bits, needs 7 check bits

Error Correction Codes

* Hamming Created Correction
Concept in 1950’s

» Provides correction, not just detection

: cDdDd@®d =5
¢0 R0 1 Fu=l)

cl S
1010101 ¢c®dB®d®d =5
otioon || 9 | = [5,,3152} 1@;@;@; Sl
0001111 dl L: : Tl

d2

d3
a) Hamming Matrix, Data, b) Syndrome Formation

and Syndrome Fguations

Overhead for ECC

Word | Number |Area Increase| Delay
Length|ECC Bits| for ECC bits |(EXOR-Gate Tree Depth)
16 5 % 4
32 6 19% 5
G4 [1M1%]
128 8 6% I
256 9 3.5%]

19

Multiple Bit Upsets

= SECDEC codes
ineffective for MBUs

NSEL

discharge

pOl[0=q]

region

[Ju)| [}

Cwm| [

n
2 H
f

=]
D=0 [osoj|L
—ul|[s

n]

[

= Serious Problem

1l

. -
lum Four
transistor 0.25 um

{ransisiors

Two Separate Strikes on Different Bits

Temporal Double Bit Errors

Cycle 100 Cycle 1,000,000

PEmpRER - B

= SECDED ECC (single error correction, double error
detection)

= could detect error, but cannot correct the error

= if errors accumulate single bit correctable error becomes a
double bit detectable error

Interleaving bits

Slide source for this subtopic: Cache Scrubbing in
blts Microprocessors: Myth or Necessity Mukherjee et al PRDC’04

IRACOIEIG s e

X = covered with single ECC code
+ = covered with different ECC code

Interleaving converts spatial multi-bit
error - multiple single bit errors

79

Solutions for Temporal Multiple Errors

» Natural Effects

= Whenever a processor reads a cache block, we can
correct the single bit error

= Check for errors when cache blocks are replaced from
the cache

* More Powerful ECC
= Scrubbing

= Periodically read memory and correct all single bit
errors

= Disallows accumulation of temporal double bit errors
= Standard technique in main memories (DRAMs)

81

20

Impact of Scrubbing on
Temporal Double Bit MTTF

1000000 16 Gigabyte Cache

rs
=
o
o
o
(=)
o

MTTF in yea
=
2o
2 oo
E-E=E=]
roOood& o
V’;

o o o o o o o o o o
o o o 9o 9 o o 9 o o
S o S & © S & 9o S P
=3 N} ® & O d N ® ©
FIT/bit
Scrub once a day Scrub once a month

—m— Scrub once ayear —e— With no Scrubbing

= For 16 gigabytes of cache, scrubbing can help
» IBM DUE MTTF goal of 10 years

Parity Caches
» |.’1 1413 540

Tag [Index W]
|

*
¥

Data (512 X 32 Bytes)

ECC unit

\—@ Error flags

Comparator

Data

Efficient Cache Integrity Approaches

= Parity Caches [Kim et. al. 15SCA 1999]
= Shadow Checking [Kim et. al. ISCA 1999]
= In Cache Replication zhang etal. DsN 2003]

Shadow Checking

Processing unit

@ XOR - -
Shadow1 || Shadow2| ew®
Main
Bus
interface | | cache \
L1 E"W Tag
buffer Shadow cache
Comparator or voter

§

Second level cache (L2) or memory

21

ICR: In-Cache Replication

Simple Idea:

Replicate actively used data within the cache by
evicting data that may not be needed.

Recall Sun Microsystem’s Problems

= In 2000, Sun server systems deployed
to America Online, eBay, and others
crash.

= Cache memory is a large target for
cosmic rays

» UltraSPARC II ECC mechanism was
defective

* Proved damaging to Sun’s image

ICR: Exploring the Design Space

* How aggressively to predict dead blocks?
* When to replicate?

= Where to replicate?

* How aggressively to replicate?

* How many replicas do we need?

= How to protect cache blocks?

= How to place a replica in a set?

Microarchitecture

22

DIV A[Austin Micro 99]

Dynamic Implementation Verification Architecture

Traditional Core DIVA Checker

spectllative
instructions
in-order

with inputs
TTTTTT1T and outpats

[F | ID |REN|REG —m S(.HEDl_'LERJ *CHK| CT

Lifts the burden of correctness from core processor
+All core computation, communication, control is speculative
sTolerates design errors, electrical faults, silicon defects, and failures

Lockstepping [HP Himalaya]

R1 < (R2) R1 < (R2)
microprocessor \><'/ microprocessor
Input Output
Replication Comparison

1

Memory covered by ECC
RAID array covered by parity
Servernet covered by CRC

Replicated Microprocessors + Cycle-by-Cycle Lockstepping

DIVA for Soft Error Protection

e — |
LU) (AMEM)

Precise State

‘ IF ‘ D ‘REN‘REG

Sparse strikes manifest as
functional errors

Small checker will provide natural

Rad-hard checker detects and resistance to SER (small target!)

corrects faults

Or, replicate the checker logic, restart
pipes on disagreement

Lockstepping with Threads?

R1 < (R2) R1 <« (R2)
microprocessor microprocessor
thread \></ thread
Input Output
Replication Comparison
1

Memory covered by ECC
RAID array covered by parity
Servernet covered by CRC

Replicatedvicropresessors + C

vthread)

23

Simultaneous Multithreading (SMT)
Threadll 1Thread2

Instruction
Scheduler

[T
EEEEEEEE

Examples: Alpha 21464, Intel Northwood,
Sun Niagara

AR-SMT [Rotenberg FTCS 99]

. R-stream
& Streﬂ. — FPROCESSUR 1
fetch JTiz=e=illl |commit
- >
R-stream mm‘Tstream
DELAY BUFFER

“A” =>" Active stream”
“R” => “Redundant stream”
“SMT” => “Simultaneous Multi Threading”

Redundant Multithreading (RMT)

RMT = Multithreading + Fault Detection (& Recovery)
Multithreading Redundant
(MT) Multithreading
(RMT)
Multithreaded Simultaneous
Uniprocessor Multithreading
(SMT)
Chip Multiple Threads |Chip-Level
Multiprocessor running on CMP | Redundant
(CMP) Threading (CRT)

AR-SMT Delay Buffer

= Simple, fast, hardware-only state
passing for comparing thread state

* Ensures time redundancy: the A- and
R-stream copies of an instruction
execute at different times

* Buffer length adjusted to cover
transient fault lifetimes

* Delay Buffer contains perfect
“predictions” for R-stream!

24

AR-SMT Fault Detection/Recovery

» Fault detected when thread state
does not match

= Committed R-stream state is
checkpoint for recovery

= Introducing a second, redundant

thread increases execution time by
only 10% to 30%

SRT: Sphere of Replication

J L1
Fetch PC RUU i
p
T Fp L .
2 Regs Units
Instruction R1 « (R2) ®
Cache R3=R1+R7 -g
; - Ldist 1 =
2 = *
Int, | Re=RI2 Units | || &
|| Registef | Regs
Decode Re%am ' Int.
x I Units
y | |
Thread 0
Thread 1

SRT: Sphere of Replication

Sphere of Replication

Leading Trailing
Thread Thread

T

[Memory System (incl. L1 caches) }

SRT: Output Comparison

» <address, data> for stores from
redundant threads

* Compare & validate at commit time

Store |_Store: ...
Store: ...
Queue Store: ...

Store: ...
Store: R1 — (R2),
Store: ... Output

[
Sore STl — | Comparison | 10 Data Cache

25

SRT: Input Replication

= Allow both loads to probe cache:
false faults with I/O or shared mem

* Load Value Queue (LVQ)
* pre-designated leading & trailing

threads
add
probe cache load R1<—(R LVQ
—sub 3\%\a{m
load R1 « (R2)

sub

SRT: Load Value Queue (LVQ)

{Fetch}{Decode}»{Dispatch]—r Execute

Bk

Data Cache
= Keep threads on same path despite
I/O or shared memory

= Out-of-order load issue possible

SRT: Basic Pipeline

{FetchHDecodeHDispatch}b Execute

!

Data Cache

Both leading & trailing threads would go through
this pipeline

SRT: Store Queue Comparator (STQ)

{Fetch}v[Decode}r[Dispatch}r Execute

Data Cache

= Compares outputs to data cache

= Catch faults before propagating to rest of
system

26

SRT: Branch Outcome Queue (BOQ)

[FetchHDecodeHDispatch}* Execute

]ag

) —

)

Data Cache

» Forward leading-thread branch targets to
trailing fetch

= 100% prediction accuracy in absence of
faults

Dual Instruction Execution (DIE)

= DIE [Ray et al., MICRO’01]
= Instructions Replicated at Decode

Sphere of
Replication

* Computation Checked at Commit

SRT: Temporal Redundancy

* Provides protection for random logic
from transient faults

= Execute multiple copies of same
instruction over time
= Minimal hardware overheads

= Performance Overheads
= 30% IPC drop on superscalar (Ray et al. 01)
* 21% IPC drop on SMT (Vijaykumar et al. "02)

= Reason for IPC drop?

= Resource contention

DIE: Processor Resources

» Contended Resources
= ALUs
*» [ssue Window/ROB/PRF (RUU) entries
= Decode/Issue/Commit Bandwidth
= Un-contended Resources
= Fetch Unit
* Memory Ports

27

DIE: Resource-Boosting Results

DIE Resources boosted closer to Single Instruction Execution (SIE) performance

50.00%
oDIE
45.00% B DIE-2xALY
ODIE-2xRUU —
40.00%+—— ODIE-2xWidths
 DIE-2xALU-2xRUU
35.00% 7] pDIE-2xALU-2xWidths !
H B DIE-2xRUU-2xWidths
o 30.00% T——) I =
9 0 DIE-2xALU-2xRUU-2xWidths
s
S 25.00% H

tag

$ 20.00% H
8

o
o
15.00% —
10.00% —

5.00%]:
0.00% —

164.gzip 171.swim 175.vpr 176.gcc 177.mesa 179.art
Benchmark

110

Software Techniques

= Can be applied to existing hardware

= Can be applied to existing
applications

* Can be used today to increase
reliability

Software/Compiler

Basic Philosophy

If a tree falls in the forest,
but nobody is around to hear it,
does it make a sound?

If a fault affects some data,
but does not change the output,
does it make a error?

Only store operations effect output,
so validate data before stores.

28

SWIFT [Reis et al.], EDDI [Oh et al]

Id r1 =1[r2] Id r1 =1[r2]
Id rl” = [r27]
add r1 = rl1 +1 add r1 =rl1 +1
add r1” = r1°+1
br faultDet, rl1 != ri1”
br faultDet, r2 1= r2”
st [r2]=r1 st[r2]1=r1

Control Flow: Condition

* Only have one control path during execution
= Incorrect control flow will divert both versions

* Redundant and original may compute the same
incorrect value

May jump to valid,
but incorrect location

[ori2 (r1>0) |

T ——
L2: br faultDet,
r2 1= r2- r2 1= r2’

L1: br faultDet,

Control Flow: Next PC

* Only have one control path during execution
= Incorrect control flow will divert both versions

= Redundant and original may compute the same
incorrect value

May jump to invalid location

br L2 (r1 > 0)

v

L1: br faultDet,
r2 1= r2’

st [r2] = retreat

—

L2: br faultDet,
r2 1= r2’

st [r2] = attack

—
e
—_
—
—
—_
—_—

L9: br faultDet,
|--- | r2 1= r2”
st [r2] = stay

st [r2] = retreat st [r2] = attack |...

=
=
I — ¥

Yo" L9: br faultDet,
L--- | r2 1= r2’
st [r2] = stay

Control Flow: Compute Signature

* Only have one control path during execution
= Incorrect control flow will divert both versions

= Redundant and original may compute the same
incorrect value

compute sig Compute signature before branch
br L2 (rl1 > 0) Validate on block entrance
T~ _
v =
L1: validate sig L2: validate sig
br faultDet, br faultDet,
r2 1= r2” r2 1= r2’ -
st [r2] = retreat st [r2] = attack ;
VYoo ———— L9: validate sig

|... | br faultDet
r2 1= r2’
st [r2] = stay

29

Control Flow Protection: Example

= Compute signature before branch

= Validate on block

br LT (r1” > 0)

entrance

rsig=1
jmp L_F
L T: r_sig =2
L_F: br L2 (r1 > 0)
M=——_
Blockl \‘\\\‘ Block 2
L1: br faultDet L2: br faultDet
r_sig =1 r_sig 1= 2
br faultDet, br faultDet,
r2 1= r2” r2 1= r2”

st [r2] = retreat

st [r2] = attack

I
v _Block9

L9: br faultDet
r_sig =9
br faultDet
r2 1= r2’
st [r2] = stay

Performance Evaluation: IPC

4.5

0 4 1.92

3.5

3.0
2.5+

.76

1.69 151

2.0 4
1.5 +

1.0 A

0.5 4 2.06 H
0.0 =

SWIFT Performance

= OpenIMPACT compiler targeted for Intel Itanium 2
o Perfmon tool to retrieve cycle counts on real hardware
2.12
2.0 4
15 1.41
1.
1.0 + S
0.5 -
0.0 -
% S
& &é & 0@{- 'z}"\’b S L & & @0\ S
RIS P S/ R SR R)
Q}QQ '3;54 q‘/’)(b'Q N > Q

Reliability Evaluation

Fault Detected Incorrect

Fault Abnormal
Correct Detected Execution Incorrect

81.35| 00.00 | 10.76 | 7.89

Normal Program

SWIFT | 74.86 | 23.33 1.69 0.12

Fault injection outcome distribution
(percent of all injections)

95% confidence interval of £0.31%, 5000 injections per benchmark

30

Software Modulated Fault Tolerance

= Software flexibility
allows tradeoff between
performance and reliability

= Tune redundancy based
on function reliability

Reliability

= Compared to best hybrid
= Same reliability
= Better performance
= 6.4% speedup o

cling

Execution time R

Review of Instruction Level Techniques Redundant Multithreading
Hardware solutions Software solutions ’;u:rrr“ * Hardware-only approach
. . . Fetch Fetch = Redundant code executes in separate
Lockstepping [stratus DMR] EDDI, CFCSS [Ohetal] engine 1 engine 2 hardware context p
* RMT [Reinhardt & Mukherjee, ISCA = Source-to-source [Rebaudengo 1l « Hardware requirements:
'00] etal.] l * Multi-threaded machine
= Load Value Queue
Hardware cost No hardware cost * to ensure data loaded from memory is
No application software chanee R . Soft h . .. idet"ntical to both hardware contexts
lo application software changes equire software changes Pipeline - Checking Store Buffer
Fixed solution apphed toall FleXibihty to Continually trade off = compare both versions of data before
reliability and costs in the field committing data to memory
Visibility into all state Visibility limited to architectural state T T l l
More resources reduce Fixed resources * No software changes
performance degradation Load Checking = Fixed redundancy for application
Value Store * Only half of the hardware contexts
Queue Buffer available to Operating System

Hybrid solutions take benefits from both
Tradeoff hardware, performance, and reliability

Schedule Schedule

Thread 1 Thread 2 Thread 1 Thread 2
Id ri1 =[r2] Id ri1 = [r21] Id ri =[r2]
add ri = rl +1 add ril1 = rl +1 | add ri1 = rl1 +1
st[r2]1=r1 st [r2]1= r1 st[r21= ri

Schedule Schedule

Thread 1 Thread 2 Thread 1 Thread 2
Id ri = [r2] Id r1> = [r27] id ri = [r2]
add r1 = rl1 +1 |add r1> = ri° +1 Id r1> = [r27] Id r1~ = [r27]
st [r2]1= r1 st [r2°] = rl1” add ril1 = rl +1
add r1> = r1” +1 |add r1> = rl1° +1
st [r2]1=r1
st [r2°] = r1” st [r2°] = rl”

Instruction duplication, register allocation, and scheduling
can be moved into software

Hybrid scheme:
CRAFT — CompileR Assisted Fault Tolerance [Reis et al.]

Hybrid Reliability

<= = Leverage reliability that software
Fetch Fetch can provide
engine 1 cgineZ = Compiler duplicates and schedules
l L l instructions, allocates registers
= Free up hardware thread
resources
Pipeli = Work can be done on other thread
peiine . Ap};llicable to single-threaded
machines
T T l l = Maintain Input / Output
Load (Checking hardware
Value Store = Load Value Queue
Queue Buffer = Checking Store Buffer

Control Flow Protection

= Original and redundant computation in one thread
= Incorrect control flow will divert both versions
* Redundant and original may compute the same, but

incorrect value &

= Compiler adds S
instructions to compute
mov rl1 =1 mov rl =20
redundant PC mov ri* =1 mov rl’ = 0

= Set before branch
= Validate at destination
= Not perfect, but effective

Fault Detection Requirements

Mechanism to ensure original and redundant reads
from memory receive same values

Mechanism to create redundant computation

Mechanism to compare original and redundant results
before writes to memory

Mechanism to guarantee correct control flow

Fault Detection Requirements

Mechanism to ensure original and redundant reads
from memory receive same values

Mechanism to create redundant computation

Mechanism to compare original and redundant results
before writes to memory

Mechanism to guarantee correct control flow

33

Removing the Checking Store Buffer

Removing the Load Value Queue

Fetch
engine 2 Id r1

Id r1’

[r2 1
[r27]

add rl1 = rl1 +1
add rl” = r1°+1
ri {br faultdet, rill!=ri1-’

window . br faultdet, r21=r27
st [r2] =rl window

CRAFT:LVQ
(still has Load Value Queue)

br faultdet, r2!:r2’}>

Id ri =1[r2] window
r1 {—H—H—EFZ—]—’ = =
window| mov r1’ = ri

add r1 = rl1 +1
add r1” = r1’+1

st [r2] rl
st [r2°] = rl1”

CRAFT:.CSB
(still has Checking Store Buffer)

br faultdet, r21=r2’

{ Id r1 =1[r21] window
rl —ted—rt—=Fr2>}
window | moy r1” = r1

add r1 = rl1 +1

add r1” = r1°+1
r br faultdet, rill=r1-
window{ br faultdet, r2!=r2” }rz

st [r2] =r1 window

st 271 — y1°
[= x

CRAFT:NONE is SWIFT (Software-only)

e Spectrum of solutions * Applicability
* Redundant Multithreading
« CRAFT w/ Load Value Queue and U T e
Checking Store Buffer s
* CRAFT w/ Load Value Queue systems
* CRAFT w/ Checking Store Buffer
e SWIFT

Future
designs

Spectrum of Solutions

e Spectrum of solutions e Applicability
—> < Redundant Multithreading
« CRAFT w/ Load Value Queue and e e e
Checking Store Buffer o
e CRAFT w/ Load Value Queue systems
« CRAFT w/ Checking Store Buffer
e SWIFT

Future
designs.

Spectrum of Solutions

* Spectrum of solutions
* Redundant Multithreading

« Applicability

e CRAFT w/ Load Value Queue and e e e
Checking Store Buffer o
e CRAFT w/ Load Value Queue systems
* CRAFT w/ Checking Store Buffer
—> « SWIFT

Future
designs

Spectrum of Solutions

e Spectrum of solutions * Applicability
« Redundant Multithreading
—> « CRAFT W/ Load Value Queue and gl e
Checking Store Buffer S
—> « CRAFT W/ Load Value Queue systems
—> « CRAFT w/ Checking Store Buffer

Future
designs

Hybrid Performance

Execution times normalized to no fault detection
[B SWIFT m CRAFT:CSB B CRAFT:LVQ W CRAFT.CSB+LVQ |

1.90
1.80 4
1.70

1.60 4
1.50 4
1.40

1.30

1.20 4

Normalized execution time

1.10 +

1.00 -

35

Hybrid Reliability

= Reliability evaluated using fault injection (3 structures)
= Single bit flip per execution
= 5000 injection executions per structure per benchmark per system

= Use combination of microarchitectural and architectural
simulation

= Mean Work To Failure
= Encompass longer execution time and increased reliability
* Generalization of Mean Instructions To Failure [Weaver et al. ISCA '04]
= Instruction not constant unit of work in hybrid systems
= Proportional to:
1/ (Architectural Vulnerability * Execution time

unit of Work)

Hybrid Reliability

Mean Work to Failure normalized to no fault detection

[m SWIFT B CRAFT:CSB W CRAFT:LVQ B CRAFT:CSB+LVQ |

1000

100 A

10 ~

Normalized Mean Work to Failure

Integer Registers Predicate Registers

Instruction Fetch Buffer

“Design and Evaluation of Hybrid Fault-Detection Systems”
[Reis ISCA-32 05]

Id r1 =1[r21] Id r1 =1[r21]
Id rl1” = [r27] Id r1” = [r27]
add r1 = r1 +1 add r1 = r1 +1
add r1” = r1’+1 add r1” = r1’+1
br faultDet, rl1 I= ri1” be—ta Dol 1= 17
br faultDet, r2 1= r2” Sbr faultDet, 2 1= 27
st[r2]=r1 st[r2]1=r1
st [r2°] = r1”
Better performance than SWIFT: Better reliability than SWIFT:
3% speedup 75% reduction in abnormal execution

25% reduction in incorrect output

Acknowledgements

* Vijay Narayanan
= Shubu Mukherjee
* George Reis

= Mark Bohr

36

