Checking Type Safety of Foreign Function Calls

Jeffrey S. Foster
University of Maryland, College Park

Joint work with Michael Furr

Dangers of FFls

Introduction

* Many high-level languages contain a foreign
function interface (FFI)

= OCaml, Java, SML, Haskell, COM, SOM, ...

= Allows access to functions written in other languages

* Lots of reasons to use them
= Gives access to system calls
= Other legacy libraries may be infeasible to port
» Performance

= Suitability of language for particular problem

Checking Type Safety of Foreign Function Calls 2

* In most FFls, programmers write “glue code”
» Translates data between host and foreign languages

= Typically written in one of the languages

* Unfortunately, FFls are often easy to misuse
= Little or no checking done at language boundary
= Mistakes can silently corrupt memory
= One solution: interface generators

- But there’s still lots of hand-written code around

Checking Type Safety of Foreign Function Calls 3

This Work

Static type checking for FFl programs

 Targets: OCaml-to-C FFl and the JNI

* Analysis focuses on C glue code

= Goal: infer what types glue code thinks it’s using

Checking Type Safety of Foreign Function Calls 4

SAFFIRE

« Static Analysis of Foreign Function InteRfacEs
= Pair of tools, one for each FFl

= Detected many errors on a suite of programs

* Key design point: Only as complex as necessary
= FFl glue code is messy
- ...but not all that complicated (to avoid mistakes!)
= We can use fairly simple analysis in surprising places

- E.g, to track values of integers and strings

Checking Type Safety of Foreign Function Calls 5

The OCaml FFI

Type Tags

« OCaml:

external ml_foo : int -> int list -> unit = “c_foo”

- C
typedef long value;

value c_foo(value int_arg, value int_list_argqg);

= All OCaml types conflated to value
- Can be a primitive (int, unit) or a pointer (int list)

= No checking that value is used at the right OCaml type

Checking Type Safety of Foreign Function Calls 6

* Unboxed data (e.g., int) has low bit set to |

* Boxed data (e.g., int list) stored in structured block

» |s_long() macro to test low-order bit

type t= A tag=0 | int
A of int

B °

| C of int * int Y

| D C tag=1 |int

1]

Checking Type Safety of Foreign Function Calls 7

Primitive Types

* Need to bit shift ints to convert to or from C

= Val_int() and Int_val() macros available
- Can you guess which is which?
- Worse: Can apply either to a pointer

- Since value is a typedef of long

* Primitives of different types have same rep.

= 0:int =B = unit

Checking Type Safety of Foreign Function Calls 8

Structured Blocks

* Pointer arithmetic to access fields and tags
= Field(x, i) = *((value *) x + i) — read ith field of x
= Tag val() — read tag in header (tuple, rec tag is 0)
= Can be applied to anything! (See cast above)

* Again, different types have :
. | tag=0 | int | int | int |
same representation

= Could be int * int * int

= Could be Foo of type t' = Foo of int * int * int | ...

Checking Type Safety of Foreign Function Calls 9

Garbage Collection

 C FFI functions need to play nice with the GC

= Pointers from C to the OCaml heap must be registered

- Otherwise the OCaml GC may corrupt them
= Easy to forget to do, especially for indirect calls

= Difficult to find this error with testing

* When can a GC occur?

= Any time a C function calls the OCaml runtime

- E.g., to call a function, to allocate memory, etc.

Checking Type Safety of Foreign Function Calls 1

Example: “Pattern Matching”

type t =
if (Is_long(x)) { A of int
i == | B
if (Int_val(x) 0) /* B *x/ | of int * int
c. | D
if (Int val(x) == 1) /* D */
} else {
if (Tag val(x) == 0) /* A */

Field(x, 0) = Val_int(0)

if (Tag val(x) == 1) /* C */
Field(x, 1) = Val_int(0)
}
Checking Type Safety of Foreign Function Calls 10
Example
value bar(value list) { value foo(value arg) {
CAMLparam | (list); bar(arg);
CAMLlocal | (temp); return(arg);

temp = alloc_tuple(2); }
CAMLreturn(Val_unit);
}

* What'’s wrong with foo?

» Doesn’t register its parameter

Checking Type Safety of Foreign Function Calls

Representational Types

 Types to model C’s view of OCaml data

of nullary constructors arg types of other

T~ o constructors
mt = (C, S) S:=0|P+S | ¢

E . P=mm|mtxP | €
xamples:

int = (%, €)

int * int = (0, (%,0)%(0,0) + €)

typet=Aofint|B| Cofint*int|D
= (2,(%0,0) + (%0,0)%(%,0) + €)

Checking Type Safety of Foreign Function Calls 13

Inferring Sum Types

Tracking OCaml Types through C

* Extend the C type value to boxed or

/unboxed

(C,S) value {B, T}

Representational

Type value (if int)

block tag (if ptr)

(C,S) flow-insensitive (a value has one OCaml type)

B, T flow-sensitive (vary by program point)
- These may also be Top if unknown

Checking Type Safety of Foreign Function Calls 14

if (Is_long(x)) {

P2 | — if (Int_val(x) == 0) /*B*/

x: (W, 0) value{Top, Top}
<«— x:..{unboxed,Top}

x: ...{unboxed, 0}

v | (n ko= x: ..{unboxed, 1}

} else { <«— x:..{boxed, Top}

O=7+0'— if (Tag_val(x) == 0) /*A */

n=intx'—— Field(x, 0) =Val_int(0) +— X:..{boxed, O}
O’=TC”+G”—> if (Tag_val(X) == |) 1% C */ .
—» Field(x, |) =Val_int(0) x: ...{boxed, I}

n”=0(><int><n”’}

Checking Type Safety of Foreign Function Calls 15

Inferring Sum Types

P21
wzz Solution to constraints:
x: (1, 0) value
P22
o=intXy’'+ axintXm’’ + 0"’
o=n+0’ Compatible the OCaml type
T=intXsw’ type t =
A of int
r__ II+ rr | B
o= +0 | C of int * int
| D

' =aXintXg'"’ = (2, (,0) + (0,0)%(,0) + €)

Checking Type Safety of Foreign Function Calls 16

Example Type Rules

* Type rules map C expressions to extended types

* Includes additional information on pointer offsets

pointer
boxedness offset tag

™~

A e : mt value {boxed, n, m}
mt=(C, Po+ ---+ Py +9)
Pn=mto X - Xmt, X P

A + *e :mt, value{Top, 0, Top}

Checking Type Safety of Foreign Function Calls 17

Checking GC Safety

Example Type Rules (cont’d)

* Flow-sensitivity with type env on “both sides”
» Abs; A
- Ais original environment
- A’ is environment after s executes

= Map G from source labels to environments, for branches

A - x: mt value {B,0, T}
A’ = A[x—mt value{unboxed, 0, T}
A’ < G(L)

A + if unboxed(x) then L, A[x — mt value {boxed, 0,T}

Checking Type Safety of Foreign Function Calls 18

* Algorithm
= Build a call graph of the C code

» Letf beacalltofatlinei
= Let P(f) = unprotected locals and parameters at call

= Check: If path from f to function that may call GC,
require P(f) = 0

foo() —— bar() — alloc_tuple()

P(foo) = {arg} error:non-empty

Checking Type Safety of Foreign Function Calls 19

Soundness

* We can prove soundness via standard progress
and preservation techniques

» Proof for slightly restricted version of the systems

* Theorem: If a program is well-typed, then it
does not get stuck

= OCaml data is never used at the wrong type

Checking Type Safety of Foreign Function Calls 20

More Features of OCaml

Implementation (Both)

* Type system does not include objects

= But neither do FFl programs we looked at

* No parametric polymorphism for FFl functions
= Allow annotation to be added by hand

*= Only needed 4 times

* Polymorphic variants not handled
= Results in some false positives

Checking Type Safety of Foreign Function Calls

21

N
// \\
/
I OCaml/ c \
I
I
! Java Source i
\ Source /
\ N //

OCaml/ |:> Type Extractor

Java

Std Library
—
Type ::) C Ana]ysis ::) Potential
Englne Bugs

Checking Type Safety of Foreign Function Calls 22

OSaffire: Phase I, OCaml

OSaffire: Phase 2, C

* Tool built from camlp4 preprocessor

* Analyzes OCaml source and extracts types of
foreign functions

= Concretizes any abstract types in modules

= Fully resolves all aliases

* Incrementally updates central type repository

= Seeded with types from standard library

* Result: Type environment fed into Phase 2

Checking Type Safety of Foreign Function Calls

23

* Second tool built using CIL

= This is the tool that issues warnings etc.

* Int_val(), Tag_val(), etc. recognized using syntactic
pattern matching

= Modified OCaml header file so we can track macros
through expansion

= Tests look a bit more complicated in source, but still
easy to identify the cases in practice

Checking Type Safety of Foreign Function Calls 24

More Details

* Warnings for global values
» Need to register them, but we don’t check for this
*= Not common in practice (10 warnings)
 C has address-of operator &
= If &x taken for local x, treat like global
* Type casts handled with unsound heuristics
» Goal: Track C data embedded in OCaml
* Function pointers yield warnings
= Only added 8 warnings to benchmarks

Checking Type Safety of Foreign Function Calls 25

OSaffire Errors

runtime exns or non-fatal but correct insufficient

osaffi re Results hard crashes suspic{us coi:le i70
N\ | /
Program C-loc O-loc Ext Time Err Wrn FPos Imp
apm-1.00 124 156 4 0.01s 0 0 0 0
camlzip-1.01 139 820 9 0.01s 0 0 0 1
ocaml-mad-0.1.0 139 38 3 0.01s 1 0 0 0
ocaml-ssl-0.1.0 187 151 14 0.02s 4 2 0 0
ocaml-glpk-0.1.1 305 147 30 0.03s 4 1 0 1
gz-0.5.5 572 192 29 0.02s 0 1 0 1
ocaml-vorbis-0.1.1 1183 443 7 0.07s 1 0 0 2
ftplib-0.12 1401 21 17 0.06s 1 2 0 1
lablgl-1.00 1586 1357 324 0.40s 4 5 140 20
cryptokit-1.2 2173 2315 24 0.03s 0 0 0 1
lablgtk-2.2.0 5998 14847 1307 3.83s 9 11 74 48
Total 24 22 214 75
Note: Time includes compilation
Checking Type Safety of Foreign Function Calls 26

* Type mismatches (19 errors)
= 5 errors due toVal _int instead of Int_val or reverse
= | due to forgetting that an argument was in an option

= Others similar

* Remainder are GC errors
= 3 — Forgetting to register C pointer to ML heap

= 2 — Forgetting to release a registered pointer

Checking Type Safety of Foreign Function Calls 27

OSaffire Warnings

* Forgetting to add unit parameter to C fn
» OCaml: external £ : int -> unit -> unit = “£”

s C: value f (value x);

* Polymorphism abuse
= OCaml: type input_channel, output_ channel
s OCaml: external seek : int -> ’‘a -> unit = “seek”

s C: value seek (value pos, value file);

Checking Type Safety of Foreign Function Calls 28

OSaffire Imprecision and False Pos.

* Tags and offsets are sometimes Top
* Globals and function pointers
* Polymorphic variants

* Pointer arithmetic disguised as long arithmetic
» (tF)v + | == (t%) (v + sizeof(t¥))

- OSaffire gets confused

Checking Type Safety of Foreign Function Calls 29

Example JNI Code

The JNI

* Several similarities to OCaml FFI
= All Java objects conflated to one C type

» C code has richer view of Java data than Java

- Writing glue code similar to using Java reflection

* Key differences
= Can only access Java data via function calls
- No low-level macros available
= NI uses strings to identify fields, classes, methods

= Polymorphism very important in JNI code

Checking Type Safety of Foreign Function Calls 30

* Java:
Class Foo {
int x;
private native void bar (Foo);
}
« C:

void Java_Foo_bar(jobject obj) {
jobject cls = GetObjectClass(obj);
jfieldID fid = GetFieldID(cls,”x”,”"1");
int y = GetIntField(obj,fid);

}

Checking Type Safety of Foreign Function Calls

Example JNI Code

* Java:
Class Foo {
int x;
private native void bar (Foo);
}
- C:

obj.class

void Java_Foo_bar(jobject obj) {
jobject cls = GetObjectClass(obj);
jfieldID fid = GetFieldID(cls,”x”,”1");
int y = GetIntField(obj,fid);

}

Checking Type Safety of Foreign Function Calls 32

Example JNI Code

* Java:
Class Foo {
int x;
private native void bar (Foo);
}

e C:

void Java_Foo_bar(jobject obj) {
jobject cls = GetObjectClass(obj);
jfieldID fid = GetFieldID(cls,”x”,”I");
int y = GetIntField(obj,fid);

Example JNI Code

* Java:
Class Foo {
int x;
private native void bar(Foo);
}

e C:

void Java_Foo_bar(jobject obj) {
jobject cls = GetObjectClass(obj);
jfieldID fid = GetFieldID(cls,”x”,"I");
int y = GetIntField(obj,fid);

}

Checking Type Safety of Foreign Function Calls

34

} I Int
obj.x
Checking Type Safety of Foreign Function Calls 33
Example JNI Code
* Java:
Class Foo {
int x;
private native void bar (Foo);
}
Same type

e C:

void Java o_bar(jobject obj) {
jobject cls = GetObjectClass(obj);
jfieldID fid = GetFieldID(cls,”x”,”"1");
int y = GetIntField(obj,fid);

Checking Type Safety of Foreign Function Calls

35

Example JNI Code

* Java:
Class Foo {
int x;
private native void bar (Foo);
}

e C:

void Java_Foo_bar(jobject obj) {
jobject cls = GetObjectClass(obj);
jfieldID fid = GetFieldID(cls,”x”,"1");
int y = GetIntField(obj,fid);

}

Not obj!

Checking Type Safety of Foreign Function Calls

36

Example JNI Code Representational Types for the JNI

. List of fields
* Java: Name of the class = [SioF |
Class Foo { PP = st €
int x; s u="Str” | v
private native void bar (Foo);
' jt :=={s; F;M}|int| void | ...
e C:

List of methods

void Java_Foo_bar(jobject obj) {

jobject cls = GetObjectClass(obj); Ma=p|s:(jtx-xjt=j),M | €

jfieldID fid = GetFieldID(cls,”x”,”I");

int y = GetIntField(obj,fid); | ® Example

|
} n FOO = {“Foo”;
Types must match! “X” rint;
“bar” : ({“Foo”...} = void) }
Checking Type Safety of Foreign Function Calls 37 Checking Type Safety of Foreign Function Calls 38
Tracking Java Types through C Two Other Java Types
* Extend the C type jobject to jt jobject * Instances of java.lang.Class are important in JNI
= No need for flow-sensitivity, unlike OCaml FFl jt == ...| jt Class

= A Class instance representing the class of jt
e Also track string values in C - GetObjectClass : {V;b;u} jobject = {v;d;u} Class jobject

= Assign char *’s the type str{s}

* Sometimes we don’t know a string’s value yet
» Ex: “foo” :str{"foo”}

= So we don’t know what Java class it corresponds to
» Ex: void bar(char *x); x:str{v}

jt == ...| String(s)

- String value not yet known
= An object of class s

- FindClass : str{v} — String(V) Class jobject

Checking Type Safety of Foreign Function Calls 39 Checking Type Safety of Foreign Function Calls 40

Wrapper Functions

int my_getIntField(jobject obj, char *field) {
jobject cls = GetObjectClass(obj);

jfieldID fid = GetFieldID(cls, field, "I");
return GetIntField(obj,fid);

}

* Accepts any object obj with int field field

= Polymorphic in type of obj and contents of field

my_getIntField(objl, "x");
my_getIntField(obj2, "offset”);

- String types are singletons, hence contents = type

= These come up often in practice
- And JNI has >200 functions! Need to treat polymorphically

Checking Type Safety of Foreign Function Calls 41

Example

Polymorphism via Semiunification

int my_getIntField(jobject obj, char *field) {
jobject cls = GetObjectClass(obj);

jfieldID fid = GetFieldID(cls, field, "I”);
return GetIntField(obj,fid);

}

V vi,v3,u3 . {vs;Viint, ...;J3} jobject % str{v,} — int
= Second arg is some string V|
» First arg is some object with an int field of name v,

= The function returns an int

Checking Type Safety of Foreign Function Calls 42

* Generate instantiation constraints when function
types instantiated

Solve instantiation constraints using semi-
unification (Henglein 1993, Fahndrich et al 2000)

Undecidable in theory

Worked well for analyzing C glue code

= Did not encounter non-termination

In-order traversal allows for fast, straight-forward
implementation

Checking Type Safety of Foreign Function Calls 43

Key Features

* Java object types conflated to single C type

» Need to track string values through C to decide what
calls to FFl methods are doing

= Polymorphism important for wrapper functions

* Other features
» Need to also track field, method ids through C

= GC not as important

- Java automatically tracks objects it passes to C

Checking Type Safety of Foreign Function Calls 44

More Details:)Saffire

* Soundness also provable for JSaffire

= Well-typed C code does not access Java data at the
wrong type

» Same architecture as OSaffire

* Wrapper script captures classpath during build

 Uses class file parser to get type information

Checking Type Safety of Foreign Function Calls 45

runtime exns or non-fatal but correct insufficient

saffi re Resu |tS hard crashes suspicious code info
J N

JSaffire Errors

68 functions declared with the wrong arity

56 C pointers passed when object expected

= Most result of a software rewrite

I8 type mismatches:

» e.g, String # byte[]

|4 functions named incorrectly

= Functions must follow a strict convention to be called
from Java

Checking Type Safety of Foreign Function Calls 47

\ | /

Program C-loc J-loc Ext Time Err Wrn FPos Imp

libgconf-java-2.10.1 1119 670 93 1.32s 0 0 10 0

libglade-java-2.10.1 149 1022 6 0.64s 0 0 0 1

libgnome-java-2.10.1 5606 5135 599 6.53s 45 0 0 1

libgtk-java-2.6.2 27095 32395 3201 1.04s 74 8 36 18

libgtkhtml-java-2.6.0 455 729 72 0.65s 27 0 0 0

libgtkmozembed-java-1.7.0 166 498 23 0.66s 0 0 0 0

libvte-java-0.11.11 437 184 36 0.67s 0 26 0 0

jnetfilter 1113 1599 105 5.38s 9 0 0 0

libreadline-java-0.8.0 1459 324 17 0.63s 0 0 0 1

pgpjava 10136 123 12 1.11s 0 1 0 1

posix1.0 978 293 26 0.70s 0 1 0 0

Java Mustang compiler 532k 1974k 2495 630s 1 88 96 2620

Total 156 124 142 2642

Checking Type Safety of Foreign Function Calls 46
JSaffire Warnings

* | malformed Java class string

* |3 incorrect type declarations

= NI contains several typedef’s for jobject
(e.g., jstring, jintarray)

= Warn when C function was declared with the wrong
type, even when the value was of the right type

* |10 dead C functions

= C function appeared to implement a certain Java native
method, but no native method was defined in the Java
class file

Checking Type Safety of Foreign Function Calls 48

JSaffire False Positives

* 140 false positives
= C code uses subtyping for Java types

= Our tool is based on unification, so considered these
type errors

= Also due to unifying a Class with a class object

- Safe, but those are different types in JSaffire

Checking Type Safety of Foreign Function Calls 49

JSaffire Imprecision

Conclusion

* FFls are a useful part of a language

* FFl code is messy

= But not complicated, hence analyzable
« Saffire: Type checking multi-lingual code

= The first we know of to check glue code

= Makes FFls safer to use

Checking Type Safety of Foreign Function Calls 5]

2642 imprecision messages

= Vast majority from Mustang

- The Java compiler does everything possible with the JNI!

36 due to unresolved overloading

= JSaffire didn’t have enough info to find a consistent
type
707 due to using parts of |NI we don’t model

= E.g, passing arguments to JNI functions in array

| 15 due to directly manipulating jobject type

* 1784 due to function pointers

Checking Type Safety of Foreign Function Calls

50

