
Checking Type Safety of Foreign Function Calls

Jeffrey S. Foster
University of Maryland, College Park

Joint work with Michael Furr

Checking Type Safety of Foreign Function Calls 2

Introduction

• Many high-level languages contain a foreign
function interface (FFI)
■ OCaml, Java, SML, Haskell, COM, SOM, ...

■ Allows access to functions written in other languages

• Lots of reasons to use them
■ Gives access to system calls

■ Other legacy libraries may be infeasible to port

■ Performance

■ Suitability of language for particular problem

Checking Type Safety of Foreign Function Calls 3

Dangers of FFIs

• In most FFIs, programmers write “glue code”
■ Translates data between host and foreign languages

■ Typically written in one of the languages

• Unfortunately, FFIs are often easy to misuse
■ Little or no checking done at language boundary

■ Mistakes can silently corrupt memory

■ One solution: interface generators

- But there’s still lots of hand-written code around

Checking Type Safety of Foreign Function Calls 4

This Work

Static type checking for FFI programs

• Targets: OCaml-to-C FFI and the JNI

• Analysis focuses on C glue code
■ Goal: infer what types glue code thinks it’s using

Checking Type Safety of Foreign Function Calls 5

SAFFIRE

• Static Analysis of Foreign Function InteRfacEs
■ Pair of tools, one for each FFI

■ Detected many errors on a suite of programs

• Key design point: Only as complex as necessary
■ FFI glue code is messy

- ...but not all that complicated (to avoid mistakes!)

■ We can use fairly simple analysis in surprising places

- E.g., to track values of integers and strings

Checking Type Safety of Foreign Function Calls 6

The OCaml FFI

• OCaml:
external ml_foo : int -> int list -> unit = “c_foo”

• C:
typedef long value;

value c_foo(value int_arg, value int_list_arg);

■ All OCaml types conflated to value

- Can be a primitive (int, unit) or a pointer (int list)

■ No checking that value is used at the right OCaml type

Checking Type Safety of Foreign Function Calls

Type Tags

• Unboxed data (e.g., int) has low bit set to 1

• Boxed data (e.g., int list) stored in structured block
■ Is_long() macro to test low-order bit

7

type t =
 A of int
| B
| C of int * int
| D

01

11

A

B

C

D

tag=0 int

tag=1 int int

Checking Type Safety of Foreign Function Calls 8

Primitive Types

• Need to bit shift ints to convert to or from C
■ Val_int() and Int_val() macros available

- Can you guess which is which?

- Worse: Can apply either to a pointer

- Since value is a typedef of long

• Primitives of different types have same rep.
■ 0 : int = B = unit

Checking Type Safety of Foreign Function Calls 9

Structured Blocks

• Pointer arithmetic to access fields and tags
■ Field(x, i) = *((value *) x + i) – read ith field of x

■ Tag_val() – read tag in header (tuple, rec tag is 0)

■ Can be applied to anything! (See cast above)

• Again, different types have

 same representation
■ Could be int * int * int

■ Could be Foo of type t’ = Foo of int * int * int | ...

tag=0 int int int

Checking Type Safety of Foreign Function Calls 10

Example: “Pattern Matching”
type t =
 A of int
| B
| C of int * int
| D

if (Is_long(x)) {
 if (Int_val(x) == 0) /* B */
 ...
 if (Int_val(x) == 1) /* D */
 ...

} else {

 if (Tag_val(x) == 0) /* A */
 Field(x, 0) = Val_int(0)

 if (Tag_val(x) == 1) /* C */
 Field(x, 1) = Val_int(0)
}

Checking Type Safety of Foreign Function Calls 11

Garbage Collection

• C FFI functions need to play nice with the GC
■ Pointers from C to the OCaml heap must be registered

- Otherwise the OCaml GC may corrupt them

■ Easy to forget to do, especially for indirect calls

■ Difficult to find this error with testing

• When can a GC occur?
■ Any time a C function calls the OCaml runtime

- E.g., to call a function, to allocate memory, etc.

Checking Type Safety of Foreign Function Calls 12

Example

• What’s wrong with foo?
■ Doesn’t register its parameter

value bar(value list) {
 CAMLparam1(list);

 CAMLlocal1(temp);
 temp = alloc_tuple(2);
 CAMLreturn(Val_unit);
}

value foo(value arg) {
 bar(arg);

 return(arg);
}

Checking Type Safety of Foreign Function Calls 13

Representational Types

• Types to model C’s view of OCaml data

mt ::= (C, S)

of nullary constructors arg types of other
constructors

 S ::= σ | P + S | ε

 P ::= π | mt × P | εExamples:

int ⇒ (∞, ε)

int * int ⇒ (0, (∞,0)×(∞,0) + ε)

type t = A of int | B | C of int * int | D

 ⇒ (2, (∞,0) + (∞,0)×(∞,0) + ε)

Checking Type Safety of Foreign Function Calls 14

Tracking OCaml Types through C

• Extend the C type value to

(C, S) value {B, T}

Representational
Type

boxed or
unboxed

value (if int)
block tag (if ptr)

(C, S) flow-insensitive (a value has one OCaml type)

B, T flow-sensitive (vary by program point)
	 - These may also be Top if unknown

Checking Type Safety of Foreign Function Calls 15

Inferring Sum Types

if (Is_long(x)) {

 if (Int_val(x) == 0) /* B */
 ...
 if (Int_val(x) == 1) /* D */
 ...

} else {

 if (Tag_val(x) == 0) /* A */
 Field(x, 0) = Val_int(0)

 if (Tag_val(x) == 1) /* C */
 Field(x, 1) = Val_int(0)
}

x: (ψ, σ) value{Top, Top}

x: ...{unboxed, Top}

x: ...{unboxed, 0}

x: ...{unboxed, 1}

x: ...{boxed, Top}

x: ...{boxed, 0}

x: ...{boxed, 1}

ψ≥1

ψ≥2

σ=π+σ′
π=int×π′

σ′=π′′+σ′′
π′′=α×int×π′′′

Checking Type Safety of Foreign Function Calls 16

Inferring Sum Types

Solution to constraints:
 x: (ψ, σ) value
 ψ≥2
 σ=int×π′+ α×int×π′′ + σ′′

Compatible the OCaml type
 type t =
 A of int
 | B
 | C of int * int
 | D

 ⇒ (2, (∞,0) + (∞,0)×(∞,0) + ε)

ψ≥1

ψ≥2

σ=π+σ′
π=int×π′

π′′=α×int×π′′′
σ′=π′′+σ′′

Checking Type Safety of Foreign Function Calls

Example Type Rules

• Type rules map C expressions to extended types
■ Includes additional information on pointer offsets

17

A ⊢ e : mt value {boxed, n, m}
mt = (C, P0 + ··· + Pm + S)
Pm = mt0 × ··· × mtn × P

A ⊢ *e : mtn value{Top, 0, Top}

boxedness tag
pointer
offset

Checking Type Safety of Foreign Function Calls

Example Type Rules (cont’d)

• Flow-sensitivity with type env on “both sides”
■ A ⊢ s; A′

- A is original environment

- A′ is environment after s executes

■ Map G from source labels to environments, for branches

18

A ⊢ x : mt value {B,0, T}
A′ = A[x→mt value{unboxed, 0, T}

A′ ≤ G(L)

A ⊢ if unboxed(x) then L, A[x → mt value {boxed, 0, T}

Checking Type Safety of Foreign Function Calls 19

Checking GC Safety

• Algorithm
■ Build a call graph of the C code

■ Let fi be a call to f at line i

■ Let P(fi) = unprotected locals and parameters at call

■ Check: If path from f to function that may call GC,
require P(fi) = 0

foo() bar() alloc_tuple()

P(foo) = { arg } error: non-empty

Checking Type Safety of Foreign Function Calls 20

Soundness

• We can prove soundness via standard progress
and preservation techniques
■ Proof for slightly restricted version of the systems

• Theorem: If a program is well-typed, then it
does not get stuck
■ OCaml data is never used at the wrong type

Checking Type Safety of Foreign Function Calls 21

More Features of OCaml

• Type system does not include objects
■ But neither do FFI programs we looked at

• No parametric polymorphism for FFI functions
■ Allow annotation to be added by hand

■ Only needed 4 times

• Polymorphic variants not handled
■ Results in some false positives

Checking Type Safety of Foreign Function Calls

Implementation (Both)

22

OCaml/
Java

Source

OCaml/
Java

Std Library

C
Source

Type
Repository

Potential
Bugs

Type Extractor

C Analysis
Engine

Input Program

Checking Type Safety of Foreign Function Calls 23

OSaffire: Phase 1, OCaml

• Tool built from camlp4 preprocessor

• Analyzes OCaml source and extracts types of
foreign functions
■ Concretizes any abstract types in modules

■ Fully resolves all aliases

• Incrementally updates central type repository
■ Seeded with types from standard library

• Result: Type environment fed into Phase 2

Checking Type Safety of Foreign Function Calls 24

OSaffire: Phase 2, C

• Second tool built using CIL
■ This is the tool that issues warnings etc.

• Int_val(), Tag_val(), etc. recognized using syntactic
pattern matching
■ Modified OCaml header file so we can track macros

through expansion

■ Tests look a bit more complicated in source, but still
easy to identify the cases in practice

Checking Type Safety of Foreign Function Calls 25

More Details

• Warnings for global values
■ Need to register them, but we don’t check for this

■ Not common in practice (10 warnings)

• C has address-of operator &
■ If &x taken for local x, treat like global

• Type casts handled with unsound heuristics
■ Goal: Track C data embedded in OCaml

• Function pointers yield warnings
■ Only added 8 warnings to benchmarks

Checking Type Safety of Foreign Function Calls 26

OSaffire Results

Note: Time includes compilation

runtime exns or
hard crashes

non-fatal but
suspicious

insufficient
info

correct
code

48 · M. Furr and J. S. Foster

Program C-loc O-loc Ext Time Err Wrn FPos Imp
apm-1.00 124 156 4 0.01s 0 0 0 0

camlzip-1.01 139 820 9 0.01s 0 0 0 1
ocaml-mad-0.1.0 139 38 3 0.01s 1 0 0 0

ocaml-ssl-0.1.0 187 151 14 0.02s 4 2 0 0
ocaml-glpk-0.1.1 305 147 30 0.03s 4 1 0 1

gz-0.5.5 572 192 29 0.02s 0 1 0 1
ocaml-vorbis-0.1.1 1183 443 7 0.07s 1 0 0 2

ftplib-0.12 1401 21 17 0.06s 1 2 0 1
lablgl-1.00 1586 1357 324 0.40s 4 5 140 20

cryptokit-1.2 2173 2315 24 0.03s 0 0 0 1
lablgtk-2.2.0 5998 14847 1307 3.83s 9 11 74 48

Total 24 22 214 75

Fig. 26. Experimental results

handle because we have seen FFI code use binary search to select the proper tag
for the block, and our analysis is not sophisticated enough to support this style of
tag test.

O-Saffire translates universally quantified type variables to the representational
type (ψ, π+σ) where ψ,π and σ are fresh variables with the constraint 1 ≤ ψ. Since
a polymorphic type could be either boxed or unboxed, this prevents a C function
from using the polymorphic type directly as an integer or a boxed type without
at least performing a boxedness test. Our current implementation also cannot
infer universally quantified types for C “helper” functions that are polymorphic
in OCaml value parameters. Unlike JNI glue code, such OCaml glue functions
appear to be rare in practice, as we only saw 4 such functions in our benchmark
suite. We could extend our implementation to use the same technique discussed
in Section 4.3 to infer polymorphic signatures, but instead we take a heuristic
approach: In O-Saffire, the programmer can annotate functions to indicate that
calling them should yield no constraints between formal and actual arguments, and
we added such annotations for the 4 polymorphic functions we found.

Finally, a common technique for error handling in C glue code is to raise an
OCaml exception, and when this occurs, the OCaml runtime pops the entire C
function stack and returns control to OCaml. However, in order to throw an ex-
ception, the exception itself must be allocated on the OCaml heap. Thus it is safe
for a function not to register its local references to data on the OCaml heap and
then allocate and throw an exception. To avoid false positives in this situation, our
implementation tracks functions which never return, and assigns them the effect
nogc, since all C references are no longer live when such a function is called.

5.2 OCaml Experiments

We ran O-Saffire on several programs that utilize the OCaml foreign function inter-
face. The programs we looked at are actually glue libraries that provide an OCaml
API for system and third-party libraries. All of the programs we analyzed were
from a tested, released version, though we believe O-Saffire is also useful during
development.

Fig. 26 gives a summary of our benchmarks and results. For each program, we
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Checking Type Safety of Foreign Function Calls 27

OSaffire Errors

• Type mismatches (19 errors)
■ 5 errors due to Val_int instead of Int_val or reverse

■ 1 due to forgetting that an argument was in an option

■ Others similar

• Remainder are GC errors
■ 3 – Forgetting to register C pointer to ML heap

■ 2 – Forgetting to release a registered pointer

Checking Type Safety of Foreign Function Calls 28

OSaffire Warnings

• Forgetting to add unit parameter to C fn
■ OCaml: external f : int -> unit -> unit = “f”

■ C: value f(value x);

• Polymorphism abuse
■ OCaml: type input_channel, output_channel

■ OCaml: external seek : int -> ’a -> unit = “seek”

■ C: value seek(value pos, value file);

Checking Type Safety of Foreign Function Calls 29

OSaffire Imprecision and False Pos.

• Tags and offsets are sometimes Top

• Globals and function pointers

• Polymorphic variants

• Pointer arithmetic disguised as long arithmetic
■ (t*)v + 1 == (t*) (v + sizeof(t*))

- OSaffire gets confused

Checking Type Safety of Foreign Function Calls

The JNI

• Several similarities to OCaml FFI
■ All Java objects conflated to one C type

■ C code has richer view of Java data than Java

- Writing glue code similar to using Java reflection

• Key differences
■ Can only access Java data via function calls

- No low-level macros available

■ JNI uses strings to identify fields, classes, methods

■ Polymorphism very important in JNI code
30

Checking Type Safety of Foreign Function Calls 31

Example JNI Code

• Java:

• C:

Class Foo {
 int x;
 private native void bar(Foo);
}

void Java_Foo_bar(jobject obj) {
 jobject cls = GetObjectClass(obj);
 jfieldID fid = GetFieldID(cls,”x”,”I”);
 int y = GetIntField(obj,fid);
 ...
}

Checking Type Safety of Foreign Function Calls 32

Example JNI Code

• Java:

• C:

Class Foo {
 int x;
 private native void bar(Foo);
}

void Java_Foo_bar(jobject obj) {
 jobject cls = GetObjectClass(obj);
 jfieldID fid = GetFieldID(cls,”x”,”I”);
 int y = GetIntField(obj,fid);
 ...
}

obj.class

Checking Type Safety of Foreign Function Calls

void Java_Foo_bar(jobject obj) {
 jobject cls = GetObjectClass(obj);
 jfieldID fid = GetFieldID(cls,”x”,”I”);
 int y = GetIntField(obj,fid);
 ...
}

• Java:

• C:

33

Example JNI Code

I = Int

obj.x

Class Foo {
 int x;
 private native void bar(Foo);
}

Checking Type Safety of Foreign Function Calls

void Java_Foo_bar(jobject obj) {
 jobject cls = GetObjectClass(obj);
 jfieldID fid = GetFieldID(cls,”x”,”I”);
 int y = GetIntField(obj,fid);
 ...
}

34

Example JNI Code

• Java:

• C:

y = obj.x;}

Class Foo {
 int x;
 private native void bar(Foo);
}

Checking Type Safety of Foreign Function Calls 35

• Java:

• C: Same type

Class Foo {
 int x;
 private native void bar(Foo);
}

void Java_Foo_bar(jobject obj) {
 jobject cls = GetObjectClass(obj);
 jfieldID fid = GetFieldID(cls,”x”,”I”);
 int y = GetIntField(obj,fid);
 ...
}

Example JNI Code

Checking Type Safety of Foreign Function Calls 36

Example JNI Code

• Java:

• C:

Not obj!

Class Foo {
 int x;
 private native void bar(Foo);
}

void Java_Foo_bar(jobject obj) {
 jobject cls = GetObjectClass(obj);
 jfieldID fid = GetFieldID(cls,”x”,”I”);
 int y = GetIntField(obj,fid);
 ...
}

Checking Type Safety of Foreign Function Calls

void Java_Foo_bar(jobject obj) {
 jobject cls = GetObjectClass(obj);
 jfieldID fid = GetFieldID(cls,”x”,”I”);
 int y = GetIntField(obj,fid);
 ...
}

37

Example JNI Code

• Java:

• C:

Types must match!

Class Foo {
 int x;
 private native void bar(Foo);
}

Checking Type Safety of Foreign Function Calls

Representational Types for the JNI

• Example
■ Foo ⇒ { “Foo”;
 “x” : int;

 “bar” : ({“Foo”... } → void) }
38

jt ::= {s; F; M} | int | void | ...

Name of the class

 s ::= “Str” | ν

List of fields

 F ::= Φ | s:jt, F | ε

List of methods

 M ::= μ | s: (jt ×··· × jt→jt), M | ε

Checking Type Safety of Foreign Function Calls

Tracking Java Types through C

• Extend the C type jobject to jt jobject
■ No need for flow-sensitivity, unlike OCaml FFI

• Also track string values in C
■ Assign char *’s the type str{s}

■ Ex: “foo” : str{“foo”}

■ Ex: void bar(char *x); x : str{ν}
- String value not yet known

39 Checking Type Safety of Foreign Function Calls

Two Other Java Types

• Instances of java.lang.Class are important in JNI
 jt ::= ... | jt Class

■ A Class instance representing the class of jt

- GetObjectClass : {ν;ϕ;μ} jobject → {ν;ϕ;μ} Class jobject

• Sometimes we don’t know a string’s value yet
■ So we don’t know what Java class it corresponds to

 jt ::= ... | String(s)

■ An object of class s

- FindClass : str{ν} → String(ν) Class jobject

40

Checking Type Safety of Foreign Function Calls 41

Wrapper Functions

• Accepts any object obj with int field field
■ Polymorphic in type of obj and contents of field

- String types are singletons, hence contents = type

■ These come up often in practice

- And JNI has >200 functions! Need to treat polymorphically

int my_getIntField(jobject obj, char *field) {
 jobject cls = GetObjectClass(obj);
 jfieldID fid = GetFieldID(cls, field, ”I”);
 return GetIntField(obj,fid);
}

my_getIntField(obj1, ”x”);
my_getIntField(obj2, ”offset”);

Checking Type Safety of Foreign Function Calls

Example

∀ ν1,ν3,μ3 . {ν3; ν1:int, ...;μ3} jobject × str{ν1} → int

■ Second arg is some string ν1

■ First arg is some object with an int field of name ν1

■ The function returns an int

42

int my_getIntField(jobject obj, char *field) {
 jobject cls = GetObjectClass(obj);
 jfieldID fid = GetFieldID(cls, field, ”I”);
 return GetIntField(obj,fid);
}

Checking Type Safety of Foreign Function Calls 43

Polymorphism via Semiunification

• Generate instantiation constraints when function
types instantiated

• Solve instantiation constraints using semi-
unification (Henglein 1993, Fähndrich et al 2000)

• Undecidable in theory

• Worked well for analyzing C glue code
■ Did not encounter non-termination

• In-order traversal allows for fast, straight-forward
implementation

Checking Type Safety of Foreign Function Calls

Key Features

• Java object types conflated to single C type
■ Need to track string values through C to decide what

calls to FFI methods are doing

■ Polymorphism important for wrapper functions

• Other features
■ Need to also track field, method ids through C

■ GC not as important

- Java automatically tracks objects it passes to C

44

Checking Type Safety of Foreign Function Calls

More Details: JSaffire

• Soundness also provable for JSaffire
■ Well-typed C code does not access Java data at the

wrong type

• Same architecture as OSaffire

• Wrapper script captures classpath during build

• Uses class file parser to get type information

45 Checking Type Safety of Foreign Function Calls 46

JSaffire Results
runtime exns or

hard crashes
non-fatal but
suspicious

insufficient
info

correct
code

52 · M. Furr and J. S. Foster

Program C-loc J-loc Ext Time Err Wrn FPos Imp
libgconf-java-2.10.1 1119 670 93 1.32s 0 0 10 0
libglade-java-2.10.1 149 1022 6 0.64s 0 0 0 1

libgnome-java-2.10.1 5606 5135 599 6.53s 45 0 0 1
libgtk-java-2.6.2 27095 32395 3201 1.04s 74 8 36 18

libgtkhtml-java-2.6.0 455 729 72 0.65s 27 0 0 0
libgtkmozembed-java-1.7.0 166 498 23 0.66s 0 0 0 0

libvte-java-0.11.11 437 184 36 0.67s 0 26 0 0
jnetfilter 1113 1599 105 5.38s 9 0 0 0

libreadline-java-0.8.0 1459 324 17 0.63s 0 0 0 1
pgpjava 10136 123 12 1.11s 0 1 0 1
posix1.0 978 293 26 0.70s 0 1 0 0

Java Mustang compiler 532k 1974k 2495 630s 1 88 96 2620
Total 156 124 142 2642

Fig. 27. Experimental results

Although our formal type system is flow-insensitive, J-Saffire treats the types of
local variables flow-sensitively. Each assignment updates the type of a variable in
the environment, and we add a unification constraint to variables of the same name
at join points in the control flow graph, similarly to O-Saffire.

Lastly, J-Saffire models strings in a very simple way to match how they are used
in practice in C glue code. We currently ignore string operations like strcat or
destructive updates via array operations. We also assume that strings are always
initialized before they are used, since most compilers produce a warning when this
is not the case.

5.4 JNI Experiments

We ran J-Saffire on a suite of 12 benchmarks that use the JNI. Fig. 27 shows our
results. The first 7 programs are taken from the Java-Gnome project [Java-Gnome
Developers 2005], and the remaining programs are unrelated. The last program
is a development Java 1.6 compiler, code-named Mustang (we used build 61). All
benchmarks except pgpjava and Mustang are glue code libraries that connect Java
to an external C library. For each program, Fig. 27 lists the number of lines of C
code and Java code, and the number of native methods. Next we list the analysis
time in seconds (average of 5 runs), and the number of messages reported by J-
Saffire, manually divided into the same four categories as the O-Saffire experiments.
The running time includes the C code analysis (including extracting Java types from
class files) but not the parsing of C code or the compilation time. The measurements
were performed on an AMD Athlon 4600 processor with 4GB of RAM. In a prior
conference version [Furr and Foster 2006b], we reported the number of messages
for Mustang to be much lower. We since discovered that we had not reported the
imprecision messages for this benchmark and have also fixed a few bugs in the
implementation which have changed some of our results.

J-Saffire reported 156 errors, which are programming mistakes that may cause
a program to crash or to emit an unexpected exception. Surprisingly, the most
common error was declaring a C function with the wrong arity, which accounted
for 68 errors (30 in libgtk and 38 in libgnome). All C functions called from Java
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.Checking Type Safety of Foreign Function Calls 47

JSaffire Errors

• 68 functions declared with the wrong arity

• 56 C pointers passed when object expected
■ Most result of a software rewrite

• 18 type mismatches:
■ e.g., String ≠ byte[]

• 14 functions named incorrectly
■ Functions must follow a strict convention to be called

from Java

Checking Type Safety of Foreign Function Calls 48

JSaffire Warnings

• 1 malformed Java class string

• 13 incorrect type declarations
■ JNI contains several typedef’s for jobject

(e.g., jstring, jintarray)

■ Warn when C function was declared with the wrong
type, even when the value was of the right type

• 110 dead C functions
■ C function appeared to implement a certain Java native

method, but no native method was defined in the Java
class file

Checking Type Safety of Foreign Function Calls 49

JSaffire False Positives

• 140 false positives
■ C code uses subtyping for Java types

■ Our tool is based on unification, so considered these
type errors

■ Also due to unifying a Class with a class object

- Safe, but those are different types in JSaffire

Checking Type Safety of Foreign Function Calls 50

JSaffire Imprecision

• 2642 imprecision messages
■ Vast majority from Mustang

- The Java compiler does everything possible with the JNI!

• 36 due to unresolved overloading
■ JSaffire didn’t have enough info to find a consistent

type

• 707 due to using parts of JNI we don’t model
■ E.g., passing arguments to JNI functions in array

• 115 due to directly manipulating jobject type

• 1784 due to function pointers

Checking Type Safety of Foreign Function Calls 51

Conclusion

• FFIs are a useful part of a language

• FFI code is messy
■ But not complicated, hence analyzable

• Saffire: Type checking multi-lingual code
■ The first we know of to check glue code

■ Makes FFIs safer to use

