
Language Tools for 
Distributed Computing 

and Program Generation

Yannis Smaragdakis
University of Oregon

(with a cast of many: 
credits at the end)

research supported by NSF grants 
CCR-0220248 and CCR-0238289, 

LogicBlox Inc.



Yannis Smaragdakis
University of Oregon

2

My Research
� The systems and languages end of SE

� language tools for distributed computing
� NRMI, J-Orchestra, GOTECH

� automatic testing
� JCrasher, Check-n-Crash (CnC), DSD-Crasher

� program generators and domain-specific languages
� MJ, cJ, Meta-AspectJ (MAJ), SafeGen, JTS, DiSTiL

� multiparadigm programming
� FC++, LC++

� software components
� mixin layers, layered libraries

� memory management
� EELRU, compressed VM, trace reduction, adaptive replacement



Yannis Smaragdakis
University of Oregon

3

These Lectures

� NRMI: middleware offering a natural 
programming model for distributed computing

� solves a long standing, well- known open problem!

� J-Orchestra: execute unsuspecting programs 
over a network, using program rewriting

� led to key enhancements of a major open- source 
software project (JBoss)

� Morphing: a high-level language facility for 
safe program transformation

� “bringing discipline to meta- programming”



Yannis Smaragdakis
University of Oregon

4

This Talk

� NRMI: middleware offering a natural 
programming model for distributed computing

� solves a long standing, well- known open problem!

� J-Orchestra: execute unsuspecting programs 
over a network, using program rewriting

� led to key enhancements of a major open- source 
software project (JBoss)

� Morphing: a high-level language facility for 
safe program transformation

� “bringing discipline to meta- programming”



Yannis Smaragdakis
University of Oregon

5

Language Tools for 
Distributed Computing

� What does “language tools” mean?
� middleware libraries, compiler-level tools, 

program generators, domain-specific languages

� What is a distributed system?
� “A distributed system is one in which the failure of 

a computer you didn’t even know existed can 
render your own computer unusable.”

“A collection of independent computers that 
appears to users as a single, coherent 
system”



Yannis Smaragdakis
University of Oregon

6

Why Language Tools for 
Distributed Computing?

� Why Distributed Computing?
� networks changed the way computers are used
� programming distributed systems is hard!

� partial failure, different semantics (distinct memory 
spaces), high latency, natural multi- threading

� are there simple programming models to make our 
life easier? 

� “The future is distributed computation, but the 
language community has done very little to address 
that possibility.”

Rob Pike—“Systems Software Research is Irrelevant”, 2000



A Bit of Philosophy
(of Distributed Systems, of course)

“A Note on Distributed Computing” 
(Waldo, Wyant, Wollrath, Kendall)

Highly influential 1994 manifesto for 
distributed systems programming 



Yannis Smaragdakis
University of Oregon

8

Main Thesis of “Note”

� Main thesis of the paper: distributed computing is 
very different from local computing

� We shouldn’t be trying to make one resemble the 
other

� We cannot hide the specifics of whether an object is 
distributed or local (“paper over” the network)

� Distributing objects cannot be an afterthought
� there are often dependencies in an object’s interface that 

determine whether it can be remote or not

� The “vision of unified objects” contains fallacies



Yannis Smaragdakis
University of Oregon

9

Vision of Unified Objects

� What is it?
� Design and implement your application, without 

consideration of whether objects are local or 
remote

� Then, choose object locations and interfaces for 
performance

� Finally, expand objects to deal with partial failures 
(e.g., network outages) by adding replication, 
transactions, etc.



Yannis Smaragdakis
University of Oregon

10

“Note” argument

� The premise of “unified object” is wrong:
� the design of an application is dependent on 

whether it is local or remote
� the implementation is dependent on whether it is 

local or remote
� the interfaces to objects are dependent on 

whether objects are local or remote



Yannis Smaragdakis
University of Oregon

11

Differences between Local and 
Distributed Computing

� Latency, memory access, partial failure, and 
concurrency
� Latency: remote operations take much longer to 

complete than local ones
� Memory access: cannot access remote memory 

directly (e.g., with pointers)
� Partial failure and concurrency: remote operations 

may fail, or parts of them may fail. Also, 
distributed objects can be accessed concurrently 
and need to synchronize



Yannis Smaragdakis
University of Oregon

12

How Do Differences Affect 
Programming?

� Latency:
� if ignored leads to performance problems
� important, but critical?

� can be alleviated with judicious object placement

� Memory access:
� “it would be too restrictive to prevent programmers from 

manipulating memory through pointers”
� Things have changed a lot. Java papers over memory and

makes everything be an object. Hence, it’s all a matter of 
defining the right abstractions



Yannis Smaragdakis
University of Oregon

13

The Big One

� Partial failure and concurrency:
� more serious problems, as operations fail often, 

and sometimes parts of them succeed and cause 
later trouble

� this is an important factor!



Yannis Smaragdakis
University of Oregon

14

Dealing with Partial Failure

� We can either 
� treat all objects as local objects
or
� treat all objects as distributed objects

� Problems:
� The former cannot handle failure well
� The latter is a non-solution: instead of making 

distributed computing as simple as local, we make 
local computing as hard as distributed

� The same holds for concurrency!



Yannis Smaragdakis
University of Oregon

15

Some Great Examples

� Imagine a “queue” data structure object
� interface:

� enqueue(object), dequeue(object), etc.
� the queue is held remotely

� Problems:
� on timeout, should I re-insert?

� what if insertion fails completely?
� what if insertion succeeded but confirmation was not 

received?
� how do I avoid duplication?

� need request identifiers, but the queue interface does not 
support them!



Yannis Smaragdakis
University of Oregon

16

Partial Failure and Interfaces

� In short, recovery from partial failure cannot 
be an afterthought. Implementation choices 
are apparent in the client interface. No “ideal” 
interface is suitable for all implementations.

� Same for performance (example of set and 
testing object equality)



Yannis Smaragdakis
University of Oregon

17

Case Study

� Consider NFS (network file system)
� soft mounts signal client programs (e.g., your 

regular, everyday executable) when a file 
system operation fails
� result: applications crash

� hard mounts just block until operation 
terminates
� result: machines freeze too easily, complex 

interdependencies arise



Yannis Smaragdakis
University of Oregon

18

NFS Case Study

� The “Note” argues that the interface (read, 
write, etc. syscalls) upon which NFS is built 
does not lend itself to distributed 
implementations
� “the reliability of NFS cannot be changed without 

a change to that interface”



Yannis Smaragdakis
University of Oregon

19

And Despite All That...

� NFS seems to be a good example for both the 
paper’s argument and the opposite:
� the read, write, etc. syscall interface is great for 

applications, because it masks the local/remote aspects
� NFS is successful because of the interface, not in spite of 

it!
� at a lower level, NFS should indeed be implemented in a 

distributed fashion (e.g., with transactions and replication)
� NFS could be improved, without changing the interface 

(contrary to the paper’s assertion)



How Can we Hide 
Distribution

while leaving control with the 
programmer?



Yannis Smaragdakis
University of Oregon

21

Programming Distributed 
Systems

� A very common model is RPC middleware:
� hide network communication behind a procedure call (“remote 

procedure call”)
� execute call on server, but make it look to client like a local call

� only, not quite: need to be aware of different memory space

� Our problem: make RPC calls more like local calls!



Yannis Smaragdakis
University of Oregon

22

Common RPC Programming 
Model (call semantics): Call-by-copy

� To call a remote procedure, copy argument-
reachable data to server site, return value back

� data packaged and sent over net (“pickling”, “serialization”)

Network

4

1 3

9 7

t
4

1 3

9 7

tree

Client site Server site

int sum(Tree tree) {...}sum(t);

24



Yannis Smaragdakis
University of Oregon

23

Other Calling Semantics: 
Call-by-Copy-Restore

� Call-by-copy (call-by-value) works fine when the remote 
procedure does not need to modify arguments

� otherwise, changes not visible to caller, unlike local calls
� in general, not easy to change shared state with non-shared 

address spaces

� Call-by-copy-restore is a common idea in distributed 
systems (and in some languages, as call-by-value-result):

� copy arguments to remote procedure, copy results of 
execution back, restore them in original variables

� resembles call-by-reference on a single address space



Yannis Smaragdakis
University of Oregon

24

Copy-Restore Example

5 7

n
m

7

a
b

void swap(Obj a, Obj b) {...}swap(n,m);

Network
5
a b

7 5

7 5
a’ b’



Yannis Smaragdakis
University of Oregon

25

A Long Standing Challenge

� Works ok for single variables, but not complex data!
� The distributed systems community has long tried to 

define call-by-copy-restore as a general model, for 
all data

� A textbook problem for over 15 years:
� “… Although [call-by-copy-restore] can handle pointers to 

simple arrays and structures, we still cannot handle the 
most general case of a pointer to an arbitrary data 
structure such as a complex graph.”

Tanenbaum and Van Steen, 
Distributed Systems, Prentice Hall, 2002

� The DCE RPC design tried to solve it but did not



Yannis Smaragdakis
University of Oregon

26

Our Contribution: NRMI
� The NRMI (“Natural RMI”) middleware facility 

solves the general problem efficiently
� a drop- in replacement of Java RMI, also supporting full 

call- by- copy- restore semantics
� invariant: all changes from the server are visible to 

client when RPC returns
� no matter what data are used and how they are linked
� this is the hallmark property of copy-restore

� The difficulty:
� having pointers means having aliasing: multiple ways 

to reach the same object—need to correctly update all



Yannis Smaragdakis
University of Oregon

27

Solution Idea (by example)

alias2
t

4

1 3

9 7
alias1

void foo (Tree tree) {
tree.left.data = 0;
tree.right.data = 9;
tree.right.right.data = 8;
tree.left = null; 
Tree temp = 

new Tree(2, tree.right.right, null);
tree.right.right = null;
tree.right = temp; 
}

tree

� Consider what changes a procedure can make
foo(t); ...



Yannis Smaragdakis
University of Oregon

28

Solution Idea (by example)

alias2
t

4

1 3

0 7
alias1

void foo (Tree tree) {
tree.left.data = 0;
tree.right.data = 9;
tree.right.right.data = 8;
tree.left = null; 
Tree temp = 

new Tree(2, tree.right.right, null);
tree.right.right = null;
tree.right = temp; 
}

tree

� Consider what changes a procedure can make
foo(t); ...



Yannis Smaragdakis
University of Oregon

29

Solution Idea (by example)

alias2
t

4

1 3

0 9
alias1

void foo (Tree tree) {
tree.left.data = 0;
tree.right.data = 9;
tree.right.right.data = 8;
tree.left = null; 
Tree temp = 

new Tree(2, tree.right.right, null);
tree.right.right = null;
tree.right = temp; 
}

tree

� Consider what changes a procedure can make
foo(t); ...



Yannis Smaragdakis
University of Oregon

30

Solution Idea (by example)

alias2
t

4

1 8

0 9
alias1

void foo (Tree tree) {
tree.left.data = 0;
tree.right.data = 9;
tree.right.right.data = 8;
tree.left = null; 
Tree temp = 

new Tree(2, tree.right.right, null);
tree.right.right = null;
tree.right = temp; 
}

tree

� Consider what changes a procedure can make
foo(t); ...



Yannis Smaragdakis
University of Oregon

31

Solution Idea (by example)

alias2
t

4

1 8

0 9
alias1

void foo (Tree tree) {
tree.left.data = 0;
tree.right.data = 9;
tree.right.right.data = 8;
tree.left = null; 
Tree temp = 

new Tree(2, tree.right.right, null);
tree.right.right = null;
tree.right = temp; 
}

tree

� Consider what changes a procedure can make
foo(t); ...



Yannis Smaragdakis
University of Oregon

32

Solution Idea (by example)

alias2
t

4

1 8

0 9
alias1

void foo (Tree tree) {
tree.left.data = 0;
tree.right.data = 9;
tree.right.right.data = 8;
tree.left = null; 
Tree temp = 

new Tree(2, tree.right.right, null);
tree.right.right = null;
tree.right = temp; 
}

tree

� Consider what changes a procedure can make

2

temp

foo(t); ...



Yannis Smaragdakis
University of Oregon

33

Solution Idea (by example)

alias2
t

4

1 8

0 9
alias1

void foo (Tree tree) {
tree.left.data = 0;
tree.right.data = 9;
tree.right.right.data = 8;
tree.left = null; 
Tree temp = 

new Tree(2, tree.right.right, null);
tree.right.right = null;
tree.right = temp; 
}

tree

� Consider what changes a procedure can make

2

foo(t); ...

temp



Yannis Smaragdakis
University of Oregon

34

Solution Idea (by example)

alias2
t

4

1 8

0 9
alias1

void foo (Tree tree) {
tree.left.data = 0;
tree.right.data = 9;
tree.right.right.data = 8;
tree.left = null; 
Tree temp = 

new Tree(2, tree.right.right, null);
tree.right.right = null;
tree.right = temp; 
}

tree

� Consider what changes a procedure can make

2

foo(t); ...

temp



Yannis Smaragdakis
University of Oregon

35

Previous Attempts: DCE RPC

� DCE RPC is the foremost example of a middleware 
design that supports restoring remote changes

� The most widespread DCE RPC implementation is 
Microsoft RPC (the base of middleware for the 
Microsoft operating systems)

� Supports “full pointers” (ptr) which can be aliased
� No true copy-restore: aliases not correctly updated

� for complex structures, it’s not enough to copy back and 
restore the value of arguments



Yannis Smaragdakis
University of Oregon

36

DCE RPC: stops short!
Network

tree 4

1 8

0 9 2

alias2
t

4

1 8

9 7
alias1

2

Client site Server site
Completely 

inconsistent!



Yannis Smaragdakis
University of Oregon

37

Solution Idea (by example)

alias2
t

4

1 8

0 9
alias1

tree

� Key insight: the changes we 
care about are all changes to 
objects reachable from objects 
that were originally reachable 
from arguments to the call

� Three critical cases:
� changes may be made to data 

now unreachable from t, but 
reachable through other 
aliases

� new objects may be created 
and linked

� modified data may now be 
reachable only through new 
objects

2

temp



Yannis Smaragdakis
University of Oregon

38

4

1 3

9 7

tree

NRMI Algorithm (by example): 
identify all reachable

Network

Client site Server site

alias2
t

4

1 3

9 7
alias1



Yannis Smaragdakis
University of Oregon

39

Algorithm (by example):
execute remote procedure

4

1 8

0 9

tree

2

alias2
t

4

1 3

9 7
alias1

Network

Client site Server site

temp



Yannis Smaragdakis
University of Oregon

40

Algorithm (by example):
send back all reachable

4

1 8

0 9

tree

2

alias2
t

4

1 3

9 7
alias1

Network

Client site

temp



Yannis Smaragdakis
University of Oregon

41

Algorithm (by example):
match reachable maps

4

1 8

0 9

tree

2

alias2
t

4

1 3

9 7
alias1

Network

Client site

temp



Yannis Smaragdakis
University of Oregon

42

Algorithm (by example):
update original objects

4

1 8

0 9

tree

2

alias2
t

4

1 8

0 9
alias1

Network

Client site

temp



Yannis Smaragdakis
University of Oregon

43

Algorithm (by example):
adjust links out of original objects

4

1 8

0 9

tree

2

alias2
t

4

1 8

0 9
alias1

Network

Client site

temp



Yannis Smaragdakis
University of Oregon

44

Algorithm (by example):
adjust links out of new objects

4

1 8

0 9

tree

2

alias2
t

4

1 8

0 9
alias1

Network

Client site

temp



Yannis Smaragdakis
University of Oregon

45

Algorithm (by example):
garbage collect

2

alias2
t

4

1 8

0 9
alias1

Network

Client site



Yannis Smaragdakis
University of Oregon

46

Usability and Performance
� NRMI makes programming easier

� no need to even know aliases
� even if all known, eliminates many lines of code (~50 

per remote call/argument type—26% or more of the 
program for our benchmarks)

� common scenarios:
� GUI patterns like MVC: many views alias same model
� multiple indexing (e.g., customers + transactions 

crossreferenced)



Yannis Smaragdakis
University of Oregon

47

Example (Multiple Indexing)
Networkclass Customer {

String name;
int orders;
…
}

Jane Doe
5

John Smith
3

… …

void update (Customer c) 
{…



Yannis Smaragdakis
University of Oregon

48

Example (Multiple Indexing)
Networkclass Customer {

String name;
int orders;
…
}

Jane Doe
5

John Smith
3

… …

void update (Customer c) 
{…

John Smith
3



Yannis Smaragdakis
University of Oregon

49

Example (Multiple Indexing)
Networkclass Customer {

String name;
int orders;
…
}

void update (Customer c) 
{…

Jane Doe
5

John Smith
3

… …

John Smith
4



Yannis Smaragdakis
University of Oregon

50

Performance

� We have a highly optimized implementation
� algorithm implemented by tapping into existing 

serialization mechanism, optimized with Java 
1.4+ “unsafe” facility for direct memory access



Yannis Smaragdakis
University of Oregon

51

Experimental Results
Tree of 256 nodes

0 50 100 150 200 250
Time in ms

Bench1

Bench2

Bench3
NRMI

Java RMI + 
extra code

Java RMI, remote
ref. (no extra code)



Yannis Smaragdakis
University of Oregon

52

Benchmarks

� Each benchmark passes a single randomly-
generated binary tree parameter to a remote 
method

� Remote method performs random changes to 
its input tree

� We try to emulate the ideal a human 
programmer would achieve

� The invariant maintained is that all the 
changes are visible to the client



Yannis Smaragdakis
University of Oregon

53

Benchmark Scenario 1

4

0 1

t

Client site Server site

Network

No aliases, data and 
structure may change

4

3 1

tree

57



Yannis Smaragdakis
University of Oregon

54

Benchmark Scenario 2

4

0 1

t
4

3 5

tree

Structure does not change
but data may change

alias

Client site Server site

Network



Yannis Smaragdakis
University of Oregon

55

Benchmark Scenario 3

4

0 1

t

Structure changes 
aliases present

alias

4

3 1

tree

57

Client site Server site

Network



Yannis Smaragdakis
University of Oregon

56

Higher-level Distributed 
Programming Facilities

� NRMI is a medium- level facility: it gives the 
programmer full control, imposes requirements
� good for performance and flexibility
� low automation

� For single- threaded clients and stateless servers, 
NRMI semantics is (provably) identical to local 
procedure calls
� but statelessness is restrictive

� There are higher- level models for programming 
distributed systems
� the higher the level, the more automation
� the higher the level, the smaller the domain of 

applicability



Yannis Smaragdakis
University of Oregon

57

Retrospective:
What Helped Solve the Problem?

� An instance of “looking at things from the right angle”
� a languages background helped a lot:

� with defining precisely what copy-restore means
� with identifying the key insight

� with coming up with an efficient algorithm



In Summary

What did I talk about?



Yannis Smaragdakis
University of Oregon

59

This Talk

� NRMI: middleware offering a natural 
programming model for distributed computing

� solves a long standing, well- known open problem!

� J-Orchestra: execute unsuspecting programs 
over a network, using program rewriting

� led to key enhancements of a major open- source 
software project (JBoss)

� Morphing: a high-level language facility for 
safe program transformation

� “bringing discipline to meta- programming”


