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My Research
� The systems and languages end of SE

� language tools for distributed computing
� NRMI, J-Orchestra, GOTECH

� automatic testing
� JCrasher, Check-n-Crash (CnC), DSD-Crasher

� program generators and domain-specific languages
� MJ, cJ, Meta-AspectJ (MAJ), SafeGen, JTS, DiSTiL

� multiparadigm programming
� FC++, LC++

� software components
� mixin layers, layered libraries

� memory management
� EELRU, compressed VM, trace reduction, adaptive replacement



Yannis Smaragdakis
University of Oregon

3

These Lectures

� NRMI: middleware offering a natural 
programming model for distributed computing

� solves a long standing, well- known open problem!

� J-Orchestra: execute unsuspecting programs 
over a network, using program rewriting

� led to key enhancements of a major open- source 
software project (JBoss)

� Morphing: a high-level language facility for 
safe program transformation

� “bringing discipline to meta- programming”
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Language Tools for 
Distributed Computing

� What does “language tools” mean?
� middleware libraries, compiler-level tools, 

program generators, domain-specific languages

� What is a distributed system?
� “A distributed system is one in which the failure of 

a computer you didn’t even know existed can 
render your own computer unusable.”

“A collection of independent computers that 
appears to users as a single, coherent 
system”
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Why Language Tools for 
Distributed Computing?

� Why Distributed Computing?
� networks changed the way computers are used
� programming distributed systems is hard!

� partial failure, different semantics (distinct memory 
spaces), high latency, natural multi- threading

� are there simple programming models to make our 
life easier? 

� “The future is distributed computation, but the 
language community has done very little to address 
that possibility.”

Rob Pike—“Systems Software Research is Irrelevant”, 2000



A Bit of Philosophy
(of Distributed Systems, of course)

“A Note on Distributed Computing” 
(Waldo, Wyant, Wollrath, Kendall)

Highly influential 1994 manifesto for 
distributed systems programming 
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Main Thesis of “Note”

� Main thesis of the paper: distributed computing is 
very different from local computing

� We shouldn’t be trying to make one resemble the 
other

� We cannot hide the specifics of whether an object is 
distributed or local (“paper over” the network)

� Distributing objects cannot be an afterthought
� there are often dependencies in an object’s interface that 

determine whether it can be remote or not

� The “vision of unified objects” contains fallacies
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Vision of Unified Objects

� What is it?
� Design and implement your application, without 

consideration of whether objects are local or 
remote

� Then, choose object locations and interfaces for 
performance

� Finally, expand objects to deal with partial failures 
(e.g., network outages) by adding replication, 
transactions, etc.
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“Note” argument

� The premise of “unified object” is wrong:
� the design of an application is dependent on 

whether it is local or remote
� the implementation is dependent on whether it is 

local or remote
� the interfaces to objects are dependent on 

whether objects are local or remote
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Differences between Local and 
Distributed Computing

� Latency, memory access, partial failure, and 
concurrency
� Latency: remote operations take much longer to 

complete than local ones
� Memory access: cannot access remote memory 

directly (e.g., with pointers)
� Partial failure and concurrency: remote operations 

may fail, or parts of them may fail. Also, 
distributed objects can be accessed concurrently 
and need to synchronize
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How Do Differences Affect 
Programming?

� Latency:
� if ignored leads to performance problems
� important, but critical?

� can be alleviated with judicious object placement

� Memory access:
� “it would be too restrictive to prevent programmers from 

manipulating memory through pointers”
� Things have changed a lot. Java papers over memory and

makes everything be an object. Hence, it’s all a matter of 
defining the right abstractions
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The Big One

� Partial failure and concurrency:
� more serious problems, as operations fail often, 

and sometimes parts of them succeed and cause 
later trouble

� this is an important factor!
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Dealing with Partial Failure

� We can either 
� treat all objects as local objects
or
� treat all objects as distributed objects

� Problems:
� The former cannot handle failure well
� The latter is a non-solution: instead of making 

distributed computing as simple as local, we make 
local computing as hard as distributed

� The same holds for concurrency!
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Some Great Examples

� Imagine a “queue” data structure object
� interface:

� enqueue(object), dequeue(object), etc.
� the queue is held remotely

� Problems:
� on timeout, should I re-insert?

� what if insertion fails completely?
� what if insertion succeeded but confirmation was not 

received?
� how do I avoid duplication?

� need request identifiers, but the queue interface does not 
support them!
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Partial Failure and Interfaces

� In short, recovery from partial failure cannot 
be an afterthought. Implementation choices 
are apparent in the client interface. No “ideal” 
interface is suitable for all implementations.

� Same for performance (example of set and 
testing object equality)
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Case Study

� Consider NFS (network file system)
� soft mounts signal client programs (e.g., your 

regular, everyday executable) when a file 
system operation fails
� result: applications crash

� hard mounts just block until operation 
terminates
� result: machines freeze too easily, complex 

interdependencies arise
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NFS Case Study

� The “Note” argues that the interface (read, 
write, etc. syscalls) upon which NFS is built 
does not lend itself to distributed 
implementations
� “the reliability of NFS cannot be changed without 

a change to that interface”



Yannis Smaragdakis
University of Oregon

19

And Despite All That...

� NFS seems to be a good example for both the 
paper’s argument and the opposite:
� the read, write, etc. syscall interface is great for 

applications, because it masks the local/remote aspects
� NFS is successful because of the interface, not in spite of 

it!
� at a lower level, NFS should indeed be implemented in a 

distributed fashion (e.g., with transactions and replication)
� NFS could be improved, without changing the interface 

(contrary to the paper’s assertion)



How Can we Hide 
Distribution

while leaving control with the 
programmer?
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Programming Distributed 
Systems

� A very common model is RPC middleware:
� hide network communication behind a procedure call (“remote 

procedure call”)
� execute call on server, but make it look to client like a local call

� only, not quite: need to be aware of different memory space

� Our problem: make RPC calls more like local calls!
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Common RPC Programming 
Model (call semantics): Call-by-copy

� To call a remote procedure, copy argument-
reachable data to server site, return value back

� data packaged and sent over net (“pickling”, “serialization”)

Network

4

1 3

9 7

t
4

1 3

9 7

tree

Client site Server site

int sum(Tree tree) {...}sum(t);

24
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Other Calling Semantics: 
Call-by-Copy-Restore

� Call-by-copy (call-by-value) works fine when the remote 
procedure does not need to modify arguments

� otherwise, changes not visible to caller, unlike local calls
� in general, not easy to change shared state with non-shared 

address spaces

� Call-by-copy-restore is a common idea in distributed 
systems (and in some languages, as call-by-value-result):

� copy arguments to remote procedure, copy results of 
execution back, restore them in original variables

� resembles call-by-reference on a single address space



Yannis Smaragdakis
University of Oregon

24

Copy-Restore Example

5 7

n
m

7

a
b

void swap(Obj a, Obj b) {...}swap(n,m);

Network
5
a b

7 5

7 5
a’ b’
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A Long Standing Challenge

� Works ok for single variables, but not complex data!
� The distributed systems community has long tried to 

define call-by-copy-restore as a general model, for 
all data

� A textbook problem for over 15 years:
� “… Although [call-by-copy-restore] can handle pointers to 

simple arrays and structures, we still cannot handle the 
most general case of a pointer to an arbitrary data 
structure such as a complex graph.”

Tanenbaum and Van Steen, 
Distributed Systems, Prentice Hall, 2002

� The DCE RPC design tried to solve it but did not
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Our Contribution: NRMI
� The NRMI (“Natural RMI”) middleware facility 

solves the general problem efficiently
� a drop- in replacement of Java RMI, also supporting full 

call- by- copy- restore semantics
� invariant: all changes from the server are visible to 

client when RPC returns
� no matter what data are used and how they are linked
� this is the hallmark property of copy-restore

� The difficulty:
� having pointers means having aliasing: multiple ways 

to reach the same object—need to correctly update all
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Solution Idea (by example)

alias2
t

4

1 3

9 7
alias1

void foo (Tree tree) {
tree.left.data = 0;
tree.right.data = 9;
tree.right.right.data = 8;
tree.left = null; 
Tree temp = 

new Tree(2, tree.right.right, null);
tree.right.right = null;
tree.right = temp; 
}

tree

� Consider what changes a procedure can make
foo(t); ...
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Previous Attempts: DCE RPC

� DCE RPC is the foremost example of a middleware 
design that supports restoring remote changes

� The most widespread DCE RPC implementation is 
Microsoft RPC (the base of middleware for the 
Microsoft operating systems)

� Supports “full pointers” (ptr) which can be aliased
� No true copy-restore: aliases not correctly updated

� for complex structures, it’s not enough to copy back and 
restore the value of arguments
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DCE RPC: stops short!
Network

tree 4

1 8

0 9 2

alias2
t

4

1 8

9 7
alias1

2

Client site Server site
Completely 

inconsistent!
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Solution Idea (by example)

alias2
t

4

1 8

0 9
alias1

tree

� Key insight: the changes we 
care about are all changes to 
objects reachable from objects 
that were originally reachable 
from arguments to the call

� Three critical cases:
� changes may be made to data 

now unreachable from t, but 
reachable through other 
aliases

� new objects may be created 
and linked

� modified data may now be 
reachable only through new 
objects

2

temp
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4

1 3

9 7

tree

NRMI Algorithm (by example): 
identify all reachable

Network

Client site Server site

alias2
t

4

1 3

9 7
alias1
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Algorithm (by example):
execute remote procedure

4

1 8

0 9

tree

2

alias2
t

4

1 3

9 7
alias1

Network

Client site Server site

temp
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Algorithm (by example):
send back all reachable

4

1 8

0 9

tree

2

alias2
t

4

1 3

9 7
alias1

Network

Client site

temp
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Algorithm (by example):
match reachable maps
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2

alias2
t
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9 7
alias1

Network

Client site

temp
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Algorithm (by example):
update original objects
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1 8
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2

alias2
t
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0 9
alias1

Network

Client site

temp
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Algorithm (by example):
adjust links out of original objects

4

1 8

0 9

tree

2

alias2
t

4

1 8

0 9
alias1

Network

Client site

temp
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Algorithm (by example):
adjust links out of new objects
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tree

2

alias2
t

4

1 8

0 9
alias1

Network

Client site

temp
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Algorithm (by example):
garbage collect

2

alias2
t

4

1 8

0 9
alias1

Network

Client site
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Usability and Performance
� NRMI makes programming easier

� no need to even know aliases
� even if all known, eliminates many lines of code (~50 

per remote call/argument type—26% or more of the 
program for our benchmarks)

� common scenarios:
� GUI patterns like MVC: many views alias same model
� multiple indexing (e.g., customers + transactions 

crossreferenced)
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Example (Multiple Indexing)
Networkclass Customer {

String name;
int orders;
…
}

Jane Doe
5

John Smith
3

… …

void update (Customer c) 
{…
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Performance

� We have a highly optimized implementation
� algorithm implemented by tapping into existing 

serialization mechanism, optimized with Java 
1.4+ “unsafe” facility for direct memory access
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Experimental Results
Tree of 256 nodes

0 50 100 150 200 250
Time in ms

Bench1

Bench2

Bench3
NRMI

Java RMI + 
extra code

Java RMI, remote
ref. (no extra code)
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Benchmarks

� Each benchmark passes a single randomly-
generated binary tree parameter to a remote 
method

� Remote method performs random changes to 
its input tree

� We try to emulate the ideal a human 
programmer would achieve

� The invariant maintained is that all the 
changes are visible to the client
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Benchmark Scenario 1

4

0 1

t
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Network

No aliases, data and 
structure may change

4

3 1

tree

57
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Benchmark Scenario 2
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t
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3 5

tree

Structure does not change
but data may change

alias

Client site Server site

Network
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Benchmark Scenario 3

4
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t

Structure changes 
aliases present

alias

4

3 1

tree

57

Client site Server site

Network
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Higher-level Distributed 
Programming Facilities

� NRMI is a medium- level facility: it gives the 
programmer full control, imposes requirements
� good for performance and flexibility
� low automation

� For single- threaded clients and stateless servers, 
NRMI semantics is (provably) identical to local 
procedure calls
� but statelessness is restrictive

� There are higher- level models for programming 
distributed systems
� the higher the level, the more automation
� the higher the level, the smaller the domain of 

applicability
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Retrospective:
What Helped Solve the Problem?

� An instance of “looking at things from the right angle”
� a languages background helped a lot:

� with defining precisely what copy-restore means
� with identifying the key insight

� with coming up with an efficient algorithm



In Summary

What did I talk about?



Yannis Smaragdakis
University of Oregon

59

This Talk

� NRMI: middleware offering a natural 
programming model for distributed computing

� solves a long standing, well- known open problem!

� J-Orchestra: execute unsuspecting programs 
over a network, using program rewriting

� led to key enhancements of a major open- source 
software project (JBoss)

� Morphing: a high-level language facility for 
safe program transformation

� “bringing discipline to meta- programming”


