Programming in Omega
Part 1

Tim Sheard
Portland State University
• Tim Sheard

• Computer Science Department

• Portland State University

• Portland, Oregon
PL Research at Portland State University

- The Programming Language Group at PSU.
 - Sergio Antoy (Curry)
 - Andrew Black (Emerald)
 - Mark Jones (Hugs, Constrained Types)
 - Jim Hook (PacSoft)
 - Tim Sheard (MetaML, Template Haskell, Omega)
 - Andrew Tolmach (House)
 - Galois Connections (John Launchbury) 3 train stops away

- We are looking for new students. Come Join us, or send your good graduates our way!

www.cs.pdx.edu
Omega

• Omega is modeled after Haskell
• Additions
 – Unbounded number of computational levels
 • values (*0), types (*1), kind (*2), sorts (*3), ...
 – Data-structures at all levels
 – Generalized Algebraic Datatypes
 – Functions at all levels
 – Staging
• Subtractions
 – The class system
 – Laziness
end-to-end example

- Unbounded number of computational levels
 - values (*0), types (*1), kind (*2), sorts (*3), ...
- Data-structures at all levels
- Functions at all levels

An object with Structure at the type Level

data Nat:: *1 where
 Z:: Nat
 S:: Nat ~> Nat

the *1 means Nat is a kind, and S and Z are types
Type functions

We write functions by using pattern matching equations. Every type function must have a prototype.

\[
\text{plus} :: \text{Nat} \rightarrow \text{Nat} \rightarrow \text{Nat} \\
\{\text{plus} \ Z \ m\} = m \\
\{\text{plus} \ (\text{S} \ n) \ m\} = \text{S} \ \{\text{plus} \ n \ m\}
\]
<table>
<thead>
<tr>
<th>value</th>
<th>type</th>
<th>kind</th>
<th>sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fork</td>
<td>Tree</td>
<td>:0 ~> *0</td>
<td>:1</td>
</tr>
<tr>
<td>Node</td>
<td>a ~> Tree a</td>
<td>:0</td>
<td>:1</td>
</tr>
<tr>
<td>Tip</td>
<td>Tree a</td>
<td>:0</td>
<td>:1</td>
</tr>
<tr>
<td>Z</td>
<td>Nat</td>
<td>:1</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Nat ~> Nat</td>
<td>:1</td>
<td></td>
</tr>
<tr>
<td>plus</td>
<td>Nat ~> Nat ~> Nat</td>
<td>:1</td>
<td></td>
</tr>
<tr>
<td>{plus #1 #3}</td>
<td>Nat</td>
<td>:1</td>
<td></td>
</tr>
<tr>
<td>Snil</td>
<td>Seq a Z</td>
<td>:0</td>
<td>:1</td>
</tr>
<tr>
<td>Scons</td>
<td>a ~> Seq a b ~> Seq a (S b)</td>
<td>:0</td>
<td>:1</td>
</tr>
<tr>
<td>app</td>
<td>Seq a n ~> Seq a m ~> Seq a {plus n m}</td>
<td>:0</td>
<td>:1</td>
</tr>
<tr>
<td>Tp</td>
<td>Shape</td>
<td>:1</td>
<td></td>
</tr>
<tr>
<td>Md</td>
<td>Shape</td>
<td>:1</td>
<td></td>
</tr>
<tr>
<td>Fk</td>
<td>Shape</td>
<td>:1</td>
<td></td>
</tr>
<tr>
<td>Tip</td>
<td>Tree Tp a</td>
<td>:0</td>
<td>:1</td>
</tr>
<tr>
<td>Node</td>
<td>a ~> Tree Nd a</td>
<td>:0</td>
<td>:1</td>
</tr>
<tr>
<td>Fork</td>
<td>Tree x a ~> Tree y a ~> Tree (Fk x y) a</td>
<td>:0</td>
<td>:1</td>
</tr>
<tr>
<td>find</td>
<td>(a ~> a ~> Bool) ~> a ~> Tree sh a ~> [Path sh a]</td>
<td>:0</td>
<td>:1</td>
</tr>
<tr>
<td>T</td>
<td>Boolean</td>
<td>:1</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Boolean</td>
<td>:1</td>
<td></td>
</tr>
<tr>
<td>le</td>
<td>Nat ~> Nat ~> Boolean</td>
<td>:1</td>
<td></td>
</tr>
<tr>
<td>{le #0 #2}</td>
<td>Boolean</td>
<td>:1</td>
<td></td>
</tr>
<tr>
<td>LE</td>
<td>Nat ~> Nat ~> Boolean</td>
<td>:1</td>
<td></td>
</tr>
<tr>
<td>LeZ</td>
<td>LE Z a</td>
<td>:0</td>
<td>:1</td>
</tr>
<tr>
<td>LeS</td>
<td>LE n m ~> LE (S n) (S m)</td>
<td>:0</td>
<td>:1</td>
</tr>
<tr>
<td>EvenZ</td>
<td>Even Z</td>
<td>:0</td>
<td>:1</td>
</tr>
<tr>
<td>EvenSS</td>
<td>Even n ~> Even (S(S n))</td>
<td>:0</td>
<td>:1</td>
</tr>
</tbody>
</table>

Fig. 1. The level hierarchy for some of the examples in the paper.
Using kinds to index types

data Seq :: *0 -> Nat -> *0 where
Snil :: Seq a Z
Scons :: a -> Seq a n -> Seq a (S n)

*0 means Seq is a type, and Snil and Scons are values
We explicitly classify both Seq, and its constructor functions, Snil and Scons, with their full classification
The second argument to Seq is a natural number
Type indexed data

data Seq :: *0 ~> Nat ~> *0 where
 Snil :: Seq a Z
 Scons :: a -> Seq a n -> Seq a (S n)

- Parameters of data types, that are not of kind *0, are type indexes.
- Indexes describe an invariant of the data.
- Consider a value of type
 \[(\text{Seq Int (S Z)})\]

This is a parameter, we expect things of type Int inside

This is an index, we don’t expect things of type (S Z) inside, instead it tells us the list has length 1
A value-level function whose type mentions a type-level function

We write value-level functions by using pattern matching equations.

The plus function appears in the type of app

\[
\text{app}:: \text{Seq } a \ n \to \text{Seq } a \ m \to \text{Seq } a \ \{\text{plus } n \ m\}
\]

\[
\text{app } \text{Snil } ys = ys
\]

\[
\text{app } (\text{Scons } x \ xs) \ ys = \text{Scons } x \ (\text{app } xs \ ys)
\]
Type Checking

• Type checking is compile-time computation.

\[\Gamma |- f : c \rightarrow d \quad \Gamma |- x : b \quad b \cong c \]
\[\Gamma |- f \ x : d \]

\(b \cong c \) means \(b \) is mutually consistent
Mutually consistent

• Pascal
 – $b \cong c$ means b and c are structurally equal

• Haskell
 – $b \cong c$ means b and c unify

• Java
 – $b \cong c$ means b is a subtype of c

• Dependent typing
 – $b \cong c$ means b and c “mean the same thing”
Type checking by constraint solving

• Every function leads to a set of constraints
• If the constraints have a solution, the function is well typed.
• In Omega (as in dependent typing), Constraints are all about the semantic equality of type expressions.
Computing Equations

\[
\text{app} :: \text{Seq } a \ n \rightarrow \text{Seq } a \ m \rightarrow \text{Seq } a \ \{\text{plus } n \ m\}
\]

\[
\text{app } \text{Snil} \ ys = ys
\]

\[
\text{app } (\text{Scons } x \ xs) \ ys = \text{Scons } x \ (\text{app } xs \ ys)
\]

<table>
<thead>
<tr>
<th>expected type</th>
<th>Seq a n</th>
<th>→</th>
<th>Seq a m</th>
<th>→</th>
<th>Seq a {\text{plus } n \ m}</th>
</tr>
</thead>
<tbody>
<tr>
<td>equation</td>
<td>app (Scons x xs)</td>
<td>=</td>
<td>ys</td>
<td>Scons x (app xs ys)</td>
<td></td>
</tr>
<tr>
<td>computed type</td>
<td>Seq a (S b)</td>
<td>Seq a m</td>
<td>Seq a (S{\text{plus } b \ m})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>equalities</td>
<td>n = S b</td>
<td>\⇒</td>
<td>{\text{plus } n \ m} = S{\text{plus } b \ m}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise 1

• Write an Omega function that defines the length function over sequences.

\[\text{length} :: \text{Seq}\ a\ n \rightarrow \text{Int} \]

• You will need to create a file, and paste the definition for \text{Seq} into the file, as well as write the length function. The \text{Nat} kind is predefined. You will need to include the function prototype, above, in your file (type inference is limited in Omega).

• How might we reflect the fact that the resulting \text{Int} should have size \(n \)?
Guide to the rest of Lecture 1

• New Features
 – Kinds
 – Functions at the type level
 – GADTs – Generalized algebraic datatypes

• New Patterns
 – witnesses
 – comparing type functions and witnesses
 – singleton types
 – Nat’ (a pun)
Kinds

Objects with Structure at the type Level

data Nat:: *1 where
 Z:: Nat
 S:: Nat ~> Nat

• A kind of natural numbers
 – Classifies types Z, S Z, S (S Z)...
 – Such types don’t classify values
A hierarchy of values, types, kinds, sorts, …

Values:
- 5
- [5]

Types:
- Int
- [Int]
- []

Kinds:
- *0
- *0
- *0 ~> *0

Sorts:
- Nat
- Nat ~> Nat

Haskell portion of the hierarchy
Example Kinds

data State:: *1 where
 Locked:: State
 Unlocked:: State
 Error:: State

data Color:: *1 where
 Red:: Color
 Black:: Color
data Boolean :: *1 where
 T :: Boolean
 F :: Boolean

data Shape :: *1 where
 Tp :: Shape
 Nd :: Shape
 Fk :: Shape ~> Shape ~> Shape
Exercise 3

• Write a data declaration introducing a new kind called \texttt{Color} with types \texttt{Red} and \texttt{Black}. Are there any values with type \texttt{Red}? Now write a data declaration introducing a new type \texttt{Tree} which is indexed by \texttt{Color} (this will be similar to the use of \texttt{Nat} in the declaration of \texttt{Seq}).

• There should be some values classified by the type \texttt{(Tree Red)}, and others classified by the type \texttt{(Tree Black)}.
GADTS

• How do GADTs generalize ADTS?
 – at every level (instead of just at level *0)
 – ranges are not restricted to distinct variables
• How are they declared?
• What kind of expressive power do they add?
ADT Declaration

• Structures
 - data Person = P Name Age Address

• Unions
 - data Color = Red | Blue | Yellow

• Recursive
 - data IntList = None
 - | Add Int IntList

• Parameterized (polymorphic)
 - data List a = Nil | Cons a (List a)
Algebraic Datatypes

• Inductively formed structured data
 – Generalizes enumerations, records & tagged variants

• Well typed *constructor functions* are used to prevent the construction of ill-formed data.

• Pattern matching allows abstract high level (yet still efficient) access
ADT’s provide an abstract interface to heap data.

- **Data Tree a**

 = Fork (Tree a) (Tree a)

 | Node a

 | Tip

- **Fork :: Tree a -> Tree a -> Tree a**
- **Node :: a -> Tree a**
- **Tip :: Tree a**

Note the “data” declaration introduces values and functions that construct instances of the new type.

We can define parametric polymorphic data

Inductively defined data allows structures of unbounded size
Deconstruction by pattern matching

Constructors are tags on data

We observe the tags by using pattern matching

```
Sum :: Tree Int -> Int
Sum Tip = 0
Sum (Node x) = x
Sum (Fork m n) = sum m + sum n
```
ADT Type Restrictions

• Data Tree a
 = Fork (Tree a) (Tree a)
 | Node a
 | Tip

• Fork :: Tree a -> Tree a -> Tree a
• Node :: a -> Tree a
• Tip :: Tree a

Restriction: the range of every constructor matches exactly the type being defined
GADTS at every level

data Shape :: *1 where
 Tp :: Shape
 Nd :: Shape
 Fk :: Shape ~> Shape ~> Shape

The range of the introduced type selects the levels that the GADT introduces its constructors.
Shape is a kind, Tp, Nd, and Fk are types
GADTs remove the range restriction

```haskell
data Tree :: Shape ~> *0 ~> *0 where
  Tip:: Tree Tp a
  Node:: a -> Tree Nd a
  Fork:: Tree x a -> Tree y a -> Tree (Fk x y) a
```

- Instead of indicating the arity of a type constructor by naming its parameters, give an explicit kind

- Give the explicit type for every constructor to remove the range restriction.
Trees are indexed by Shape

Tree :: Shape ~> *0 ~> *0 where
Tip:: Tree Tp a
 Node:: a -> Tree Nd a
 Fork:: Tree x a -> Tree y a -> Tree (Fk x y) a

The kind index tells us about the shape of the tree. We can exploit this invariant

data Path:: Shape ~> *0 ~> *0 where
 None :: Path Tp a
 Here :: b -> Path Nd b
 Left :: Path x a -> Path (Fk x y) a
 Right:: Path y a -> Path (Fk x y) a
We can write functions whose types tells us important properties

```
find:: (a -> a -> Bool) -> a -> Tree s a -> [Path s a]
find eq n Tip = []
find eq n (Node m) =  
  if eq n m then [Here n] else []
find eq n (Fork x y) =
  map Left (find eq n x) ++
  map Right (find eq n y)
```
Exercises 7-8

• Write an Omega function with type
 \[\text{extract} :: \text{Path } \text{sh } a \rightarrow \text{Tree } \text{sh } a \rightarrow a \]
 which extracts the value of type \(a \), stored in the tree at the location pointed to by the path. This function will pattern match over two arguments simultaneously. Some combinations of patterns are not necessary. Why? See section 3.10 for how you can document this fact.

• Replicate the shape index pattern for lists. Write two Omega GADTs. One at the kind level which encodes the shape of lists, and one at the type level for lists indexed by their shape. Also, write a find function for your new types.
 \[\text{find} :: (a \rightarrow a \rightarrow \text{Bool}) \rightarrow a \rightarrow \text{List } \text{sh } a \rightarrow \text{Maybe(} \text{ListPath } \text{sh } a) \]
 which returns the first path, if one exists.
Functions over types

even :: Nat ~> Boolean

{even Z} = T

{even (S Z)} = F

{even (S (S n))} = {even n}
More examples

and:: Boolean ~> Boolean ~> Boolean
{and T x} = x
{and F x} = F

le:: Nat ~> Nat ~> Boolean
{le Z n} = T
{le (S n) Z} = F
{le (S n) (S m)} = {le n m}
Exercise 4-6

• Write the function `mult`, which is the multiplication function at the type level over natural numbers. It should be classified by the kind

 \[\text{mult} :: \text{Nat} \rightarrow \text{Nat} \rightarrow \text{Nat} \]

• Write the `odd` function classified by

 \[\text{Nat} \rightarrow \text{Boolean} \]

• Write the `or` and `not` functions, that are classified by the kinds

 \[\text{or} :: \text{Boolean} \rightarrow \text{Boolean} \rightarrow \text{Boolean} \]

 \[\text{not} :: \text{Boolean} \rightarrow \text{Boolean} \]

• Which arguments of `or` should you pattern match over? Does it matter? Experiment, Omega won't allow some combinations. See Appendix 2 on inductively sequential definitions and narrowing for the reason why.
Employing type functions

\[
\text{app} :: \text{Seq } a \ n \to \text{Seq } a \ m \to \text{Seq } a \left\{ \text{plus } n \ m \right\} \\
\text{app } \text{Snil } ys = ys \\
\text{app } (\text{Scons } x \ xs) \ ys = \text{Scons } x \ (\text{app } xs \ ys)
\]

- Normal functions at the value level are given function prototypes by the programmer, that use functions at the type level.
- The type-functions relate (in a functional manner) the type indexes of the inputs and outputs. They relate the invariants, and hence say something about what the function does.
Curry-Howard isomorphism

- The Curry-Howard isomorphism states that there is an isomorphism between programs/types and proofs/propositions.

- What does this mean?
- How can we put this powerful idea to work in practical ways?
Curry-Howard

program

\(O(E(O_Z)) :: \text{Odd} \ (1+1+1+0) \)

proof

property

Z :: Even 0
O Z :: Odd 1
E(O Z) :: Even 2
O(E(O z)) :: Odd 3

Odd 3

What is a proof?
Properties or Propositions

Am I odd or even?

\[
\begin{align*}
0 & \text{ is even} \\
1 & \text{ is odd, if} \\
2 & \text{ is even, if} \\
3 & \text{ is odd, if}
\end{align*}
\]

Requirements for a legal proof

• Even is always stacked above odd
• Odd is always stacked below even
• The numeral decreases by one in each stack
• Every stack ends with 0
Introduce new data indexed by Nat

data Even:: Nat ~> *0 where ...
 Z:: Even 0
 E:: Odd m -> Even (m+1)

data Odd:: Nat ~> *0 where ...
 O:: Even m -> Odd (m+1)

Note the different range types! GADTS are essential here!
Properties as Functional Programs

```haskell
data Even m = ...
Z :: Even 0
E :: Odd m -> Even (m+1)
```

```haskell
data Odd m = ...
O :: Even m -> Odd (m+1)
O (E (O Z))
:: Odd (1+1+1+0)
```

Note Even and Odd are type constructors, Z, E, and O are data constructors

Observation: Proofs are Data!
Relationships between types

data LE :: Nat ~> Nat ~> *0 where
 Base:: LE Z x
 Step:: LE x y ~> LE (S x) (S y)

le23 :: LE #2 #3
le23 = Step(Step Base)

le2x :: LE #2 #(2+a)
le2x = Step(Step Base)
Type Functions v.s. Witnesses

even:: Nat ~> Boolean
{even Z} = T
{even (S Z)} = F
{even (S (S n))} =
 {even n}

le:: Nat ~> Nat
 ~> Boolean
{le Z n} = T
{le (S n) Z} = F
{le (S n) (S m)} =
 {le n m}

data Even:: Nat ~> *0
 where
 EvenZ:: Even Z
 EvenSS:: Even n ->
 Even (S (S n))

data LE:: Nat ~> Nat ~> *0
 where
 LeZ:: LE Z n
 LeS:: LE n m ->
 LE (S n) (S m)
Relating functions & witnesses

data Proof :: Boolean ~> *0 where
 Triv :: Proof T
Exercises 10-11

Consider:

data Plus:: Nat ~> Nat ~> Nat ~> *0 where
 PlusZ:: Plus Z m m
 PlusS:: Plus n m z -> Plus (S n) m (S z)

• Construct terms with the types (Plus 2t 3t 5t), (Plus 2t 1t 3t), and (Plus 2t 6t 8t). What did you discover?

• Write an Omega function with the following type:
 summandLessThanSum:: Plus a b c -> LE a c
 Hint: it is a recursive function. Can you write a similar function with type (Plus a b c -> LE b c)?
Singleton Types

• GADTs allow us to reflect the structure of types as structure (data) at the value level

\[
data\ \text{Nat}' :: \text{Nat} \rightarrow *0\ \text{where}\n\]
\[
\begin{align*}
 Z & :: \text{Nat}' \ Z \\
 S & :: \text{Nat}' \ x \rightarrow \text{Nat}' \ (S \ x)
\end{align*}
\]

Exploits the separation between the value name space and the type name space. Because of this declaration Z and S are added to the value name space.
Properties of Singleton Types

- Only one element inhabits any singleton type.
- The shape of that value is in 1-to-1 correspondance with the type index of the type of that value
 \[- (S(S(S \text{Z}))) :: \text{Nat}' (S(S(S \text{Z})))\]
- If you know the type of a singleton, you know its shape.
- You can discover the type of a singleton value by exploring its shape.
Exercise 13-14

• Write the two Omega functions with types:
 \text{same}:: \text{Nat'} n \to \text{LE} n n
 and
 \text{predLE}:: \text{Nat'} n \to \text{LE} n (S n)
 Hint they are simple recursive functions.

• Write the Omega function which witnesses the transitivity of the less-than-or-equal to predicate.
 \text{trans}:: \text{LE} a b \to \text{LE} b c \to \text{LE} a c
 Hint: it is a recursive function with pattern matching over both arguments. One of the cases is not reachable.
Exercise 9

• Consider the GADT below.

```haskell
data Rep :: *0 ~> *0 where
  Int :: Rep Int
  Prod :: Rep a -> Rep b -> Rep (a,b)
  List :: Rep a -> Rep [a]
```

• Construct a few terms. Do you note any thing interesting about this type? Write a function with the following type:

```haskell
showR :: Rep a -> a -> String
```

• which given values of type (`Rep a`) and `a`, displays the second as a string. Extend this GADT with a few more constructors, then extend your `showR` function as well.
Why can’t we do this in traditional languages like C or even in more modern languages like Haskell?

- Most traditional languages like C don’t have strong type systems that enforce the discipline necessary,

- Even in Haskell, we can’t create data structures whose types can capture the types of Z, E, and O.

- We can’t parameterize types (like Even and Odd) with objects like Z and (S Z) since these are values not types.
Next time

• We will discover how to use all these new tools.