

Programming in Omega
Part 2

Tim Sheard
Portland State University

Recall
• Introduce new kinds
• Use GADTs to build indexed data
• Indexed data can supports

– singleton types (Nat’)
– relationships between types (LE)

• Types can be used to witness true properties of types
(Proof)

• Use type functions to relate invariants of inputs and
outputs
– app2:: Seq a n -> Seq a m -> Seq a {plus n m}

• Type checking is constraint solving
– usually solving equations between type functions

Today
• Leibniz Equality
• Using witnesses

– To describe properties of data
– Computing witness objects at run time.
– Exploring the structure of singletons to build

witnesses to properties
• Staging
• A large example: Balanced trees – AVL trees
• Use Syntactic Extension to make things

readable.

Leibniz Equality

data Equal :: a ~> a ~> *0 where
 Eq:: Equal x x

A single
polymorphic
constructor

Equal is a GADT, even though
its range is all type variables,

because both the type
variables are the same.

Examples

Eq :: Equal Int INt
Eq:: Equal (S Z) {plus Z (S z)}

interesting arguments
to Equal usually

involve type functions

Dynamically Computing Witnesses

comp:: Nat' a ->
 Nat' b ->
 Either (LE a b) (LE b a)

comp Z Z = Left Base
comp Z (S x) = Left Base
comp (S x) Z = Right Base
comp (S x) (S y) = case comp x y of
 Right p -> Right (Step p)
 Left p -> Left (Step p)

Putting witness types to work
• By storing witness types in data structures we

can enforce invariants on those structures.
Consider Dynamic Sorted Sequences

data Dss:: Nat ~> *0 where
 Dnil:: Dss Z
 Dcons:: (Nat' n) -> (LE m n)
 -> (Dss m) -> Dss n
A sequence of type (Dss n) has largest (and first)

element of size n

Making use of Comp
merge :: Dss n -> Dss m -> Either (Dss n) (Dss m)
merge Dnil ys = Right ys
merge xs Dnil = Left xs
merge a@(Dcons x px xs)
 b@(Dcons y py ys) =
 case comp x y of
 Left p -> case merge a ys of
 Left ws -> Right(Dcons y p ws)
 Right ws -> Right(Dcons y py ws)
 Right p -> case merge b xs of
 Left ws -> Left(Dcons x p ws)
 Right ws -> Left(Dcons x px ws)

Exercise 16
• Singleton types allow us to construct Equal

objects at run time.Because of the one-to-one
relationship between singleton values and their
types, knowing the shape of a value determines
its type. In a similar manner knowing the type of a
singleton determines its shape. Write the function
in Omega that exploits this fact: I have written the
first clause. You can finish it.

sameNat:: Nat' a -> Nat' b -> Maybe(Equal a b)
sameNat Z Z = Just Eq

Computing programs simultaneously with
their properties

app1:: Seq a n -> Seq a m ->
 exists p . (Seq a p,Plus n m p)

app1 Snil ys = Ex(ys,PlusZ)
app1 (Scons x xs) ys =
 case (app1 xs ys) of
 Ex(zs,p) -> Ex(Scons x zs,PlusS p)

exists specifies an existential type.
p is a concrete but unknown type

of kind Nat

Ex is the pack operator of Cadelli, used in a
pattern match it is the unpack operator

It turns a normal type: (Seq a p,Plus n m p) into
an existential one: exists p.(Seq a p,Plus n m p)

Exercise 17
• The filter function drops some elements from a list. Thus, the length

of the resulting list cannot be known statically. But, we can compute
the length of the resulting list along with the list. Write the Omega
function with type:
filter :: (a->Bool) -> Seq a n ->
 exists m . (Nat' m,Seq a m)

• Since filter never adds elements to the list, that weren't already in
the list, the result-list is never shorter than the original list. We can
compute a proof of this fact as well. Write the Omega function with
type:

 filter :: (a->Bool) -> Seq a n ->
 exists m . (LE m n,Nat' m,Seq a m)
• Hint: You may find the functions predLE and trans from Exercises

13 and 14 useful.

Unreachable Clauses
smaller :: Proof {le (S a) (S b)} -> Proof {le a b}
smaller Triv = Triv

diff:: Proof {le a b} -> Nat' a -> Nat' b ->
 exists c .(Nat' c,Equal {plus a c} b)
diff Triv Z m = Ex (m,Eq)
diff Triv (S m) Z = unreachable
diff (q@Triv) (S x) (S y) =
 case diff (smaller q) x y of
 Ex (m,Eq) -> Ex (m,Eq)

This clause requires
a = (s m)

b = Z
and (S m) ≤ Z
a contradiction

Staging
inc x = x + 1
c1a = [| 4 + 3 |]

c2a = [| \ x -> x + $c1a |]

c3 = [| let f x = y - 1
 where y = 3 * x
 in f 4 + 3 |]
c4 = [| inc 3 |]
c5 = [| [| 3 |] |]
c6 = [| \ x -> x |]

brackets build
code

The escape $, splices
previously existing
code (c1a) into the
hole in the brackets

marked by $c1a

An example

• count 0 = []
• count n = n: count (n-1)

• count' 0 = [| [] |]
• count' n = [| n : $(count' (n-1)) |]

Exercise 18
• The traditional staged function is the power function. The term (power 3 x) returns x to the third power. The unstaged power

function can be written as:

power:: Int -> Int -> Int
power 0 x = 1
power n x = x * power (n-1) x

Write a staged power function:
 pow:: Int -> Code Int -> Code Int
such that (pow 3 [|99|]) evaluates to
 [| 99 * 99 * 99 * 99 * 1 |].
This can be written simply by placing staging annotations in the

unstaged version.

Balanced trees

• Binary search trees can provide (log n)
performance for both search and insertion,
provided the trees are balanced.

data AVL:: *0 where
 AVL:: (Avl h) -> AVL

An Avl (first letter Capital) is indexed
by its height. We define it later.

AVL (all caps) is the
type that users see

Empty trees and has element
empty :: AVL
empty = AVL Tip

element :: Int -> AVL -> Bool
element x (AVL t) = elem x t

elem :: Int -> Avl h -> Bool
elem x Tip = False
elem x (Node _ l y r)
 | x == y = True
 | x < y = elem x l
 | x > y = elem x r

creating the empty tree
takes constant time

Finding an element runs
in (log n = height) time if

the tree is balanced

Height indexed trees
data Avl:: Nat ~> *0 where
 Tip:: Avl Z
 Node:: Balance i j k ->
 Avl i -> Int -> Avl j -> Avl (S k)

data Balance:: Nat ~> Nat ~> Nat ~> *0 where
 Same :: Balance n n n
 Less :: Balance n (S n) (S n)
 More :: Balance (S n) n (S n)

The index is the
height of the tree

Balance is a witness to
the legal sub-heights
that can make a tree

balanced

Insertion may change the height, but
maintains balance!

ins :: Int -> Avl n -> (Avl n + Avl (S n))
ins x Tip = R(Node Same Tip x Tip)
ins x (Node bal lc y rc)
 | x == y = L(Node bal lc y rc)
 | x < y = case ins x lc of
 L lc -> L(Node bal lc y rc)
 R lc ->
 case bal of
 Same -> R(Node More lc y rc)
 Less -> L(Node Same lc y rc)
 More -> rotr lc y rc -- rebalance
 | x > y = case ins x rc of
 L rc -> L(Node bal lc y rc)
 R rc ->
 case bal of
 Same -> R(Node Less lc y rc)
 More -> L(Node Same lc y rc)
 Less -> rotl lc y rc -- rebalance

Study one case
ins x (Node bal lc y rc)
| x < y =
 case ins x lc of
 L lc -> L(Node bal lc y rc)
 R lc ->
 case bal of
 Same -> R(Node More lc y rc)
 Less -> L(Node Same lc y rc)
 More -> rotr lc y rc

insert in left
sub-tree

same
size

result

result
height is

one
larger

it used to be the same, but
one larger is ok, provided

we mark it so.

rc is two deeper than lc,
some rebalancing is

required

tree rotation
• Tree rotation maintains the search invariant
• Tree rotation changes the height of the sub trees.

rotr :: Avl (2+n)t ->
 Int ->
 Avl n ->
 (Avl(2+n)t + Avl (3+n)t)

rotr :: Avl (2+n)t -> Int -> Avl n -> (Avl(2+n)t + Avl (3+n)t)

rotr Tip u a = unreachable
rotr (Node Same b v c) u a =
 R(Node Less b v (Node More c u a))
rotr (Node More b v c) u a =
 L(Node Same b v (Node Same c u a))
rotr (Node Less b v Tip) u a = unreachable
rotr (Node Less b v (Node Same x m y)) u a =
 L(Node Same (Node Same b v x) m (Node Same y u a))
rotr (Node Less b v (Node Less x m y)) u a =
 L(Node Same (Node More b v x) m (Node Same y u a))
rotr (Node Less b v (Node More x m y)) u a =
 L(Node Same (Node Same b v x) m (Node Less y u a))

Rotation 1

Rotation 2

Exercise 22
• A red-black tree is a binary search tree with the following additional invariants:

– Each node is colored either red or black
– The root is black
– The leaves are black
– Each Red node has Black children
– For all internal nodes, each path from that node to a descendant leaf contains the same number of black

nodes.
• We can encode these invariants by thinking of each internal node as having two attributes: a

color and a black-height. We will use a GADT, we call SubTree, with two indexes, one of them a Nat (for the black-height) and the other a Color.
data Color:: *1 where
 Red:: Color
 Black:: Color
data SubTree:: Color ~> Nat ~> *0 where
 Leaf:: SubTree Black Z
 RNode:: SubTree Black n -> Int -> SubTree Black n -> SubTree Red n
 BNode:: SubTree cL m -> Int -> SubTree cR m -> SubTree Black (S m)

data RBTree:: *0 where
 Root:: SubTree Black n -> RBTree

• Note how the black height increases only on black nodes. The type RBTree encodes a ``full"
Red-Black tree, forcing the root to be black, but placing no restriction on the black-height. Write
an insertion function for Red-Black trees.

Writing interpreters

• Interpreters are important tools for the
study of programming languages

• They have many parts
– An object language
– A value domain
– A semantic mapping from object language to

value domain

A simple object-language
data Exp:: *0 where
 Variable:: String -> Exp
 Constant:: Int -> Exp
 Plus:: Exp
 Less:: Exp
 Apply:: Exp -> Exp -> Exp
 Tuple:: [Exp] -> Exp

-- exp1 represents “x+y”
exp1 = Apply Plus
 (Tuple [Variable "x"
 ,Variable "y"])

A simple value domain

data Value :: *0 where
 IntV:: Int -> Value
 BoolV:: Bool -> Value
 FunV:: (Value -> Value) -> Value
 TupleV :: [Value] -> Value

Values are a disjoint sum of many different
semantic things, so they will all have the same
type. We say the values are tagged.

A simple semantic mapping
eval:: (String -> Value) -> Exp -> Value
eval env (Variable s) = env s
eval env (Constant n) = IntV n
eval env Plus = FunV plus
 where plus (TupleV[IntV n ,IntV m]) = IntV(n+m)
eval env Less = FunV less
 where less (TupleV[IntV n ,IntV m]) = BoolV(n < m)
eval env (Apply f x) =
 case eval env f of
 FunV g -> g (eval env x)
eval env (Tuple xs) = TupleV(map (eval env) xs)

Compared to a compiler, a mapping has two forms of overhead
– Interpretive overhead
– tagging overhead

Removing Interpretive overhead

• We can remove the interpretive overhead
by the use of staging.

• I.e. for a given program, we generate a
meta language program (here that is
Omega) that when executed will produve
the same result.

• Staged programs often run 2-10 times
faster than un-staged ones.

A staged semantic mapping
stagedEval:: (String -> Code Value) -> Exp -> Code Value

stagedEval env (Variable s) = env s
stagedEval env (Constant n) = lift(IntV n)
stagedEval env Plus = [| FunV plus |]
 where plus (TupleV[IntV n ,IntV m]) = IntV(n+m)
stagedEval env Less = [| FunV less |]
 where less (TupleV[IntV n ,IntV m]) = BoolV(n < m)
stagedEval env (Apply f x) =
 [| apply $(stagedEval env f) $(stagedEval env x) |]
 where apply (FunV g) x = g x
stagedEval env (Tuple xs) = [| TupleV $(mapLift (stagedEval env) xs) |]
 where mapLift f [] = lift []
 mapLift f (x:xs) = [| $(f x) : $(mapLift f xs) |]

Observe

ans = stagedEval f exp1
 where f "x" = lift(IntV 3)
 f "y" = lift(IntV 4)

[| %apply (%FunV %plus)
 (%TupleV [IntV 3,IntV 4])
|] : Code Value

Removing tagging
• Consider the residual program
[| %apply (%FunV %plus)
 (%TupleV [IntV 3,IntV 4])
|]

The FunV, TupleV and IntV are tags.
They make it possible for integers, tuples, and

functions to have the same type (Value)
But, in a well typed object-language program they

are superfluous.

Typed object languages
• We will create an indexed term of the object language.
• The index will state the type of the object-language term

being represented.

data Term:: *0 ~> *0 where
 Const :: Int -> Term Int -- 5
 Add:: Term ((Int,Int) -> Int) -- (+)
 LT:: Term ((Int,Int) -> Bool) -- (<)
 Ap:: Term(a -> b) -> Term a -> Term b -- (+) (x,y)
 Pair:: Term a -> Term b -> Term(a,b) -- (x,y)

• Note there are no variables in this object language

The value domain

• The value domain is just a subset of
Omega values.

• No tags are necessary.

A tag less interpreter

evalTerm :: Term a -> a
evalTerm (Const x) = x
evalTerm Add = \ (x,y) -> x+y
evalTerm LT = \ (x,y) -> x<y
evalTerm (Ap f x) =
 evalTerm f (evalTerm x)
evalTerm (Pair x y) =
 (evalTerm x,evalTerm y)

Exercise 23
• In the object-languages we have seen so far, there are no variables. One way to add variables to

a typed object language is to add a variable constructor tagged by a name and a type. A
singleton type representing all the possible types of a program term is necessary. For example,
we may add a Var constructor as follows (where the Rep is similar to the Rep type from
Exercise 9).

data Term:: *0 ~> *0 where
 Var:: String -> Rep t -> Term t -- x
 Const :: Int -> Term Int -- 5
 . .
• Write a GADT for Rep. Now the evaluation function for Term needs an environment that can

store many different types. One possibility is use existentially quantified types in the environment
as we did in Exercise 21. Something like:

type Env = [exists t . (String,Rep t,t)]

eval:: Term t -> Env -> t

• Write the evaluation function for the Term type extended with variables. You will need a function

akin to sameNat from Exercise 13, except it will have type: sameRep:: Rep a -> Rep b ->
Maybe(Equal a b).

Typed Representations for
languages with binding.

• The type (Term a) tells us it represents an
object-language term with type a

• If our language has variables, what type would
(Var “x”) have?

• It depends upon the context.
• We need to reflect the type of the variables in a

term, in an index of the term, as well as the type
of the whole term itself.

• E.g. t :: Term {`a=Int,`b=Bool} Int

A side trip, Tags and labels
• Tags are symbols at the type level
• Labels are symbols at the value level
• Labels are singleton types reflecting Tags
• E.g. a finite example would be

data Tag:: *1 where
 A:: Tag
 B:: Tag
 C:: Tag

data Label:: Tag ~> *0 where
 A:: Label A
 B:: Label B
 C:: Label C

Primitive, infinite Tags & Labels
• All strings of alpha-numeric characters preceded by a

back-tick
– In a type context `x:: Tag
– In a value context `x:: Label `x

• Any string can be made into a Label with an existential
type.
data HiddenLabel :: *0 where
 Hidden:: Label t -> HiddenLabel

newLabel:: String -> HiddenLabel
• A fresh (never before seen) seen label can be generated

in the IO monad
freshLabel :: IO HiddenLabel

Witnessing Label Equality

• One can dynamically construct proofs of
label equality at runtime.

labelEq :: forall (a:Tag) (b:Tag).
 Label a -> Label b -> Maybe (Equal a b)

Exercise 21
• A common use of labels is to name variables in a data structure

used to represent some object language as data. Consider the
GADT and an evaluation function over that object type.

data Expr:: *0 where
 VarExpr :: Label t -> Expr
 PlusExpr:: Expr -> Expr -> Expr

valueOf:: Expr -> [exists t .(Label t,Int)] -> Int
valueOf (VarExpr v) env = lookup v env
valueOf (PlusExpr x y) env =
 valueOf x env + valueOf y env

• Write the function:
 lookup:: Label v -> [exists t .(Label t,Int)] -> Int
hint: don’t forget the use of “Ex” .

Another side trip - Syntactic Extension

• We often prefer syntactic sugar

Lists - We prefer [1,2,3]
 to (Cons 1 (Cons 2 (Cons 3 Nil)))

Nat - We prefer 3 to S(S (S Z))

Records - We prefer {"a"=5, "b"=6}
 to (RCons “a” 5 (RCons “b” 6 RNil))

Syntactic Records
• Any data introduction with 2 Constructors

data T:: a1 -> … -> an -> *n where
 RN:: T x1 … xn
 RC:: a -> b -> T x1 … xn -> T y1 … yn
 deriving Record(i)
– a ternary function (a record-cons function):

• a -> b -> T x1 … xn -> T y1 … yn
– a constant (a record-nil constant):

• T x1 … xn

• {}i ---> RN
• {a=x,b=y}i ---> RC a x (RC b y RN)
• {a=x;xs}i ---> (RC a x xs)
• {a=x,b=y ; zs}i ---> RC a x (RC b y zs)

Syntactic lists
• Any data introduction with 2 Constructors

data T:: a1 -> … -> an -> *n where
 N:: T x1 … xn
 C:: a -> T x1 … xn -> T y1 … yn
 deriving List(i)
– a binary function (a cons function):

• a -> T x1 … xn -> T y1 … yn
– a constant (a nil constant):

• T x1 … xn

• []i ---> N
• [x,y,z]i ---> C x(C y (C z N))
• [x;xs]i ---> (C x xs)
• [x,y ; zs]i ---> C x (C y zs)

Syntactic Nat
• Any data introduction with 2 Constructors

data T:: a1 -> … -> an -> *n where
 Z:: T x1 … xn
 S:: T x1 … xn -> T y1 … yn
 deriving Nat(i)
– a unary function (a successor function):

• T x1 … xn -> T y1 … yn
– a constant (a zero constant):

• T x1 … xn

• 4i ---> S(S(S(S Z)))
• 0i ---> Z
• (2+x)i ---> S(S x)

Exercise 20
• Consider the GADt with syntactic extension “i”.

data Nsum:: *0 ~> *0 where
 SumZ:: Nsum Int
 SumS:: Nsum x -> Nsum (Int -> x)
 deriving Nat(i)

• What is the type of the terms 0i, 1i, and 2i. Can you
write a function with type: add:: Nsum i -> i.
Such a function sums n integers given n as input. For
example:

• add 3i 1 2 3→6

Languages with binding
data Lam:: Row Tag *0 ~> *0 ~> *0 where
 Var :: Label s -> Lam (RCons s t env) t
 Shift :: Lam env t -> Lam (RCons s q env) t
 Abstract :: Label a ->
 Lam (RCons a s env) t ->
 Lam env (s -> t)
 App :: Lam env (s -> t) ->
 Lam env s ->
 Lam env t

A tag-less interpreter
data Record :: Row Tag *0 ~> *0 where
 RecNil :: Record RNil
 RecCons :: Label a -> b ->
 Record r -> Record (RCons a b r)

eval:: (Lam e t) -> Record e -> t
eval (Var s) (RecCons u x env) = x
eval (Shift exp) (RecCons u x env) =
 eval exp env
eval (Abstract s body) env =
 \ v -> eval body (RecCons s v env)
eval (App f x) env = eval f env (eval x env)

Exercise 24
• Another way to add variables to a typed object language is to reflect the name and

type of variables in the meta-level types of the terms in which they occur. Consider
the GADTs:

data VNum:: Tag ~> *0 ~> Row Tag *0 ~> *0 where
 Zv:: VNum l t (RCons l t row)
 Sv:: VNum l t (RCons a b row) ->
 VNum l t (RCons x y (RCons a b row))
 deriving Nat(u)

data Exp2:: Row Tag *0 ~> *0 ~> *0 where
 Var:: Label v -> VNum v t e -> Exp2 e t
 Less:: Exp2 e Int -> Exp2 e Int -> Exp2 e Bool
 Add:: Exp2 e Int -> Exp2 e Int -> Exp2 e Int
 If:: Exp2 e Bool -> Exp2 e t -> Exp2 e t -> Exp2 e t

• What are the types of the terms (Var `x 0u), (Var `x 1u), and (Var `x
2u), Now the evaluation function for Exp2 needs an environment that stores both
integers and booleans. Write a datatype declaration for the environment, and then
write the evaluation function. One way to approach this is to use existentially
quantified types in the environment as we did in Exercise 21. Better mechanisms
exist. Can you think of one?

A compiler = A staged, tag-less interpreter

data SymTab:: Row Tag *0 ~> *0 where
 Insert :: Label a -> Code b -> SymTab e ->
 SymTab (RCons a b e)
 Empty :: SymTab RNil

compile:: (Lam e t) -> SymTab e -> Code t
compile (Var s) (Insert u x env) = x
compile (Shift exp) (Insert u x env) =
 compile exp env
compile (Abstract s body) env =
 [| \ v -> $(compile body (Insert s [|v|] env)) |]
compile (App f x) env =
 [| $(compile f env) $(compile x env) |]

Exercise 25
• A staged evaluator is a simple compiler. Many compilers have an

optimization phase. Consider the term language with variables from a
previous Exercise.

data Term:: *0 ~> *0 where
 Var:: String -> Rep t -> Term t
 Const :: Int -> Term Int -- 5
 Add:: Term ((Int,Int) -> Int) -- (+)
 LT:: Term ((Int,Int) -> Bool) -- (<)
 Ap:: Term(a -> b) -> Term a -> Term b -- (+) (x,y)
 Pair:: Term a -> Term b -> Term(a,b) -- (x,y)

• Can you write a well-typed staged evaluator the performs optimizations like

constant folding, and applies laws like (x+0) = x before generating code?

Next-time

• Subject reduction proofs
• Defining and using theorems
• Hardware descriptions

