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Recall
• Introduce new kinds
• Use GADTs to build indexed data
• Indexed data can supports

– singleton types (Nat’)
– relationships between types (LE)

• Types can be used to witness true properties of types 
(Proof)

• Use type functions to relate invariants of inputs and 
outputs 
– app2:: Seq a n -> Seq a m -> Seq a {plus n m}

• Type checking is constraint solving
– usually solving equations between type functions 



  

Today
• Leibniz Equality
• Using witnesses

– To describe properties of data
– Computing witness objects at run time.
– Exploring the structure of singletons to build 

witnesses to properties 
• Staging
• A large example: Balanced trees – AVL trees
• Use Syntactic Extension to make things 

readable.



  

Leibniz Equality

data Equal :: a ~> a ~> *0 where
  Eq:: Equal x x

A single 
polymorphic 
constructor

Equal is a GADT, even though 
its range is all type variables, 

because both the type 
variables are the same.

Examples

Eq :: Equal Int INt
Eq:: Equal (S Z) {plus Z (S z)}

interesting arguments 
to Equal usually 

involve type functions



  

Dynamically Computing Witnesses

comp:: Nat' a -> 
       Nat' b -> 
       Either (LE a b) (LE b a)

comp Z Z     = Left Base
comp Z (S x) = Left Base
comp (S x) Z = Right Base
comp (S x) (S y) = case comp x y of  
                    Right p -> Right (Step p)
                    Left p -> Left (Step p)



  

Putting witness types to work
• By storing witness types in data structures we 

can enforce invariants on those structures. 
Consider Dynamic Sorted Sequences

data Dss:: Nat ~> *0 where
  Dnil:: Dss Z 
  Dcons:: (Nat' n) -> (LE m n) 
          -> (Dss m) -> Dss n
A sequence of type (Dss n) has largest (and first) 

element of size n



  

Making use of Comp
merge :: Dss n -> Dss m -> Either (Dss n) (Dss m)
merge Dnil ys = Right ys
merge xs Dnil = Left xs
merge a@(Dcons x px xs)
      b@(Dcons y py ys) =
  case comp x y of
    Left p -> case merge a ys of
               Left ws -> Right(Dcons y p ws)
               Right ws -> Right(Dcons y py ws)
    Right p -> case merge b xs of
                Left ws -> Left(Dcons x p ws)
                Right ws -> Left(Dcons x px ws)



  

Exercise 16
• Singleton types allow us to construct Equal 

objects at run time.Because of the one-to-one 
relationship between singleton values and their 
types, knowing the shape of a value determines 
its type. In a similar manner knowing the type of a 
singleton determines its shape. Write the function 
in Omega that exploits this fact:  I have written the 
first clause. You can finish it.

sameNat:: Nat' a -> Nat' b -> Maybe(Equal a b)
sameNat Z Z = Just Eq



  

Computing programs simultaneously with 
their properties

app1:: Seq a n -> Seq a m -> 
       exists p . (Seq a p,Plus n m p)

app1 Snil ys = Ex(ys,PlusZ)
app1 (Scons x xs) ys = 
   case (app1 xs ys) of  
     Ex(zs,p) ->  Ex(Scons x zs,PlusS p) 

exists specifies an existential type. 
p is a concrete but unknown type 

of kind Nat

Ex is the pack operator of Cadelli, used in a 
pattern match it is the unpack operator

It turns a normal type: (Seq a p,Plus n m p) into 
an existential one: exists p.(Seq a p,Plus n m p)



  

Exercise 17
• The filter function drops some elements from a list. Thus, the length 

of the resulting list cannot be known statically. But, we can compute 
the length of the resulting list along with the list. Write the Omega 
function with type:
filter :: (a->Bool) -> Seq a n -> 
          exists m . (Nat' m,Seq a m)

• Since filter never adds elements to the list, that weren't already in 
the list, the result-list is never shorter than the original list. We can 
compute  a proof of this fact as well. Write the Omega function with 
type:

      filter :: (a->Bool) -> Seq a n -> 
                 exists m . (LE m n,Nat' m,Seq a m)
• Hint: You may find the functions predLE and trans from Exercises 

13  and 14  useful.



  

Unreachable Clauses
smaller :: Proof {le (S a) (S b)} -> Proof {le a b}
smaller Triv = Triv

diff:: Proof {le a b} -> Nat' a -> Nat' b -> 
       exists c .(Nat' c,Equal {plus a c} b)
diff Triv Z m = Ex (m,Eq)
diff Triv (S m) Z = unreachable
diff (q@Triv) (S x) (S y) =  
  case diff (smaller q) x y of
   Ex (m,Eq) -> Ex (m,Eq)

This clause requires 
a = (s m)

b = Z
and (S m) ≤ Z
a contradiction



  

Staging
inc x = x + 1
c1a = [| 4 + 3 |]

c2a = [| \ x -> x + $c1a |]

c3 = [| let f x = y - 1 
             where y = 3 * x 
        in f 4 + 3 |]
c4 = [| inc 3 |]
c5 = [| [| 3 |] |]
c6 = [| \ x -> x |]

brackets build 
code

The escape $, splices 
previously existing 
code (c1a) into the 
hole in the brackets 

marked by $c1a



  

An example

• count 0 = []
• count n = n: count (n-1)

• count' 0 = [| [] |]
• count' n = [| n : $(count' (n-1)) |]



  

Exercise 18
• The traditional staged function is the power function. The term (power 3 x) returns x to the third power. The unstaged power 

function can be written as:
 
power:: Int -> Int -> Int
power 0 x = 1
power n x = x * power (n-1) x
 
Write a staged power function: 
    pow:: Int -> Code Int -> Code Int 
such that (pow 3 [|99|]) evaluates to
                 [| 99 * 99 * 99 * 99 * 1 |].
This can be written simply by placing staging annotations in the 

unstaged version.



  

Balanced trees

• Binary search trees can provide (log n) 
performance for both search and insertion, 
provided the trees are balanced.

data AVL:: *0 where
  AVL:: (Avl h) -> AVL

An Avl (first letter Capital) is indexed 
by its height. We define it later.

AVL (all caps) is the 
type that users see



  

Empty trees and has element
empty :: AVL
empty = AVL Tip

element :: Int -> AVL -> Bool
element x (AVL t) = elem x t

elem :: Int -> Avl h -> Bool
elem x Tip = False
elem x (Node _ l y r)
  | x == y  = True
  | x < y   = elem x l
  | x > y   = elem x r

creating the empty tree 
takes constant time

Finding an element runs 
in (log n = height) time if 

the tree is balanced



  

Height indexed trees
data Avl:: Nat ~> *0 where
  Tip:: Avl Z
  Node:: Balance i j k -> 
         Avl i -> Int -> Avl j -> Avl (S k)

data Balance:: Nat ~> Nat ~> Nat ~> *0 where
  Same :: Balance n n n
  Less :: Balance n (S n) (S n)
  More :: Balance (S n) n (S n)

The index is the 
height of the tree

Balance is a witness to 
the legal sub-heights 
that can make a tree 

balanced



  

Insertion may change the height, but 
maintains balance!

ins :: Int -> Avl n -> (Avl n + Avl (S n))
ins x Tip = R(Node Same Tip x Tip)
ins x (Node bal lc y rc)
  | x == y = L(Node bal lc y rc)
  | x < y  = case ins x lc of
               L lc -> L(Node bal lc y rc)
               R lc ->
                 case bal of
                   Same -> R(Node More lc y rc)
                   Less -> L(Node Same lc y rc)
                   More -> rotr lc y rc -- rebalance
  | x > y  = case ins x rc of
               L rc -> L(Node bal lc y rc)
               R rc -> 
                 case bal of
                   Same -> R(Node Less lc y rc)
                   More -> L(Node Same lc y rc)
                   Less -> rotl lc y rc -- rebalance



  

Study one case
ins x (Node bal lc y rc)
| x < y  = 
   case ins x lc of
     L lc -> L(Node bal lc y rc)
     R lc ->
       case bal of
         Same -> R(Node More lc y rc)
         Less -> L(Node Same lc y rc)
         More -> rotr lc y rc 
                 

insert in left 
sub-tree

same 
size 

result

result 
height is 

one 
larger 

it used to be the same, but 
one larger is ok, provided 

we mark it so.

rc is two deeper than lc, 
some rebalancing is 

required



  

tree rotation
• Tree rotation maintains the search invariant
• Tree rotation changes the height of the sub trees.

rotr :: Avl (2+n)t -> 
        Int -> 
        Avl n -> 
       (Avl(2+n)t + Avl (3+n)t)



  

rotr :: Avl (2+n)t -> Int -> Avl n -> (Avl(2+n)t + Avl (3+n)t)

rotr Tip u a = unreachable
rotr (Node Same b v c) u a = 
   R(Node Less b v (Node More c u a))
rotr (Node More b v c) u a = 
   L(Node Same b v (Node Same c u a))
rotr (Node Less b v Tip) u a = unreachable
rotr (Node Less b v (Node Same x m y)) u a = 
   L(Node Same (Node Same b v x) m (Node Same y u a))
rotr (Node Less b v (Node Less x m y)) u a = 
   L(Node Same (Node More b v x) m (Node Same y u a))
rotr (Node Less b v (Node More x m y)) u a = 
   L(Node Same (Node Same b v x) m (Node Less y u a))



  

Rotation 1



  

Rotation 2



  

Exercise 22
• A red-black tree is a binary search tree with the following additional invariants:

– Each node is colored either red or black
– The root is black
– The leaves are black
– Each Red node has Black children 
– For all internal nodes, each path from that node to a descendant  leaf contains the same number of black 

nodes.
• We can encode these invariants by thinking of each internal node as having two attributes: a 

color and a black-height. We will use a GADT, we call SubTree, with two indexes, one of them a Nat (for the black-height) and the other a Color.
data Color:: *1 where 
  Red:: Color
  Black:: Color
data SubTree:: Color ~> Nat ~> *0 where 
 Leaf:: SubTree Black Z
 RNode:: SubTree Black n -> Int -> SubTree Black n -> SubTree Red n
 BNode:: SubTree cL m  -> Int -> SubTree cR m -> SubTree Black (S m)

data RBTree:: *0 where
 Root:: SubTree Black n -> RBTree

• Note how the black height increases only on black nodes. The type RBTree encodes a ``full" 
Red-Black tree, forcing the root to be black, but placing no restriction on the black-height. Write 
an insertion function for Red-Black trees.



  

Writing interpreters

• Interpreters are important tools for the 
study of programming languages

• They have many parts
– An object language
– A value domain
– A semantic mapping from object language to 

value domain



  

A simple object-language
data Exp:: *0 where
  Variable:: String  -> Exp
  Constant:: Int -> Exp
  Plus:: Exp
  Less:: Exp
  Apply:: Exp -> Exp -> Exp
  Tuple:: [Exp] -> Exp 

-- exp1  represents “x+y”
exp1 = Apply Plus 
            (Tuple [Variable "x" 
                   ,Variable "y"])



  

A simple value domain

data Value :: *0 where
  IntV:: Int -> Value
  BoolV:: Bool -> Value
  FunV:: (Value -> Value) -> Value
  TupleV :: [Value] -> Value

Values are a disjoint sum of many different 
semantic things, so they will all have the same 
type. We say the values are tagged.



  

A simple semantic mapping
eval:: (String -> Value) -> Exp -> Value
eval env (Variable s) = env s
eval env (Constant n) = IntV n
eval env Plus = FunV plus
  where plus (TupleV[IntV n ,IntV m]) = IntV(n+m)
eval env Less = FunV less
  where less (TupleV[IntV n ,IntV m]) = BoolV(n < m) 
eval env (Apply f x) = 
  case eval env f of
    FunV g -> g (eval env x)
eval env (Tuple xs) = TupleV(map (eval env) xs) 

Compared to a compiler, a mapping has two forms of overhead
– Interpretive overhead
– tagging overhead



  

Removing Interpretive overhead

• We can remove the interpretive overhead 
by the use of staging.

• I.e. for a given program, we generate a 
meta language program (here that is 
Omega) that when executed will produve 
the same result.

• Staged programs often run 2-10 times 
faster than un-staged ones.



  

A staged semantic mapping
stagedEval:: (String -> Code Value) -> Exp -> Code Value

stagedEval env (Variable s) = env s
stagedEval env (Constant n) = lift(IntV n)
stagedEval env Plus = [| FunV plus |]
  where plus (TupleV[IntV n ,IntV m]) = IntV(n+m)
stagedEval env Less = [| FunV less |]
  where less (TupleV[IntV n ,IntV m]) = BoolV(n < m) 
stagedEval env (Apply f x) = 
   [| apply $(stagedEval env f) $(stagedEval env x) |]
  where apply (FunV g) x = g x
stagedEval env (Tuple xs) = [| TupleV $(mapLift (stagedEval env) xs) |]
 where mapLift f [] = lift []
       mapLift f (x:xs) = [| $(f x) : $(mapLift f xs) |]
 



  

Observe

ans = stagedEval f exp1 
  where f "x" = lift(IntV 3)
        f "y" = lift(IntV 4)
        

[| %apply (%FunV %plus) 
          (%TupleV [IntV 3,IntV 4])
|] : Code Value   



  

Removing tagging
• Consider the residual program
[| %apply (%FunV %plus) 
          (%TupleV [IntV 3,IntV 4])
|]

The FunV, TupleV and IntV are tags.
They make it possible for integers, tuples, and 

functions to have the same type (Value)
But, in a well typed object-language program they 

are superfluous.



  

Typed object languages
• We will create an indexed term of the object language.
• The index will state the type of the object-language term 

being represented.

data Term:: *0 ~> *0 where
  Const :: Int -> Term Int               -- 5
  Add:: Term ((Int,Int) -> Int)          -- (+)
  LT:: Term ((Int,Int) -> Bool)          -- (<)
  Ap:: Term(a -> b) -> Term a -> Term b  -- (+) (x,y)
  Pair:: Term a -> Term b -> Term(a,b)   -- (x,y)

• Note there are no variables in this object language



  

The value domain

• The value domain is just a subset of 
Omega values.

• No tags are necessary.



  

A tag less interpreter

evalTerm :: Term a -> a
evalTerm (Const x) = x
evalTerm Add = \ (x,y) -> x+y
evalTerm LT = \ (x,y) -> x<y
evalTerm (Ap f x) = 
    evalTerm f (evalTerm x)
evalTerm (Pair x y) = 
    (evalTerm x,evalTerm y)



  

Exercise 23
• In the object-languages we have seen so far, there are no variables. One way to add variables to 

a typed object language is to add a variable constructor tagged by a name and a type. A 
singleton type representing all the possible types of a program term is necessary. For example, 
we may add a  Var constructor as follows (where the Rep is similar to the Rep type from 
Exercise 9).

data Term:: *0 ~> *0 where
  Var:: String -> Rep t -> Term t        -- x
  Const :: Int -> Term Int               -- 5
 . .
• Write a GADT for Rep. Now the evaluation function for Term needs an environment that can 

store many different types. One possibility is use existentially quantified types in the environment 
as we did in Exercise 21. Something like:

 
type Env = [exists t . (String,Rep t,t)]  

eval:: Term t -> Env -> t
 
• Write the evaluation function for the Term type extended with variables. You will need a function 

akin to sameNat from Exercise 13, except it will have type:  sameRep:: Rep a -> Rep b -> 
Maybe(Equal a b).



  

Typed Representations for 
languages with binding.

• The type (Term a) tells us it represents an 
object-language term with type a

• If our language has variables, what type would 
(Var “x”) have?

• It depends upon the context.
• We need to reflect the type of the variables in a 

term, in an index of the term, as well as the type 
of the whole term itself.

• E.g.  t :: Term {`a=Int,`b=Bool} Int



  

A side trip, Tags and labels
• Tags are symbols at the type level
• Labels are symbols at the value level
• Labels are singleton types reflecting Tags
• E.g.  a finite example would be

data Tag:: *1 where
  A:: Tag
  B:: Tag
  C:: Tag

data Label:: Tag ~> *0 where
  A:: Label A
  B:: Label B
  C:: Label C



  

Primitive, infinite Tags & Labels
• All strings of alpha-numeric characters preceded by a 

back-tick
– In a type context  `x:: Tag
– In a value context   `x:: Label `x 

• Any string can be made into a Label with an existential 
type.
data HiddenLabel :: *0 where 
 Hidden:: Label t -> HiddenLabel

newLabel:: String -> HiddenLabel
• A fresh (never before seen) seen label can be generated 

in the IO monad
freshLabel :: IO HiddenLabel



  

Witnessing Label Equality

• One can dynamically construct proofs of 
label equality at runtime.

labelEq :: forall (a:Tag) (b:Tag).
   Label a -> Label b -> Maybe (Equal a b)



  

Exercise 21
• A common use of labels is to name variables in a data structure 

used to represent some object language as data. Consider the 
GADT and an evaluation function over that object type.

data Expr:: *0 where
  VarExpr :: Label t -> Expr
  PlusExpr:: Expr -> Expr -> Expr

valueOf:: Expr -> [exists t .(Label t,Int)] -> Int
valueOf (VarExpr v) env = lookup v env
valueOf (PlusExpr x y) env = 
    valueOf x env + valueOf y env

• Write the function:
 lookup:: Label v -> [exists t .(Label t,Int)] -> Int
hint: don’t forget the use of “Ex” .



  

Another side trip - Syntactic Extension

• We often prefer syntactic sugar

Lists - We prefer [1,2,3]
      to (Cons 1 (Cons 2 (Cons 3 Nil)))

Nat - We prefer   3   to    S(S (S Z))

Records - We prefer {"a"=5, "b"=6}
     to (RCons “a” 5 (RCons “b” 6 RNil))



  

Syntactic Records
• Any data introduction with 2 Constructors

data T:: a1 -> … -> an -> *n where
  RN:: T x1 … xn
  RC:: a -> b -> T x1 … xn -> T y1 … yn
  deriving Record(i)
– a ternary function (a record-cons function): 

• a -> b -> T x1 … xn -> T y1 … yn
– a constant (a record-nil constant):    

• T x1 … xn

• {}i            ---> RN
• {a=x,b=y}i    ---> RC a x (RC b y RN)
• {a=x;xs}i     ---> (RC a x xs)
• {a=x,b=y ; zs}i ---> RC a x (RC b y zs)



  

Syntactic lists
• Any data introduction with 2 Constructors

data T:: a1 -> … -> an -> *n where
  N:: T x1 … xn
  C:: a -> T x1 … xn -> T y1 … yn
  deriving List(i)
– a binary function (a cons function): 

• a -> T x1 … xn -> T y1 … yn
– a constant (a nil constant):    

• T x1 … xn

• []i         ---> N
• [x,y,z]i    ---> C x(C y (C z N))
• [x;xs]i     ---> (C x xs)
• [x,y ; zs]i ---> C x (C y zs)



  

Syntactic Nat
• Any data introduction with 2 Constructors

data T:: a1 -> … -> an -> *n where
  Z:: T x1 … xn
  S:: T x1 … xn -> T y1 … yn
  deriving Nat(i)
– a unary function (a successor function): 

• T x1 … xn -> T y1 … yn
– a constant (a zero constant):    

• T x1 … xn

• 4i     ---> S(S(S(S Z)))
• 0i     ---> Z
• (2+x)i ---> S(S x)



  

Exercise 20
• Consider the GADt with syntactic extension  “i”.

data Nsum:: *0 ~> *0 where
  SumZ:: Nsum Int
  SumS:: Nsum x -> Nsum (Int -> x)
 deriving Nat(i)

• What is the type of the terms 0i, 1i, and  2i. Can you 
write a function with type: add:: Nsum i -> i. 
Such a function sums n integers given n as input. For 
example:

• add 3i 1 2 3→6



  

Languages with binding
data Lam:: Row Tag *0 ~> *0 ~> *0  where
  Var      :: Label s -> Lam (RCons s t env) t
  Shift    :: Lam env t -> Lam (RCons s q env) t
  Abstract :: Label a -> 
              Lam (RCons a s env) t -> 
              Lam env (s -> t)
  App      :: Lam env (s -> t) -> 
              Lam env s -> 
              Lam env t



  

A tag-less interpreter
data Record :: Row Tag *0 ~> *0 where
 RecNil :: Record RNil
 RecCons :: Label a -> b ->
            Record r -> Record (RCons a b r)

eval:: (Lam e t) -> Record e -> t
eval (Var s) (RecCons u x env) = x
eval (Shift exp) (RecCons u x env) = 
   eval exp env
eval (Abstract s body) env = 
   \ v -> eval body (RecCons s v env)
eval (App f x) env = eval f env (eval x env)



  

Exercise 24
• Another way to add variables to a typed object language is to reflect the name  and 

type of variables in the meta-level types of the terms in which they occur. Consider 
the GADTs:

 
data VNum:: Tag ~> *0 ~> Row Tag *0 ~> *0 where
  Zv:: VNum l t (RCons l t row)
  Sv:: VNum l t (RCons a b row) -> 
                VNum l t (RCons x y (RCons a b row))
 deriving Nat(u)
 
data Exp2:: Row Tag *0 ~> *0 ~> *0 where
  Var:: Label v -> VNum v t e -> Exp2 e t
  Less:: Exp2 e Int -> Exp2 e Int -> Exp2 e Bool
  Add:: Exp2 e Int -> Exp2 e Int -> Exp2 e Int
  If:: Exp2 e Bool -> Exp2 e t -> Exp2 e t -> Exp2 e t

• What are the types of the terms (Var `x 0u), (Var `x 1u), and (Var `x 
2u), Now the evaluation function for Exp2 needs an environment that stores both 
integers and booleans. Write a datatype declaration for the environment, and then 
write the evaluation function. One way to approach this is to use existentially 
quantified types in the environment as we did in Exercise 21. Better mechanisms 
exist. Can you think of one?



  

A compiler = A staged, tag-less interpreter

data SymTab:: Row Tag *0 ~> *0 where
  Insert :: Label a -> Code b -> SymTab e ->
            SymTab (RCons a b e)
  Empty :: SymTab RNil

compile:: (Lam e t) -> SymTab e -> Code t
compile (Var s) (Insert u x env) = x
compile (Shift exp) (Insert u x env) = 
   compile exp env
compile (Abstract s body) env =
   [| \ v -> $(compile body (Insert s [|v|] env)) |]
compile (App f x) env = 
   [| $(compile f env) $(compile x env) |]



  

Exercise 25
• A staged evaluator is a simple compiler. Many compilers have an 

optimization phase. Consider the term language with variables from a 
previous Exercise.

data Term:: *0 ~> *0 where
  Var:: String -> Rep t -> Term t
  Const :: Int -> Term Int               -- 5
  Add:: Term ((Int,Int) -> Int)          -- (+)
  LT:: Term ((Int,Int) -> Bool)          -- (<)
  Ap:: Term(a -> b) -> Term a -> Term b  -- (+) (x,y)
  Pair:: Term a -> Term b -> Term(a,b)   -- (x,y)
 
• Can you write a well-typed staged evaluator the performs optimizations like 

constant folding, and applies laws like (x+0) = x before generating code?



  

Next-time

• Subject reduction proofs
• Defining and using theorems
• Hardware descriptions


