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School Overview and Themes
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Lecture Topics and Speakers

SMT Solvers Leonardo de Moura

Mechanization of Metatheory using LF and Twelf Robert Harper

Compiler Construction in Formal Logical Frameworks Jason Hickey

Specification and Verification of Programs with Pointers Rustan Leino

Leveraging Domain-Specific Languages for Reasoning Sorin Lerner

Reasoning About Programs with ACL2 Pete Manolios

Putting the Curry-Howard Isomorphism to Work Tim Sheard

Nominal Techniques Christian Urban

Coq for Programming Language Metatheory Stephanie Weirich

Current research focused on integrating expressive logical systems
and powerful theorem-proving assistants into the design, definition,
implementation, and verification of programming languages and programs.
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The Big Picture

Software is now a critical component of daily infrastructure.

computers, airplanes, mass-transit systems, power grids

Important to be able to formally reason about the behavior of software.
Want to be able to make powerful “For all...” statements:

For all executions of the air-traffic-control program, ...

Integration of logics and theorem-provers with programming languages
is a crucial step towards wide deployment of verified software components.
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The Small Picture

We won’t be formally verifying air-traffic-control programs this summer.

We will see many core ideas – specification logics, automated and
interactive theorem proving, type systems, etc.

A variety of techniques and tools for reasoning at different granularities:

at the level of individual programs

at the level of classes of related programs

at the level of programming-language definitions
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Rest of this lecture...

Some basic fundamentals:

techniques for giving precise definitions of programming languages

without precise definitions, we can’t reason formally about programs

a technique for proving properties about all programs in a language

e.g., certain kinds of errors cannot happen in any program
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Rest of this lecture...

Some basic fundamentals:

Inductive definitions

basis for defining all kinds of logics, languages, and systems

MinML – a little programming language

Syntax
Type system
Operational semantics
Type safety – a canonical PL proof

Acknowledgement: Many slides borrowed from a similar crash-lectures
given by David Walker and Dan Grossman at previous OPLSS.
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Reading and Study

Benjamin Pierce, Types and Programming Languages

available at bookstores

Bob Harper, Practical Foundations for Programming Languages

available online (http://www.cs.cmu.edu/~rwh/plbook/book.pdf)
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Inductive Definitions
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Inductive Definitions

An inductive definition consists of:

One or more judgements (i.e., assertions)

A set of inference rules for deriving judgements

Example:

Judgement is “n nat”
Inference rules are

“zero nat”
“if n nat, then succ(n) nat”
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Inference Rule Notation

Inference rules are normally written as:

J1 · · · Jn

J

where J and J1, . . . , Jn are judgements.

J1, . . . , Jn are the premises.
J is the conclusion.

An inference rule with no premises is an axiom.
An inference rule with some premises is a proper rule.
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Inference Rule Notation

Example: the inference rules for deriving n nat are:

zero nat
zero

n nat
succ(n) nat

succ

The second rule is a rule schema.
It denotes an infinite collection of inference rules,
each one obtained by replacing the parameter n with a concrete object.

Also, optionally label (zero,succ) rules for easy reference.
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Derivation of Judgements

A judgement J is derivable iff either

there is an axiom

J

or, there is a proper rule

J1 · · · Jn

J

such that J1, . . . , Jn are derivable.
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Derivation of Judgements

Determine whether a judgement is derivable by working backwards.

Example: the judgement succ(succ(zero)) nat is derivable:

zero nat
zero

succ(zero) nat
succ

succ(succ(zero)) nat
succ
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Binary Trees

A judgement t tree asserting that t is a binary tree, with rules:

empty tree
empty

t1 tree t2 tree
node(t1, t2) tree

node

The judgement node(empty, node(empty, empty)) tree is derivable:

empty tree
empty tree empty tree
node(empty, empty) tree

node(empty, node(empty, empty)) tree

Fluet (TTI-C) Welcome and Introduction 15 / 107



Rule Induction

By defininition, every derivable judgement

is the consequence of some rule,

whose premises are derivable

Thus, the rules are an exhaustive description of the derivable judgements.

If we want to prove some property about a (derivable) judgement,
then we simply consider all of the rules that may appear in the derivation.
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Rule Induction

To show that every derivable judgement has a property P,
it is enough to show that

for every rule

J1 · · · Jn

J

if J1, . . . , Jn have the property P, then J has property P.

This is the principal of rule induction.
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Rule Induction – n nat

To prove that “If n nat (is derivable), then property P(n) holds”,
it is enough to show that the property holds for the conclusion of each rule
given that it holds for each of the premises of the rule.

That is it is enough to show each of:

P(zero) (corresponding to zero nat
zero

)

if P(n), then P(succ(n)) (corresponding to

n nat
succ(n) nat

succ
)

This is just ordinary mathematical induction.
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Rule Induction – t tree

To prove that “If t tree (is derivable), then property P(t) holds”,
it is enough to show that the property holds for the conclusion of each rule
given that it holds for each of the premises of the rule.

That is it is enough to show each of:

P(empty) (corresponding to empty tree
empty

)

if P(t1) and P(t2), then P(node(t1, t2))

(corresponding to

t1 tree t2 tree
node(t1, t2) tree

node
)

This is structural induction.
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Inductive Definitions
Inductive Definitions in PL
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Inductive Definitions in PL

In the formal study of programming languages,

we use inductive definitions to specify

abstract syntax
static semantics (typing)
dynamic semantics (evaluation)
other properties of programs and programming languages

we use rule induction to prove

nearly everything
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Concrete vs. Abstract Syntax

The concrete syntax of a program is a string of characters:

“(” “3” “+” “2” “)” “∗” “7”

The abstract syntax of a program is a tree representing the structure
and the computationally relevant portion of the program:

∗

��~~
~~

~~
~

��>
>>

>>
>>

+

����
��

��
��

��?
??

??
??

? 7

3 2
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Concrete vs. Abstract Syntax

The concrete syntax contains many elements necessary for parsing:

parentheses

delimiters for comments

rules for precedence of operators

The abstract syntax is much simpler;
grouping and precedence given directly by tree structure.

We work with simple abstract syntax, rather than complex concrete syntax.
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Arithmetic Expressions, Informally

We consider a little language of arithmetic expressions.

Informally, an arithmetic exprssion a is

a boolean value

an if statement, with a test expression, a then-case expression,
and an else-case expression

the number zero

the successor of an expression

the predecessor of an expression

a zero test of an expression
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Arithmetic Expressions, Formally

The arithmetic expressions are defined by the judgement a aexp.

a boolean value

true aexp
True

false aexp
False

an if statement, with a test expression, a then-case expression,
and an else-case expression

ab aexp at aexp af aexp
if ab then at else af aexp

If

the number zero; the successor of an expression;
the predecessor of an expression; and a zero test of an expression

zero aexp
a aexp

succ(a) aexp
a aexp

pred(a) aexp
a aexp

isZero(a) aexp
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BNF

Defining every bit of syntax by inductive definitions is lengthy and tedious.

Syntax definitions are an especially simple form of inductive definition:

context insensitive

unary predicates

We use a convenient abbreviation: BNF (Backus-Naur form)
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Arithmetic Expressions, BNF

The arithmetic expressions are inductively defined by these rules:

a ::= true | false | if ab then at else af |
zero | succ(a) | pred(a) | isZero(a)

Implicitly defines the judgement a aexp,
with 7 inductive rules corresponding to the 7 alternatives;

a is now a syntax metavariable; in the following, any use of a
means an object a such that a aexp is derivable.
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Two Functions over Arith. Exps.

We could also define via judgements:

consts(true) = {true}
consts(false) = {false}

consts(if ab then at else af ) = consts(ab) ∪ consts(at) ∪ consts(af )
consts(zero) = {zero}

consts(succ(a)) = consts(a)
consts(pred(a)) = consts(a)

consts(isZero(a)) = consts(a)

size(true) = 1
size(false) = 1

size(if ab then at else af ) = 1 + size(ab) + size(at) + size(af )
size(zero) = 1

size(succ(a)) = 1 + size(a)
size(pred(a)) = 1 + size(a)

size(isZero(a)) = 1 + size(a)
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A Lemma and Proof

Lemma:
The number of distinct constants in any expression a
is no greater than the size of a.

|consts(a)| ≤ size(a)

Proof?

By rule induction on the rules for the judgement a aexp
Lingo: By induction on the structure of a

Fluet (TTI-C) Welcome and Introduction 29 / 107



A Lemma and Proof

Lemma:
The number of distinct constants in any expression a
is no greater than the size of a.

|consts(a)| ≤ size(a)

Proof?

By rule induction on the rules for the judgement a aexp
Lingo: By induction on the structure of a

Fluet (TTI-C) Welcome and Introduction 29 / 107



Structural Induction on Arith. Exps.

To prove that “If a aexp (is derivable), then property P(a) holds”,
it is enough to show that the property holds for the conclusion of each rule
given that it holds for each of the premises of the rule.

That is it is enough to show each of:

True: P(true)

False: P(false)

If: if P(ab) and P(at) and P(af ), then P(if ab then at else af )

Zero: P(zero)

Succ: if P(a), then P(succ(a))

Pred: if P(a), then P(pred(a))

IsZero: if P(a), then P(isZero(a))
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A Lemma and Proof

Lemma:
|consts(a)| ≤ size(a)

Proof:
By induction on the structure of a
(with P(a) ≡ |consts(a)| ≤ size(a)).

True, False: · · ·
If: · · ·
Zero: · · ·
Succ, Pred, IsZero: · · ·
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A Lemma and Proof

Lemma:
|consts(a)| ≤ size(a)

Proof:
By induction on the structure of a
(with P(a) ≡ |consts(a)| ≤ size(a)).

True:
Show |consts(true)| ≤ size(true).

|consts(true)| = |{true}| (defn. of consts)
|consts(true)| = 1 (property of | · |)
|consts(true)| = size(true) (defn. of size)

False, Zero: Similar.
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A Lemma and Proof

Lemma:
|consts(a)| ≤ size(a)

If:
Have |consts(ab)| ≤ size(ab) and |consts(at)| ≤ size(at)
and |consts(af )| ≤ size(af ).
Show |consts(if ab then at else af )| ≤ size(if ab then at else af ).

|consts(if ab then at else af )|
= |consts(ab) ∪ consts(at) ∪ consts(af )| (defn. of consts)
≤ |consts(ab)|+ |consts(at)|+ |consts(af )| (property of | · | and ∪)
≤ size(ab) + size(at) + size(af ) (by induction hypothesis)
< 1 + size(ab) + size(at) + size(af ) (property of +)
= size(if ab then at else af ) (defn. of size)

Succ, Pred, IsZero: Similar.
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What is a Proof?

A proof is an easily-checked justification of a proposition (e.g., a theorem).

Different people have different ideas about what “easily-checked” means.

The more formal a proof, the more “easily-checked”.

Formal enough, it can be checked by a computer.

Many, many examples to come!

Next up: a canonical proof in PL – type safety.
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MinML
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MinML

Study MinML, a tiny fragment of ML

integer and booleans

recursive functions

Rich enough to be Turing complete,
but small enough to support a thorough analysis of its properties.
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Defining MinML

What does it mean to define a programming language?

Define the syntax of the programming language

what objects can be considered programs

Define the semantics of the programming language

what does a program mean
how does a program execute (operational semantics)
what guarantees hold of program execution (static semantics)
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MinML
Abstract Syntax of MinML
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Abstract Syntax

The expressions of MinML are inductively defined by these rules:

Numbers n ::= · · · | −2 | −1 | 0 | 1 | 2 | · · ·

Expressions e ::= n | e1 + e2 | e1 = e2 | · · · |
true | false | if eb then et else ef |
x | fun f (x ) . e | ef ea

x and f range over a set of variables
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Bound and Free Variables

In the expression fun f (x ) . e, the variables f and x are bound.

Example: x is bound in fun f (x ) . x .

Example: x is bound in fun f (x ) . fun g(y) . fun h(z) . x (y z).

Lingo: the scope of the variables f and x is the expression e.

Variables that are not bound are free.

Example: x is free in x y.

Example: x is free in fun g(y) . x y.

Example: In (fun f (x ) . x ) x ,
the first occurrence of x is bound and
the second occurrence of x is free.

An expression with no free variables is closed.
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Variable Conventions

We use standard conventions involving bound variables:

Expressions differing only in names of bound variables are equivalent:

Example: (fun f (x ) . x + 3) ≡ (fun g(y) . y + 3).
Lingo: we work with expressions “up to alpha-conversion”.

Can always pick bound variables to avoid clashes with other variables.

Lingo: we use the “Barendregt convention”.
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Substitution

The capture-avoiding substitution e[e ′/x ]
replaces all free occurrences of x with e ′ in e.

Example: (fun f (x ) . x + y)[3/y] = (fun f (x ) . x + 3).

Warning! Näıve substitution can “capture” free variables.
Rename bound variables during substitution to avoid “capture”:

Example: (fun f (x ) . x + y)[x /y] = (fun f (z) . z + x ).
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Bound/Free Variables; Variable Conventions; Substitution

I have not formally defined any of these notions.

Intended meanings are intuitively obvious,
but surprisingly tricky to define/use formally.

Much more from Harper, Urban, and Weirich.
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MinML
Static Semantics of MinML
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Static Semantics

The static semantics (or type system)
imposes context-sensitive restrictions on programs.

Distinguishes well-typed from ill-typed expressions.

Well-typed programs (definitely) have well-defined behavior;
ill-typed programs (may) have ill-defined behavior.

In a well-typed program, every expression has a type.
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Abstract Syntax for Types

The types of MinML are inductively defined by these rules:

Types t ::= num | bool | td → tr

We redefine the expressions of MinML to annotate recursive functions with

the types of their domain and range.

Expressions e ::= · · · | fun f (x : td) : tr . e | · · ·
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Typing Judgements

A typing judgement, or typing assertion, is a triple Γ ` e : t

a type context Γ that assigns types to a set of variables,

an expression e whose free variables are given by Γ, and

a type t for the expression e in context Γ.

Read: “In context Γ, expression e has type t.”

A type context is a finite function Γ : Vars → Types.

We write Γ, x : t for the function Γ′ defined as follows:

Γ′(x ) = t
Γ′(y) = Γ(y) if y 6= x
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Typing Rules

A variable has whatever type Γ assigns to it:

Γ(x ) = t

Γ ` x : t
Var

The constants have the obvious types:

Γ ` n : num
Num

Γ ` true : bool
True

Γ ` false : bool
False
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Typing Rules

The numeric operations have the expected typing rules:

Γ ` e1 : num Γ ` e2 : num

Γ ` e1 + e2 : num
Add

Γ ` e1 : num Γ ` e2 : num

Γ ` e1 = e2 : bool
Eq
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Typing Rules

Conditionals:

Γ ` eb : bool Γ ` et : t Γ ` e2 : t

Γ ` if eb then et else ef : t
If

Both “branches” of a conditional must have the same type!

Intuitively, we can’t predict the outcome of the test,
so we must insist that both results have the same type.

Otherwise, we could not assign a unique type to the conditional.
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Typing Rules

Applications:

Γ ` ef : td → tr Γ ` ea : td

Γ ` ef ea : tr
App

Functions may only be applied to arguments in their domain,
returning results in their range.
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Typing Rules

Recursive functions:

Γ, f : td → tr , x : td ` e : tr

Γ ` fun f (x : td) : tr . e : td → tr
Fun

We assume that {f , x } ∩ dom(Γ) = ∅.
This is always possiby by our conventions on bound variables.

The typing rule for a recursive function is tricky!

We assume that

the function has the specified domain and range types, and
the argument has the specified domain type

We verify that the body has the range type under these assumptions.

If the assumptions are consistent,
then the function really has the specified domain and range types.
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Well-Typed and Ill-Typed Expressions

An expression e is well-typed in a context Γ
iff there exists a type t such that Γ ` e : t (is derivable).

If there is no type t such that Γ ` e : t (is derivable),
then expression e is ill-typed in context Γ.
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Typing Example

Consider the following expression efact:

fun f (n : num) : num .
if n = 0 then 1 else n ∗ (f (n − 1))

Lemma: The expression efact has the type num → num.

To prove this, we must show that ∅ ` efact : num → num.
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Typing Example

D =

Γ(n) = num

Γ ` n : num

Γ(f ) = num → num

Γ ` f : num → num

Γ(n) = num

Γ ` n : num Γ ` 1 : num

Γ ` n − 1 : num

Γ ` f (n − 1) : num

Γ ` n ∗ (f (n − 1)) : num

Γ(n) = num

Γ ` n : num Γ ` 0 : num

Γ ` n = 0 : bool Γ ` 1 : num D =

...

Γ ` n ∗ (f (n − 1)) : num

Γ ` if n = 0 then 1 else n ∗ (f (n − 1)) : num

∅ ` fun f (n : num) : num . if n = 0 then 1 else n ∗ (f (n − 1)) : num → num

where Γ = ∅, f : num → num, n : num
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Typing Example

The typing rules tell us exactly when a program is well-typed
and when it is ill-typed.

A type checker is a program that decides:

Given Γ, e, and t,
does there exists a derivation Γ ` e : t
according to the typing rules?
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Type Checking

How does the type checker find typing proofs?

Fact: the typing rules are syntax directed

there is exactly one rule per expression form.

Therefore, the type checker can invert the typing rules
and work backwards from the expression to build the proof.

Example: if the expression is a function,
then the only possible proof applies the function typing rule.

So, use that rule and check the body.
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Summary of Static Semantics

The static semantics of MinML is specified by an inductive definition

of the typing judgement Γ ` e : t.

D =

...

Γ ` e : t

Properties of the type system may be proved by induction
(on typing derivations).
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Induction on Typing Derivations

To prove that “If Γ ` e : t, then property P(Γ, e, t) holds”,
it is enough to show that the property holds for the conclusion of each rule
given that it holds for each of the premises of the rule.

That is it is enough to show each of:

P(Γ, n, num)

if P(Γ, e1, num) and P(Γ, e2, num), then P(Γ, e1 + e2, num)

if P(Γ, e1, num) and P(Γ, e2, num), then P(Γ, e1 = e2, bool)

P(Γ, true, bool)

P(Γ, false, bool)

if P(Γ, eb, bool) and P(Γ, et , t) and P(Γ, ef , t),
then P(Γ, if eb then et else ef , t)

if Γ(x ) = t, then P(Γ, x , t)

if P(Γ, f : td → tr , x : td , e, tr ), then P(Γ, fun f (x : td) : tr . e, td → tr )

if P(Γ, ef , td → tr ) and P(Γ, ea, td), then P(Γ, ef ea, tr )
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Properties of Typing

Lemma (Inversion):

if Γ ` n : t, then t = num.

if Γ ` e1 + e2 : t, then Γ ` e1 : num and Γ ` e2 : num and t = num.

if Γ ` e1 = e2 : t, then Γ ` e1 : num and Γ ` e2 : num and t = bool.

if Γ ` true : t, then t = bool.

if Γ ` false : t, then t = bool.

if Γ ` if eb then et else ef : t,
then Γ ` eb : bool and Γ ` et : t and Γ ` ef : t.

if Γ ` x : t, then Γ(x ) = t.

if Γ ` fun f (x : td) : tr . e : t,
then Γ, f : td → tr , x : td ` e : tr and t = td → tr .

if Γ ` ef ea : t, then Γ ` ef : td → tr and Γ ` ea : td and t = tr .

Proof:
By induction on the typing rules.
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Properties of Typing

Lemma (Inversion; n):

if Γ ` n : t, then t = num.
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if Γ ` e : t and e = n, then t = num.
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Properties of Typing

Lemma (Inversion; n):

if Γ ` e : t, then e = n⇒ t = num.
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Properties of Typing

Lemma (Inversion; n):

if Γ ` e : t, then ∀n. e = n⇒ t = num.
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Properties of Typing

Lemma (Inversion; n):

if Γ ` e : t, then ∀n. e = n⇒ t = num.

Proof:
By induction on the typing derivation Γ ` e : t
(with P(Γ, e, t) ≡ ∀n. e = n⇒ t = num).

Num:
Show P(Γ, n, num) ≡ ∀n′. n = n′ ⇒ num = num.
Trivial.

Eq:
Given P(Γ, e1, bool) and P(Γ, e2, bool).
Show P(Γ, e1 + e2, bool) ≡ ∀n. e1 + e2 = n⇒ bool = num.
Vacuous.

Add,True,False,If,Var,Fun,App:
Vacuous.
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Properties of Typing

Lemma (Weakening):
If Γ ` e : t and dom(Γ) ⊆ dom(Γ′), then Γ′ ` e : t.

Proof:
By induction on the typing derivation Γ ` e : t.

Intuition:
Extra “junk” in the context doesn’t matter.
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Properties of Typing

Lemma (Substitution):
If Γ ` e : t and Γ(x ) = tx and Γ \ x ` ex : tx ,
then Γ \ x ` e[ex/x ] : t.

Proof:
By induction on the typing derivation Γ, x : tx ` e : t (using Weakening).

Intuition:

Γ′(x ) = tx

Γ′ ` x : tx
...

Γ′′(x ) = tx

Γ′′ ` x : tx
...

Γ ` e : t
=⇒

Γ′ \ x ` ex : tx
...

Γ′′ \ x ` ex : tx
...

Γ \ x ` e[ex/x ] : t
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MinML
Dynamic Semantics of MinML
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Dynamic Semantics

Describes how a program executes.

A number of different ways to specify:

Denotational: Compile into a language (e.g., mathematics)
with a well understood meaning.

Axiomatic: Given some (logical) preconditions P,
state the postconditions Q that hold after execution:

{P} e {Q} – Hoare logic

Operational: Define execution by rewriting the program step-by-step.

small-step
large-step
contextual

In this lecture, we give a small-step operational semantics.
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Evaluation Judgements

An evaluation judgement is a tuple e −→ e ′

an expression e to evaluate, and

an expression e ′ to which e evaluates (in one step).

Read: “The expression e steps to the expression e ′.”

A step consists of execution of a single “instruction”.

Rules determine which “instruction” to execute next.

There are no steps from values.
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Values

The values of MinML are defined by these rules:

Values v ::= n | true | false | x | fun f (x : td) : tr . e

Technically, the rules for the values of MinML define a judgement
representing a predicate on expressions of MinML.

Using the metavariable v is more convenient
than (explicitly) defining the judgement e isVal
and adding · · · ∧ e isVal to rules and theorems.
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Evaluation Rules

First, we define the primitive rules of MinML (the “instructions”).

Primitive operations on numbers.

Conditional branch when the test is either true or false.

Application of a recursive function to an argument value.

Second, we specify the next “instruction” to execute by search rules.
These rules specify the order of evaluation for MinML expressions.

Left-to-right evaluation order.
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Evaluation Rules – Primitive

The numeric operations have the expected primitive evaluation rules:

n1 + n2 = n

n1 + n2 −→ n
Add

n1 = n2

n1 = n2 −→ true
EqT

n1 6= n2

n1 = n2 −→ false
EqF
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Evaluation Rules – Primitive

Conditionals:

if true then et else ef −→ et

IfT

if false then et else ef −→ ef

IfF
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Evaluation Rules – Primitive

Applications:

(fun f (x : td) : tr . e) va −→ e[(fun f (x : td) : tr . e)/f ][va/x ]
App

Substitute the entire recursive function expression for f in e.
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Evaluation Rules – Search

The numeric operations are evaluated left-to-right:

e1 −→ e ′1
e1 + e2 −→ e ′1 + e2

AddL
e2 −→ e ′2

v1 + e2 −→ v1 + e ′2
AddR

e1 −→ e ′1
e1 = e2 −→ e ′1 = e2

EqL
e2 −→ e ′2

v1 = e2 −→ v1 = e ′2
EqR
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Evaluation Rules – Search

Conditionals search for the next “instruction” in the test expression:

eb −→ e ′b
if eb then et else ef −→ if e ′b then et else ef

If
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Evaluation Rules – Search

Applications are evaluated left-to-right:

ef −→ e ′f
ef ea −→ e ′f ea

AppF
ea −→ e ′a

vf ea −→ vf e ′a
AppA
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Multi-step Evaluation Judgements

The judgement e −→∗ e ′′ is inductively defined by the following rules:

e −→∗ e
Refl

e −→ e ′ e ′ −→∗ e ′′

e −→∗ e ′′
Step

Read: “The expression e multi-steps to the expression e ′′”.

Intuitively, e −→∗ e ′′ iff e ≡ e0 −→ e1 −→ · · · −→ en ≡ e ′′ for n ≥ 0.
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Evaluation Example

Consider the following expression/value vfact:

fun f (n : num) : num .
if n = 0 then 1 else n ∗ (f (n − 1))

One step of evaluation:

vfact 3 −→ if 3= 0 then 1 else 3 ∗ (vfact (3− 1))
App

We have substituted vfact for f and 3 for x in the body of the function.
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Evaluation Example

vfact 3 −→ if 3= 0 then 1 else 3 ∗ (vfact (3− 1))
−→ if false then 1 else 3 ∗ (vfact (3− 1))
−→ 3 ∗ (vfact (3− 1))
−→ 3 ∗ (vfact 2)
−→ 3 ∗ (if 2= 0 then 1 else 2 ∗ (vfact (2− 1)))
−→ · · ·
−→ 3 ∗ (2 ∗ (1 ∗ 1))
−→ 3 ∗ (2 ∗ 1)
−→ 3 ∗ 2
−→ 6

where
vfact = fun f (n : num) : num . if n = 0 then 1 else n ∗ (f (n − 1))
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Summary of Dynamic Semantics

The dynamic semantics of MinML is specified by inductive definitions

of the evaluation judgements e −→ e ′ and e −→∗ e ′′.

D =

...

e −→ e ′

Properties of evaluation may be proved by induction
(on evaluation derivations).
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Induction on Evaluation Derivations

To prove that “If e −→ e ′, then property P(e, e ′) holds”,
it is enough to show that the property holds for the conclusion of each rule
given that it holds for each of the premises of the rule.

That is it is enough to show each of (primitive rules):

if n1 + n2 = n, then P(n1 + n2, n)

if n1 = n2, then P(n1 = n2, true)

if n1 6= n2, then P(n1 = n2, false)

P(if true then et else ef , et)

P(if false then et else ef , ef )

P((fun f (x : td) : tr . e) va, e[(fun f (x : td) : tr . e)/f ][va/x ])
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Induction on Evaluation Derivations

To prove that “If e −→ e ′, then property P(e, e ′) holds”,
it is enough to show that the property holds for the conclusion of each rule
given that it holds for each of the premises of the rule.

That is it is enough to show each of (search rules):

if P(e1, e ′1), then P(e1 + e2, e ′1 + e2)

if P(e2, e ′2), then P(v1 + e2, v1 + e ′2)

if P(e1, e ′1), then P(e1 = e2, e ′1 = e2)

if P(e2, e ′2), then P(v1 = e2, v1 = e ′2)

if P(eb, e ′b), then P(if eb then et else ef , if e ′b then et else ef )

if P(ef , e ′f ), then P(ef ea, e ′f ea)

if P(ea, e ′a), then P(vf ea, vf e ′a)
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Induction on Multi-step Evaluation Derivations

To prove that “If e −→∗ e ′′, then property Q(e, e ′′) holds”,
it is enough to show that the property holds for the conclusion of each rule
given that it holds for each of the premises of the rule.

That is it is enough to show each of:

Q(e, e)

if e −→ e′ and Q(e′, e′′), then Q(e, e′′)

Often this involves proving (by induction)
some property P of the single-step evaluation derivation.
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Properties of Evaluation

Lemma (Values Irreducible):
There is no e ′ such that v −→ e ′.

Proof:
By induction on the evaluation rules.

Rephrase the lemma as “If e −→ e ′, then ∀v . e 6= v”.
By induction on the evaluation derivation e −→ e ′.

Lingo: by inspection of the evaluation rules.
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Properties of Evaluation

Lemma (Determinacy):
For every e there exists at most one e ′ such that e −→ e ′.

Proof:
By induction on the structure of e (using Values Irreducible)

Lemma (Determinacy of Values):
For every e there exists at most one v ′′ such that e −→∗ v ′′.

Proof:
By induction on the derivation of e −→∗ v ′′ (using Determinacy).

Fluet (TTI-C) Welcome and Introduction 84 / 107



Stuck States

Not every irreducible expression is a value!

if 7 then 1 else 2 does not reduce

true+ false does not reduce

true 1 does not reduce

If an expression is not a value and it doesn’t reduce,
then its meaning is ill-defined.

Anything can happen next

An expression e that is not a value and for which there exists no e ′ such
that e −→ e ′ is stuck.
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Summary of Dynamic Semantics

The dynamic semantics of MinML is specified by inductive definitions

of the evaluation judgements e −→ e ′ and e −→∗ e ′′.

D =

...

e −→ e ′

Evaluation is deterministic.

Evaluation can get stuck . . . if expressions are not well-typed.
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Type Safety

A type system predicts something about the execution of a program.

∅ ` e : num → num

the expression e will evaluate to a function value
that takes an integer argument and returns an integer result,
or does not terminate

the expression e will not get stuck during evaluation
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Type Safety

Type safety formalizes a coherence between the static and dynamic
semantics of a programming language

The static semantics makes predictions about the execution behavior.

The dynamic semantics must comply with those predictions.

The validity of the predictions guarantees that certain errors never occur.
The kinds of error vary depending on the details of the type system.

MinML predicts the form of valus (boolean? function? integer?)

MinML guarentees that integers aren’t applied to arguments
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Formalization of Type Safety

Type safety formalizes a coherence between the static and dynamic
semantics of a programming language

The static semantics makes predictions about the execution behavior.

The dynamic semantics must comply with those predictions.

Theorem (Safety):
If ∅ ` e : t and e −→∗ e ′, then e ′ is not stuck
(i.e., either e ′ is a value or there exists e ′′ such that e ′ −→ e ′′.
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Proving Type Safety

Theorem (Safety):
If ∅ ` e : t and e −→∗ e ′, then e ′ is not stuck
(i.e., either e ′ is a value or there exists e ′′ such that e ′ −→ e ′′.

A number of different ways to prove; we concentrate on a syntactic proof.

Prove type safety by showing two related properties:

Preservation: A well-typed program remains well-typed during
evaluation. (If an expression is well-typed and takes a step, then the
stepped-to expression is well-typed.)

Progress: A well-typed program is not stuck. (If an expression is
well-typed, then it is either a value or it can take a step.)
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Proving Type Safety

Theorem (Safety):
If ∅ ` e : t and e −→∗ e ′, then e ′ is not stuck
(i.e., either e ′ is a value or there exists e ′′ such that e ′ −→ e ′′.

Theorem (Preservation):
If ∅ ` e : t and e −→ e ′, then ∅ ` e ′ : t.

Theorem (Progress):
If ∅ ` e : t, then either e is a value or there exists e ′ such that e −→ e ′.
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Proving Preservation

Theorem (Preservation):
If ∅ ` e : t and e −→ e ′, then ∅ ` e ′ : t.

Proof:
By induction on the evaluation derivation e −→ e ′

(with P(e, e ′) ≡ ∀t. ∅ ` e : t ⇒ ∅ ` e ′ : t).
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Proving Preservation

Add:

Have

n1 + n2 = n

n1 + n2 −→ n
Add

and ∅ ` n1 + n2 : t.
Show ∅ ` n : t.

∅ ` n1 : num, ∅ ` n2 : num, and t = num
(by Inversion lemma with ∅ ` n1 + n2 : t)

∅ ` n : num (by Num typing rule)
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Proving Preservation

App:

Have vf va −→ e[vf /f ][va/x ]
App

and ∅ ` vf va : t,
where vf = fun f (x : td) : tr . e.
Show ∅ ` e[vf /f ][va/x ] : t.

∅ ` vf : t ′d → t ′r , ∅ ` va : t ′d , and t = t ′r
(by Inversion lemma with ∅ ` vf va : t)

∅, f : td → tr , x : td ` e : tr and t ′d → t ′r = td → tr
(by Inversion lemma with ∅ ` vf : t ′d → t ′r )

∅ ` e[vf /f ][va/x ] : tr (by Substitution lemma (twice))

Other primitive rules are similar.
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Other primitive rules are similar.
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Proving Preservation

AddL:

Have

e1 −→ e ′1

e1 + e2 −→ e ′1 + e2
AddL

and ∅ ` e1 + e2 : t
and P(e1, e ′1).
Show ∅ ` e ′1 + e2 : t.

∅ ` e1 : num, ∅ ` e2 : num, and t = num
(by Inversion lemma with ∅ ` e1 + e2 : t)

∅ ` e ′1 : num (by induction hypothesis with ∅ ` e1 : num)
∅ ` e ′1 + e2 : num (by Add typing rule)

Other search rules are similar.
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Proof of Preservation

How might the proof have failed?

Only if some evaluation step doesn’t behave like its typing rule. e.g.:

n1 = n2

n1 = n2 −→ 1
EqT

n1 6= n2

n1 = n2 −→ 0
EqF

Γ ` e1 : num Γ ` e2 : num

Γ ` e1 = e2 : bool
Eq

Preservation fails: In the case for EqT, would have to show ∅ ` 1 : bool.
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Proof of Preservation

Proof is by induction on evaluation derivation.

If an evaluation step is undefined, then Preservation still holds! e.g.:

n1 = n2

n1 = n2 −→ true
EqT

Γ ` e1 : num Γ ` e2 : num

Γ ` e1 = e2 : bool
Eq
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Proving Progress

Theorem (Progress):
If ∅ ` e : t, then either e is a value or there exists e ′ such that e −→ e ′.

First, need a supporting lemma.
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Proving Progress

The type of a closed value determines its form.

Lemma (Canonical Forms):
If ∅ ` v : t, then

if t = num, then v = n

if t = bool, then v = true or v = false

if t = td → tr , then v = fun f (x : td) : tr . e

Proof:
By induction on the derivation ∅ ` v : t.
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Proving Progress

Theorem (Progress):
If ∅ ` e : t, then either e is a value or there exists e ′ such that e −→ e ′.

Proof:
By induction on the typing derivation ∅ ` e : t
(with P(Γ, e, t) ≡ Γ = ∅ ⇒ ∃v . e = v ∨ ∃e ′. e −→ e ′).
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Proving Progress

Var:

Have

∅(x ) = t

∅ ` x : t
Var

.

Vacuous.
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Proving Progress

Num:

Have ∅ ` n : num
Num

.
Show n is a value.

Immediate (n is a value).
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Proving Progress

Add:

Have

∅ ` e1 : num ∅ ` e2 : num

∅ ` e1 + e2 : num
Add

and P(∅, e1, num) and P(∅, e2, num).
Show there exists e ′ such that e1 + e2 −→ e ′.

(1) e1 = v1 or (2) e1 −→ e ′1 (by induction hypothesis)
e1 + e2 −→ e ′1 + e2 (by AddL evaluation rule, if (2))
(3) e2 = v2 or (4) e2 −→ e ′2 (by induction hypothesis)
v1 + e2 −→ v1 + e ′2 (by AddR evaluation rule, if (1) and (4))
v1 = n1 (by Canonical Forms lemma with ∅ ` v1 : num, if (1))
v2 = n2 (by Canonical Forms lemma with ∅ ` v2 : num, if (3))
n1 + n1 −→ n

(by Add evaluation rule with n1 + n2 = n, if (1) and (3))
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Proving Progress

Cases for conditionals and applications are similar:

use induction hypothesis to generate multiple cases

use search rules when one sub-expression takes a step

use Canonical Forms to show that primitive rules can be applied
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Proof of Progress

How might the proof have failed?

Only if some evaluation step is undefined. e.g.:

n1 = n2

n1 = n2 −→ true
EqT

Γ ` e1 : num Γ ` e2 : num

Γ ` e1 = e2 : bool
Eq

Progress fails: In the case for Eq with e1 = n1 and e2 = n2 and n1 6= n2,
we cannot take a step and n1 = n2 is not a value.
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Proof of Progress

Proof is by induction on typing derivation.

If there is no typing rule for an expression form, then Progress still holds!
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Summary

Type safety expresses the coherence of the static
and operational semantics of a programming language.

A standard technique for proving type safety is via

preservation

progress

A type safety proof exhibits whether we have a sound language design
and (if not) where to fix problems.
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