
On Reasoning about Recursive Programs

using Structural Induction∗

Olivier Danvy

Department of Computer Science

Aarhus University†

February 11, 2009

Abstract

This note was written at the occasion of the retirement of Professor Jean-
François Perrot at the Université Pierre et Marie Curie (Paris VI). In an
attempt to emulate his academic spirit, we revisit an example proposed
by Patrick Greussay in his doctoral thesis: how to verify in sublinear
time whether a Calder mobile is well balanced. Rather than divining one
solution or another, we derive a spectrum of solutions, starting from the
original specification of the problem. We also prove their correctness using
structural induction.

Keywords: Calder mobiles. Continuations. Functional programming.

Structural induction.

Contents

1 Introduction 2

2 Calder Mobiles 2

3 Balance 3

4 Analysis 10

∗English translation of “Sur un exemple de Patrick Greussay” [1].
†IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: danvy@cs.au.dk

1



1 Introduction

The original goal of this note was to revisit an example due to Patrick Greussay [7,
pages 66-68]: how to determine, in sub-linear time, whether a mobile is balanced.

Prerequisites

We assume from the reader some familiarity with functional programming in
general and the ML programming language in particular [8]. In addition, we
reason over ML terms equationally to establish their observational equivalence
(noted ∼=).

2 Calder Mobiles

Definition 1 (Calder mobile) A mobile is inductively defined as an object of
some weight or a bar of some weight with two sub-mobiles.

Definition 2 (representing a mobile in ML) The following data type spec-
ifies the representation of a mobile:

datatype mobile = OBJ of int

| BAR of int * mobile * mobile

For example, let us note m1 and m2 the two following mobiles:

val m1 = BAR (1,

BAR (1, OBJ 2, OBJ 2),

OBJ 5)

val m2 = BAR (1,

OBJ 6,

BAR (1, OBJ 2, OBJ 9))

Definition 3 (structural induction over mobiles) Given a predicate M , if

1. for any value n : int, M(OBJ n) holds, et

2. for all values n : int, and m1, m2 : mobile,
if M(m1) and M(m2) hold then M(BAR (n, m1, m2)) holds,

then for any value m : mobile, M(m) holds.

Definition 4 (weight of a mobile) The weight of a mobile is the sum of the
weight of its objects and of its bars.

For example, the weight of the mobile denoted by m1 is 11, and the weight of the
mobile denoted by m2 is 19.

Proposition 1 The following recursive function computes the weight of a mo-
bile:

2



(* weight : mobile -> int *)

fun weight m

= let (* visit : mobile -> int *)

fun visit (OBJ n)

= n

| visit (BAR (n, m1, m2))

= n + (visit m1) + (visit m2)

in visit m

end

Proof:



datatype ’a option = SOME of ’a

| NONE

We also use two auxiliary functions to lift a unary function and a binary function:

(* lift1 : (’a -> ’b option)

-> ’a option -> ’b option *)

fun lift1 f

= (fn (SOME v)

=> f v

| _

=> NONE)

(* lift2 : (’a * ’b -> ’c option)

-> ’a option * ’b option -> ’c option *)

fun lift2 f

= (fn (SOME v1, SOME v2)

=> f (v1, v2)

| _

=> NONE)

Proposition 3 The following function computes whether a mobile is balanced:

(* equil1 : mobile -> bool *)

fun equil1 m

= let (* visit : mobile -> int option *)

fun visit (OBJ n)

= SOME n

| visit (BAR (n, m1, m2))

= lift2 (fn (n1, n2) => if n1 = n2

then SOME (n + n1 + n2)

else NONE)

(visit m1, visit m2)

in case visit m

of (SOME _)

=> true

| NONE

=> false

end

(Readers uncomfortable with lift2 can mentally unfold its call.)

Proof: By structural induction, using the following predicate:

M(m) ≡ equil1.visit m ∼=







SOME n if the mobile denoted by m is balanced
and n denotes its weight

NONE otherwise

2

This solution is linear since the mobile is traversed once. However, it is
completely traversed, even when one of its sub-mobiles (and therefore the entire

4



mobile) is ill-balanced. We therefore break the symmetry of the solution so that
the second sub-mobile of a bar is only traversed if the first is balanced:

Proposition 4 The following function computes whether a mobile is balanced:

(* equil2 : mobile -> bool *)

fun equil2 m

= let (* visit : mobile -> int option *)

fun visit (OBJ n)

= SOME n

| visit (BAR (n, m1, m2))

= lift1 (fn n1

=> lift1 (fn n2

=> if n1 = n2

then SOME (n + n1 + n2)

else NONE)

(visit m2))

(visit m1)

in case visit m

of (SOME _)

=> true

| NONE

=> false

end

Proof: By structural induction, using the same predicate as in Proposition 3.
2

This solution is sub-linear because the rest of the mobile is not traversed if one
of its sub-mobiles is ill-balanced. However, in this case, the computation yields
NONE and degenerates into a cascade of returns and of tests verifying whether
NONE has been returned.

One can use an exception to short-cut this cascade:

(* equil3 : mobile -> bool *)

fun equil3 m

= let exception STOP

(* visit : mobile -> int *)

fun visit (OBJ n)

= n

| visit (BAR (n, m1, m2))

= let val n1 = visit m1

val n2 = visit m2

in if n1 = n2

then n + n1 + n2

else raise STOP

end

in let val _ = visit m

in true

end handle STOP => false

end

5



Instead of mobile -> int option, the type of equil3.visit is now mobile ->

int, but this function is no longer pure because of the exception. Does this mean
that a purely functional solution is out of reach? The answer is of course negative
if one uses an exception monad [9], and doubly so if one passes intermediate
results to a continuation, which we proceed to do.

Getting back to equil2, one can see that there are three calls to visit, each
in a context. Let us represent this context as a unary function (the continuation)
and let us pass this function to visit:

Proposition 5 The following function computes whether a mobile is balanced:

(* equil4 : mobile -> bool *)

fun equil4 m

= let (* visit : mobile * (int option -> bool) -> bool *)

fun visit (OBJ n, k)

= k (SOME n)

| visit (BAR (n, m1, m2), k)

= visit (m1,

fn (SOME n1)

=> visit (m2,

fn (SOME n2)

=> if n1 = n2

then k (SOME (n + n1 + n2))

else k NONE

| _

=> k NONE)

| _

=> k NONE)

in visit (m, fn (SOME _)

=> true

| NONE

=> false)

end

In equil2, the type of visit was mobile -> int option and the type of equil2

was mobile -> bool. In equil4, the type of visit is mobile * (int option ->

bool) -> bool and the type of equil4 is mobile -> bool, i.e., the co-domain of
equil4.visit and of its continuation is the co-domain of equil4.

Proof: We show that for any value m : mobile, evaluating equil2 m yields a
Boolean value b if and only if evaluating equil4 m yields the same Boolean value
b. We proceed by structural induction using the following predicate:

M(m) ≡ for all values k : int option -> bool

equil2.visit m ∼= v ⇔ equil4.visit (m, k) ∼= k v

for some v : int option

2

Continuation-passing has not solved the problem—once the continuation is
applied to NONE, the same test cascade occurs. Fortunately, we can use the type
isomorphism

6



int option -> bool ∼= (int -> bool) * (unit -> bool)

and split the continuation into two: one is applied if the current sub-mobile is
balanced and the other is used otherwise:

(* equil5 : mobile -> bool *)

fun equil5 m

= let (* visit : mobile * (int -> bool) * (unit -> bool)

-> bool *)

fun visit (OBJ n, ki, ku)

= ki n

| visit (BAR (n, m1, m2), ki, ku)

= visit (m1,

fn n1

=> visit (m2,

fn n2

=> if n1 = n2

then ki (n + n1 + n2)

else ku (),

ku),

ku)

in visit (m, fn _ => true, fn () => false)

end

In the recursive call to visit, we write ku instead of fn () => ku () (i.e., we
η-reduce ku) to short-cut the cascade of returns in case of ill balance. This
definition coincides with Patrick Greussay’s solution [7, page 67].

Additionally, instead of schlepping ku across the recursive calls to visit, we
can “lambda-drop” it [6] from its declaration site (the initial call to visit) to
its use site (the alternative branch of the equality test) and β-reduce (fn () =>

false) ():

(* equil6 : mobile -> bool *)

fun equil6 m

= let (* visit : mobile * (int -> bool) -> bool *)

fun visit (OBJ n, k)

= k n

| visit (BAR (n, m1, m2), k)

= visit (m1,

fn n1

=> visit (m2,

fn n2

=> if n1 = n2

then k (n + n1 + n2)

else false))

in visit (m, fn _ => true)

end

7



(Alternatively, we could have used the type isomorphism between unit -> bool

and bool and replaced fn () => false by false, which only works here because
false is a value.)

We can now write this solution in direct style with callcc and throw [3] (found
in the SMLofNJ.Cont library of Standard ML of New Jersey): callcc captures the
current continuation and throw restores a captured continuation.

(* equil7 : mobile -> bool *)

fun equil7 m

= callcc (fn k => let (* visit : mobile -> bool *)

fun visit (OBJ n)

= n

| visit (BAR (n, m1, m2))

= let val n1 = visit m1

val n2 = visit m2

in if n1 = n2

then n + n1 + n2

else throw k false

end

in let val _ = visit m

in true

end

end)

The initial continuation of equil7 is captured; it is only activated, during the
computation, if the mobile is ill-balanced.

We can also defunctionalize this solution into a transition system, i.e., an
abstract machine or again a pushdown automaton [4, 5, 10, 12]. To this end, we
identify that an inhabitant of the function space int -> bool is an instance of
three lambda-abstractions in the definition of equil6 (this identification is the
result of a control-flow analysis). We thus represent this function space by a sum
(i.e., in ML, by a data type cont), each lambda-abstraction by the corresponding
constructor in cont, and each application by a call to a function apply cont that
interprets the constructor:

Proposition 6 The following function computes whether a mobile is balanced:

(* equil8 : mobile -> bool *)

fun equil8 m

= let datatype cont = C0

| C1 of int * mobile * cont

| C2 of int * int * cont

(* apply_cont : cont * int -> bool *)

fun apply_cont (C0, _)

= true

| apply_cont (C1 (n, m2, c), n1)

= visit (m2, C2 (n, n1, c))

8



| apply_cont (C2 (n, n1, c), n2)

= if n1 = n2

then apply_cont (c, n + n1 + n2)

else false

(* visit : mobile * cont -> bool *)

and visit (OBJ n, c)

= apply_cont (c, n)

| visit (BAR (n, m1, m2), c)

= visit (m1, C1 (n, m2, c))

in visit (m, C0)

end

Proof: We show that for any value m : mobile, evaluating equil6 m yields a
Boolean value b if and only if evaluating equil8 m yields the same Boolean value
b. We proceed by structural induction using the logical relation

K(k, c) ≡ for any value n : int

k n ∼= b ⇔ equil8.apply cont (c, n) ∼= b

for some value b : bool

and the following predicate:

M(m) ≡ for all the values k : int -> bool and c : cont satisfying K(k, c)
equil6.visit (m, k) ∼= k n ⇔

equil8.visit (m, c) ∼= equil8.apply cont (c, n)

for some value n : int

or
equil6.visit (m, k) ∼= false ⇔ equil8.visit (m, c) ∼= false

Here is a representative case of the proof, to show that for all the val-
ues n : int, m1 : mobile, m2 : mobile, k : int -> bool and c : cont satisfying
M(m1), M(m2) and K(k, c),

equil6.visit (BAR (n, m1, m2), k) ∼= k n’ ⇒

equil8.visit (BAR (n, m1, m2), c) ∼= equil8.apply cont (c, n’)

for some value n’ : int

or
equil6.visit (BAR (n, m1, m2), k) ∼= false

⇒

equil8.visit (BAR (n, m1, m2), c) ∼= false

By definition, equil6.visit (BAR (n, m1, m2), k) ∼= equil6.visit (m1, fn

n1 => ...). Since K(k, c) holds, we simply verify that for any value n1 : int,
the relation

K(fn n2 => if n1 = n2 then k (n + n1 + n2) else false, C2 (n, n1, c))

9



also holds. By induction hypothesis on m2, for any value n1 : int,

equil6.visit (m2, fn n2 => ...) ∼= (fn n2 => ...) n2

⇒

equil8.visit (m2, C2 (n, n1, c)) ∼= equil8.apply cont (C2 (n, n1, c), n2)

for some value n2 : int

or
equil6.visit (m2, fn n2 => ...) ∼= false

⇒

equil8.visit (m2, C2 (n, n1, c)) ∼= false

We can thus verify that the relation

K(fn n1 => equil6.visit (m2, fn n2 => ...), C1 (n, m2, c))

holds, which puts us in position to apply the induction hypothesis on m1. 2

Alternatively to the data type cont, we can defunctionalize the continuation
into a stack of frames and interpret it with a popping function:

(* equil9 : mobile -> bool *)

fun equil9 m

= let datatype frame = F1 of int * mobile

| F2 of int * int

type cont = frame list

(* pop_frame : cont * int -> bool *)

fun pop_frame (nil, _)

= true

| pop_frame ((F1 (n, m2)) :: c, n1)

= visit (m2, (F2 (n, n1)) :: c)

| pop_frame ((F2 (n, n1)) :: c, n2)

= if n1 = n2

then pop_frame (c, n + n1 + n2)

else false

(* visit : mobile * cont -> bool *)

and visit (OBJ n, c)

= pop_frame (c, n)

| visit (BAR (n, m1, m2), c)

= visit (m1, (F1 (n, m2)) :: c)

in visit (m, nil)

end

4 Analysis

The reader is now equipped to tackle the traditional multiplication example of
integers in a tree, exploiting the absorption property of 0 and deriving a spectrum
of solutions1 rather than heroically inventing one of these solutions.

1Namely with a local function whose co-domain is int option, or that uses an exception,
or a continuation, or a stack of sub-trees.

10



More generally, the derivation presented here illustrates a class of applications
of continuations (and of exceptions) for functions of type t1 → t2 that use an
auxiliary function of type t3 → t4 + t5. Often, one can:

1. CPS-transform the auxiliary function [2], giving it the following type:

t3 × (t4 + t5 → t2) → t2

2. split the continuation into two:

t3 × (t4 → t2) × (t5 → t2) → t2

and

3. simplify one of the two continuations and its use (e.g., when t5 is the unit
type, as for Calder mobiles, for multiplying integers in the leaves of a tree,
or for programming an substitution algorithm that preserves sharing).

References

[1] Olivier Danvy. Sur un exemple de Patrick Greussay. Research Report
BRICS RS-04-41, DAIMI, Department of Computer Science, Aarhus Uni-
versity, Aarhus, Denmark, December 2004.

[2] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, 1992.

[3] Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class con-
tinuations. In William Clinger, editor, Proceedings of the 1992 ACM Con-
ference on Lisp and Functional Programming, LISP Pointers, Vol. V, No. 1,
pages 299–310, San Francisco, California, June 1992. ACM Press.

[4] Olivier Danvy and Kevin Millikin. Refunctionalization at work. Science of
Computer Programming, 2009. In press. Extended version available as the
research report BRICS RS-08-04.

[5] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Har-
ald Søndergaard, editor, Proceedings of the Third International ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming
(PPDP’01), pages 162–174, Firenze, Italy, September 2001. ACM Press.
Extended version available as the research report BRICS RS-01-23.

[6] Olivier Danvy and Ulrik P. Schultz. Lambda-dropping: Transforming recur-
sive equations into programs with block structure. Theoretical Computer
Science, 248(1-2):243–287, 2000. A preliminary version was presented at
the 1997 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM 1997).

11



[7] Patrick Greussay. Contribution à la définition interprétative et à
l’implémentation des λ-langages. Thèse d’état, Université de Paris VII,
Paris, France, 1977.

[8] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

[9] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93:55–92, 1991.

[10] Gordon D. Plotkin. A structural approach to operational semantics. Techni-
cal Report FN-19, DAIMI, Department of Computer Science, Aarhus Uni-
versity, Aarhus, Denmark, September 1981. Reprinted in the Journal of
Logic and Algebraic Programming 60-61:17-139, 2004, with a foreword [11].

[11] Gordon D. Plotkin. The origins of structural operational semantics. Journal
of Logic and Algebraic Programming, 60-61:3–15, 2004.

[12] John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference
(1972), with a foreword [13].

[13] John C. Reynolds. Definitional interpreters revisited. Higher-Order and
Symbolic Computation, 11(4):355–361, 1998.

12


