
Assignment
Art of Invariant Generation applied to Symbolic Bound Computation

Oregon Summer School, July 2009
Lecturer: Sumit Gulwani

1. Precision of a Bound
Observe that n is a bound for each of the following procedures P1, P2, P3. Identify
the procedures for which it is precise. Write down a precision witness for each of those
procedures.

P1(uint n):
if (n ≥ 100) {

i := 0;
while (i < n)

i := i+1;
}

P2(uint n, uint m):
i := 0; j := 0;
while ((i < n) ∧ (j < m))

i := i+1;
j := j+1;

P3(uint n):
if (n%2 == 0) {

i := 0;
while (i < n)

i := i+1;
}

2. Reduction of Bound Computation to Invariant Generation
Recall the reduction from bound computation to invariant generation using a counter
c that is initialized to 0 at the beginning of the procedure, and is incremented by 1 at
the control-location π of interest. We claimed the following:

Claim 1 If c < F (n) is an invariant that holds at π, then Max(0, F (n)) is an upper
bound on the number of visits to control-location π.

Instead, consider the following incorrect claim.

Claim 2 If c < F (n) is an invariant that holds at the end of the procedure, then
then Max(0, F (n)) is an upper bound on the number of visits to control-location π.

Give an example that demonstrates that Claim 2 is incorrect. Under what additional
conditions would Claim 2 be valid?

3. Symbolic Bound Computation
For each of the non-recursive procedures Q below, provide a bound (as precise as
you can) on the number of loop iterations of the outermost loop. For each of the
recursive procedures R below, provide a bound on the number of recursive procedure
call invocations. In case any of the procedures is not always terminating, identify
weakest conditions on the procedure inputs that ensure termination, and provide a
bound under that condition.

1

Q1(int n, int m):
x := n+1;
while (x 6= n)

if (x ≥ m) x := 0;
else x := x+1;

R1(Tree x):
while (x 6= Null)

for (y := x; y 6= Null; y := y.Left)
R1(y.Right);

Q2(int x, int z, int n):
while (x < n)

if (x < z) x++;
else z++;

R2(Tree x):
if (x 6= Null) {

R2(x.Left); R2(x.Right);
R2(x.Left); R2(x.Right);

}
Q3(int y, int n):
x := 0;
while (x < n)

x := x+y;
y := y+1;

Q5(List L):
ToDo.Init();
L.MoveTo(L.Head(),ToDo);
while (¬ ToDo.IsEmpty())

e := ToDo.Head();
ToDo.Delete(e);
foreach successor s in e.Successors()

if (L.contains(s)) L.MoveTo(s,ToDo);
Q4(int A[], uint n):
change := true;
while (change)

change := false;
for (j:=0; j < n− 1; j++)

if (A[j] > A[j + 1]) {
swap(A[j], A[j + 1]);
change := true;

}

Q6(Bitvector b):
while (BitScanForward(&id1,b))

// set all bits before id1
b := b ‖ ((1 << id1)-1);
if (BitScanForward(&id2,∼ b)) break;
// reset bits before id2
b := b & (∼((1 << id2)-1));

In procedure Q5, the input list L is a list of all nodes from some graph. For any such
node e, e.Successors() returns the list of all successors of e in the graph. The method
L.MoveTo(s,ToDo) moves node s from list L to the list ToDo. The other methods
have the expected semantics.

In procedure Q6, &, ‖, ∼ denote the bitwise-and, bitwise-or, bitwise-negation opera-
tors respectively. The function BitScanForward(&id, b) returns 1 iff the bit-vector b
contains a 1-bit, and sets id to the position of the least significant 1 bit present in b.

4. Logic: Theory of Uninterpreted Functions
Let n and m be relatively prime positive integers.

• What is the strongest atomic fact in the theory of uninterpreted functions that
is implied by the formula (y = Fn(y) ∧ y = Fm(y)).

• What is the strongest atomic fact in the theory of uninterpreted functions that
is implied by the formula (y = Fn(y) ∨ y = Fm(y)).

2

5. Logic: Nelson-Oppen Combination of Decision Procedures
The purpose of this example is to demonstrate the importance of disjointedness condi-
tion required on theories T1 and T2 in the Nelson-Oppen combination methodology.
Consider the following parity theory that shares constants (which can be treated as
nullary functions) as well as the binary operators ± with the integer linear arithmetic.

Expressions e := y | c | e1 ± e2
Atomic facts g := IsOdd(e) | IsEven(e)
Axioms: IsOdd(i) for any odd integer i

∀e1, e2 : IsOdd(e1) ∧ IsEven(e2)⇒ IsOdd(e1 + e2)
and so on.

Give an example of a formula φ s.t.

• φ is over combination of integer linear arithmetic and parity theory, (i.e., φ only
uses the binary relation ≥ and unary relations IsOdd, IsEven).

• φ is unsatisfiable.

• Nelson-oppen combination methodology (in which we also share disjunction of
equalities between variables) would fail to identify unsatisfiability.

6. Logic: Theory of Linear Arithmetic and Farkas Lemma
The problem of checking unsatisfiability of conjunction of linear inequalities is in
PTIME. However, the polynomial time algorithms are quite involved. Instead, a worst-
case exponential time algorithm called Simplex is commonly used, and it performs
well in practice. Why can’t we simply use Farkas Lemma to translate a set of linear
inequalities into a conjunction of linear equalities over Farkas witness coefficients λ’s,
which can then be solved using Gaussian Elimination.

7. Join Algorithm: Theory of Uninterpreted Functions
The domain of conjunctions of atomic facts over the theory of uninterpreted functions
is not closed under disjunction. For example, consider the following two facts:

E1 : x = y

E2 : x = F (x) ∧ y = F (y) ∧ G(x) = G(y)

(a) The number of independent atomic facts that are implied by both E1 and E2

individually is infinite. Write down one such infinite family of atomic facts.

(b) The transfer function for join that we described in class for the theory of un-
interpreted functions is thus not complete, i.e., it does not generate all atomic
facts that are implied by each of the inputs to the join algorithm. Write down
the result of the join transfer function that we studied in the class for the above
example.

Aside: However, the join algorithm that we discussed in class is complete for the
case when there are no cyclic dependencies like x = F (x) and this leads to a PTIME
algorithm for assertion checking in presence of non-deterministic conditionals since
cyclic dependencies can arise only in presence of deterministic conditionals.

3

8. Join Algorithm: Combination
The combined domain of atomic facts is not closed under disjunction even if the
individual domains of atomic facts are closed under disjunction. For example, consider
the following two facts:

E1 : x = 0
E2 : x = 1

(a) Write down the set of all atomic facts that are implied by both E1 and E2

individually in the theory of linear arithmetic.
(b) Write down the set of all atomic facts that are implied by both E1 and E2

individually in the theory of uninterpreted functions.
(c) The number of independent atomic facts that are implied by both E1 and E2 indi-

vidually in the combined theory of linear arithmetic and uninterpreted functions
is infinite. Write down one such infinite family of atomic facts.

(d) The transfer function for join that we described in class for combined domain in
terms of the join transfer function for individual domains is thus not complete.
Write down the result of the join transfer function that we studied in the class
for the above example.

Aside: However, the join algorithm that we discussed in class is partially complete; it
generates all atomic facts that involve terms that are semantically represented in both
the inputs.

9. Inductive Loop Invariants
Consider the following program.

a1 := 0; a2 := 0;
b1 := 1; b2 := F (1);
c1 := 2; c2 := 2;
while(*) {

a1 := a1 + 1; a2 := a2 + 2;
b1 := F (b1); b2 := F (b2);
c1 := F (2c1 − c2); c2 := F (c2);

}
Assert(a2 = 2a1);
Assert(b2 = F (b1));
Assert(c2 = c1);

(a) For each assertion in the above program, write down the inductive loop invariant
required to validate the assertion.

(b) Which of these assertions can be validated by which of the following abstract do-
mains: Difference Constraints (discussed in class), Linear Equalities (Karr, 1976),
Linear Inequalities (Cousot, Halbwachs, POPL 1978), Uninterpreted Functions
(Gulwani, Necula, SAS 2004; discussed in class), Combination of any two of these
(Gulwani, Tiwari, PLDI 2006; discussed in class).

4

