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Proof of Root Theorem
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Here is the extract term for this proof in ML 
notation with proof terms (pf) included:
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The Root Program Extract



A Recursive Program for Integer Roots
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r(n):=  n= 0  0

 let r r (n-1) 

 (r 1) n  r 1

 r  

if then

          else in

          if then

                                 else fi

          fi

Here is a very clean functional program

This program is close to a declarative mathematical 
description of roots given by the following theorem.



A Program for Integer Roots With Assertions
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An Efficient Extract
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Efficient Root Program
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root(n) :   n=0    0
  r  = root (n/4) 

(2 r +1) n
2 r +1

 2 r

                  since if  n 0, n/4 n

if then
else  let in

if 
                  then 
                  else  fi
                  fi

This is an efficient recursive function, but why is it correct?



Correctness of the Recursive Program

P(0) & n: .(P(n/4) P(n))  n: .P(n)
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Use this “efficient induction principle”.

We can implement the principle by proving with 

ordinary induction that an efficient realizer  (built 

with the Y combinator) belongs to this type.



General Recursion in CTT

f(x) = F(f,x) is a recursive definition, also
f = λ(x.F(f,x))  is another expression of it, and the   
CTT definition is: 

fix(λ(f. λ(x. F(f,x))) 

which reduces in one step to:

λ(x.F(fix(λ(f. λ(x. F(f,x)))),x)) 

by substituting the fix term for f in λ(x.F(f,x)) .



Non-terminating Computations

CTT defines all general recursive functions, 
hence non-terminating ones such as this

fix(λ(x.x)) 

which in one reduction step reduces to itself!

This system of computation in the object 
language is a simple functional programming 
language.  



Subtyping and Polymorphism

There is a primitive subtyping relation in CTT.               

means that the elements of A are 
elements of B and a=b in A implies a=b in B. 
Here are some basic facts about subtyping:

A B

: | 0

( & )

( & )

( & )

x Z x Z

A A B B A B A B

A A B B A B A B

A A B B A B A B



Record Types and Inheritance

We can define algebraic structures as records. For example, 
a monoid on carrier S is a record type over S with two 
components,  an associative operator and an identity:

Monoid = { op: S x S -> S; id: S}. 

A group extends this record type on S by including an 
inverse operation.

Group = { op: S x S -> S; id: S; inv:S ->S}

A Group is a subtype of a Monoid as we show next.

Group Monoid



Groups and Monoids as Records

The basic idea is that the elements of a record 
type are functions from the field selectors 
names, e.g. {op,id,inv} to elements of types 
assigned to them by a mapping called a 
signature,  Sig:{op,id,inv} -> Type. Here are the 
mappings for a Group over the carrier S.

Sig(op)= SxS->S, Sig(id)=S, Sig(inv)=S->S

Monoid and Group are these dependent 
function spaces, Group a subtype of Monoid. 

, , ( ) : , ( ): op id inv Sig i i op id Sig ii



Inheritance among Algebraic 
Structures

Notice that the subtyping of algebraic 
structures depends on the function space 
subtyping, namely

is an instance of the general relation:

( & )A A B B A B A B

, , ( ) : , ( ): op id inv Sig i i op id Sig ii



Intersection and Top Types

We can build records using a binary 
intersection of types, 

These are the elements in both types A and B 
with x=y in the intersection iff x=y in A & x=y 
in B.

Top is the type of all closed terms with the 
trivial equality, x=y for all x, y in Top. Note for 
any type A, we have                 and                    . 

A B

A Top AA Top



Building Records by Intersection

Record types can be built by intersecting 
singleton records as follows. Let 

Id = {x,y,z,…} and Sig: Id -> Type where 

Sig(i)= Top as the default.  Then

{x:A ; y:B}  if x≠y

x:A П y:B = 

{x:AПB}     if x=y.

See Kopylov PhD thesis, 2003.



Axiomatizing Co-inductive Types

In 1988 before we added intersection types to 
CTT, we axiomatized co-inductive types and 
implemented them in Nuprl as primitive.

Now with intersection types and the Top type, we 
can define them.

See Bickford, Constable, Gauspari 2010.



Defining Co-recursive Types in CTT

Let F be a function from types to types such as 
F(T) = N x T or F(T) = St -> In -> St x T. Define 
objects of the co-recursive type corec(T. F(T))
as the intersection of the iterates of F applied 
to Top.

To build elements, we take the fixed point of a 
function f in the following type.

:N

( )n

n

F Top

:

( )
T Type

T F T



Elements of Co-inductive Types

For example to build elements of the co-
recursive type for the function F(T) given by

St -> In -> St x T

we use fix(λ(t.λ(s,i.<update(s,i),t>))). 

It is easy to show by induction that this 
belongs to the co-recursive type.  If the 
function F is continuous, the type is a fixed 
point of F,   F(corec(T.F(T)) Ξ corec(T.F(T)).



Outline

Challenges for Proofs-as-Processes

What is the right model of processes? Can  
they be modeled as terms?

How to specify distributed computing tasks?

What are the right proof rules?    

Can we synthesize real code?



The Story

We started by using IOA as our internal model of 
processes and a distributed database under our proof 
assistant.  In 2003 we modified IOA to Message 
Automata and built an event logic around this model. 
These MA used frame conditions to render 
composition as union.

Year by year as we tackled harder protocols, we have 
been forced to be more and more abstract in order to 
complete the proofs and extract protocols, and we are 
being forced to replicate the database.



The Story continued

Now we can create a variety of protocols from 
proofs, e.g. consensus (e.g. Paxos, 2/3), 
authentication,  group membership, etc.

We found advantages of starting very 
abstractly, e.g. we can generate many 
provably correct variants at the same time, 
providing attack-tolerance.



The Story continued

Our constructive proofs of consensus require 
proofs of non-blocking. I discovered that FLP 
can be proved constructively for effectively 
non-blocking protocols.

From Constructive FLP we can build an 
unbeatable adversary (attacker) against 
deterministic consensus.



27

Specification for Leader Election in a Ring

Given a Ring R of Processes with Unique Identifiers (uid’s)
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Specification, continued

Leader (R,es) ==  ldr: R. e@ldr. kind(e)=leader &

                                            i:R. e@i. kind(e)=leader i=ldr

Theorem         R:List(Loc). Ring(R)

                         D:Dsys(R). Feasible(D) &

                        es: ES. Consistent(D,es). Leader(R,es)
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Decomposing the Leader Election Task

Let LE(R,es) == i:R.

       1. e. kind(e)=rcv(out(i), <vote,uid(i)>)

       2. e'. kind(e)=rcv (in(i), <vote,u>)

                  u>uid(i) e .kind(e )=rcv out(i),<vote,u>

       3. e . kind(e )=rcv(

.

out(i), <vote,uid(i)>)

           e. kind(e)=rcv(in(i), <vote,u>)& e < e  & u> uid(i)

       4. e@i. kind(e)=rcv(in(i),uid(i))  e @i. kind(e )=leader

       5. e@i. kind(e)=leader. e@i. kind(e)=rcv in(i), <vote,uid(i)>
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Realizing Leader Election

Theorem        :  

                        :  

                        :  

R List(Loc).Ring(R)

D Dsys(R).Feasible(D).

esConsistent(D,es). LE(R,es) Leader(R,es)

1

1

Proof:        Let then .

                  We prove that  using three simple lemmas.

-

-

m max uid(i)| i R , ldr uid (m)

ldr uid (m)
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Intuitive argument that a leader is elected
1. Every i will get a vote from predecessor for the 

predecessor. 

2. When a process i gets a vote u from its predecessor with u

> uid(i) it sends it on.

3. Every rcv is either vote of predecessor rcvin(i) for itself or a 

vote larger than process id before.

4. If a process gets a vote for itself, it declares itself ldr.

5. If a processor declares ldr it got a vote for itself.

p(i)

i

in(i) = 

out(p(i))

out(i)

n(i)
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Lemmas

induction on distance of  

Lemma 1.         <  >

                         By .

Lemma 2.         < >

  

to 

                          

i l

i : R. e @ i.kind(e) rcv in(i), vote, ldr

i,j : R. e @ i.kind(e) rcv in(i), vote,j .

dr

        

                         By .

Le

induction on causal order of  even

mma 3.          

If , then by property 5, 

ts

j ldr d(ldr,j) d(ldr,i)

i : R. e @ i. kind(e) leader i ldr

kind(e) leader v @ i.r

rcv

cv in( < >

Hence, by Lemma 2  

but the right disjunct is impossible.

Finally, from property 4, it is enough to know

 <  >

which follows from 

i), vote,uid(i) .

i ldr d(ldr,i) d(ldr,i)

e.kind(e) rcv in(ldr), vote, uid(ldr)

Lemma 1.

QED
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Realizing the clauses of LE(R,es)

We need to show that each clause of LE(R,es) can be 

implemented by a piece of a distributed system, and then show 

the pieces are compatible and feasible.

We can accomplish this very logically using these Lemmas:

Constant Lemma

Send Once Lemma

Recognizer Lemma

Trigger Lemma
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Leader Election Message Automaton
state ; initially ( )

state ; initially 

state ; initially 

action ; precondition 

     effect = 

     sends [ ( ), , ]

action ( )( ) ;

     

in( i )

me : uid i

done : B false

x : B false

vote done

done : true

msg out i vote me

rcv vote v :

sends if  then  [ ( ), , ] else[]

     effect = if  then  else 

action ; precondition 

only ( ) affects 

only  affects 

only , ( ) send

in( i )

in( i )

v me msg out i vote v

x : me v true x

leader x true

rcv vote x

vote done

vote rcv vote s  ( ), out i vote



Refinements for Systems
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1 1 1

1 1 1

2 2 2

2 2
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1 1 1 1

2

2 2 2 2 2

1

2

System. es : ES D .

R es ext Comp ,

by Comp

.D : System G,Loc,Lnk

es : ES D R es ext

.D : System G,Loc,Lnk

es : ES D

pf pf D ,eD ,es

pf

R es

s

pf D ,esext

D ,es

∃D : ∀



Consensus is a Good Example

In modern distributed systems, e.g. the Google 
file system, clouds, etc., reliability against faults
(crashes, attacks) is achieved by replication.

Consensus is used to coordinate write actions to 
keep the replicas identical. It is a critical protocol 
in modern systems used by IBM, Google, 
Microsoft, Amazon, EMC, etc.



Requirements of Consensus Task

Use asynchronous message passing to decide 
on a value.



Logical Properties of Consensus

P1: If all inputs are unanimous with value v, then any   
decision must have value v.

All v:T. ( If All e:E(Input). Input(e) = v  then
All e:E(Decide). Decide(e) = v)

Input and Decide are event classes that effectively 
partition the events and assign values to them.  The 
events are points in abstract space/time at which 
“information flows.” More about this just below.



Logical Properties continued

P2: All decided values are input values.

All e:E(Decide). Exists e’:E(Input).

e’ < e & Decide(e) = Input(e’)

We can see that P2 will imply P1, so we take 
P2 as part of the requirements.



Event Classes

If X is an event class, then E(X) are the events 
in that class. Note E(X) effectively partitions all 
events E into E(X) and E-E(X), its complement.

Every event in E(X) has a value of some type T 
which is denoted X(e). In the case of E(Input) 
the value is the typed input, and for E(Decide) 
the value is the one decided.



Events

Formally the type E of events is defined 
relative to the computation model which 
includes a definition of processes. 

The events are the points of space/time at 
which information is exchanged. The 
information at an event e is info(e).



Further Requirements for Consensus

The key safety property of consensus is that 
all decisions agree.

P3: Any two decisions have the same value.

This is called agreement.

All e1,e2: E(Decide). Decide(e1) = Decide(e2).



Specific Approaches to Consensus

Many consensus protocols proceed in rounds, 
voting on values, trying to reach agreement. 
We have synthesized two families of 
consensus protocols, the 2/3 Protocol and the 
Paxos Protocol families.

We structure specifications around events 
during the voting process, defining E(Vote)
whose values are pairs <n,v>, a ballot number, 
n, and a value, v.



Properties of Voting

Suppose a group G of n processes, Pi, decide by 
voting.  If each Pi collects all n votes into a list L, 
and applies some deterministic function f(L), such 
as majority value or maximum value, etc., then 
consensus is trivial in one step, and the value is 
known at each process in the first round –
possibly at very different times.

The problem is much harder because of possible 
failures.



Fault Tolerance

Replication is used to ensure system availability in 
the presence of faults. Suppose that we assume 
that up to f processes in a group G of n might fail, 
then how do the processes reach consensus?

The TwoThirds method of consensus is to take n = 
3f +1 and collect only 2f+1 votes on each round, 
assuming that f processes might have failed.



Example for f = 1, n = 4

Here is a sample of voting in the case T = {0,1}.

0            0          1          1         inputs 

0 _11     _011    001_    00_1    collected votes   

1            1           0         0         next vote 

-----------------------------------------

00_1      001_     0_11  _011       

0            0           1          1                      

where f is majority voting, first vote is input          



Specifying the 2/3 Method

We can specify the fault tolerant 2/3 method 
by introducing further event classes.

E(Vote), E(Collect), E(Decide) 

E(Vote): the initial vote is the <0,input value>, 
subsequent votes are <n,f(L)>

E(Collect): collect 2f+1 values from G into list L

E(Decide): decide v if all collected values are v  



The Hard Bits

The small example shows what can go wrong 
with 2/3. It can waffle forever between 0 and 
1, thus never decide.

Clearly if there is are decide events, the values 
agree and that unique value is an input.

Can we say anything about eventually 
deciding, e.g. liveness?



Liveness

If f processes eventually fail, then our design 
will work because if f have all failed by round r, 
then at round r+1, all alive processes will see 
the same 2f+1 values in the list L, and thus 
they will all vote for v’ = f(L), so in round r+2 
the values will be unanimous which will 
trigger a decide event.



Example for f = 1, n = 4

Here is a sample of voting in the case T = {0,1}.

0            0             1          1         inputs 

0 01_     001_    001_    _011    collected votes   

0            0             0           1       next vote 

-----------------------------------------

000_      00_1      0_01     _001       

0            0             0           0                      

where f is majority voting, first vote is input, 
round numbers omitted.          



Safety Example

We can see in the f = 1 example that once a 
process Pi receives 2/3 unanimous values, say 
0, it is not possible for another process to over 
turn the majority decision. 

Indeed this is a general property of a 2/3 
majority, the remaining 1/3 cannot overturn it 
even if they band together on every vote.



Safety Continued

In the general case when voting is not by 
majority but using f(L) and the type of values 
is discrete, we know that if any process Pi sees 
unanimous value v in L, then any other 
process Pj seeing a unanimous value v’ will 
see the same value, i.e. v = v’ because the two 
lists, Li and Lj at round r must share a value, 
that is they intersect.  



Synthesizing the 2/3 Protocol from a 
Proof of Design

We can formally prove the safety and liveness 
conditions from the event logic specification 
given earlier. 

From this formal proof of design, pf, we can 
automatically extract a protocol, first as an 
abstract process, then by verified compilation, 
a program in Java or Erlang.



The Synthesized 2/3 Protocol

Begin r:Nat, decided_i, vote_i: Bool,
r = 0, decided_i = false, vi = input to Pi; vote_i = vi

Until decided_i do:
1. r := r+1
2. Broadcast vote <r,vote_i> to group G
3. Collect 2f+1 round r votes in list L
4. vote_i := majority(L)
5. If unanimous(L) then decided_i := true
End



General Process Model (GPM)

M(P)  == (Atom List) X (T + P)
E(P)  ==  (Loc X M(P)) List
F(P) = M(P)  (P X E(P))

It is easy to show that M and E are continuous type 
functions and that F is weakly continuous. Thus for

Process  ==  corec(P. F (P))

Msg == M(Process) and Ext == E(Process)
we conclude Process  is a subtype of F(Process),
Process       Msg Process X Ext



Executing Systems of Processes

The environment chooses which messages 
will be delivered. A run of a system is an 
unbounded sequence of pairs <sys,choice>.

From a run of a system, we can build event 
structures with locations and causal order.



Event Orderings over Runs

An event ordering of a run R is a collection of 
events E, a function loc giving the location of 
the event, a well founded causal order < on
events, and info, the information conveyed by 
an event:    <E, loc, <, info>

The events are pairs <x,n> at which location x 
receives a message at step n of the run.



Event Structures over Runs

Event structures include the operations

x when e    and  x after e

for state variable x  an events e, and the axiom 

not first(e) implies (x when e = x after pred(e))



Diversity

When we prove properties of a design, there are 
many options at several steps, and we are able to 
create multiple proofs at low additional cost. In 
the process we create new designs.

For example, for the 2/3 protocol, Mark Bickford 
found a variant that is faster by varying the 
design proof, as mentioned in our paper – he 
varies the collection method.



Diversity at the Level of Proof

Multiple formal proofs are “simultaneously” 
generated.  We illustrate this by viewing a 
proof as a tree generated top down.



Illustrating Multiple Proofs



Illustrating Multiple Proofs



Data Structure Diversity

Assuming there are four abstract protocols 
derived from the proof trees. For each of 
them it is possible to implement with different 
data structures, e.g. list, array, tree, set, etc.



Programming Language Diversity

We can translate abstract programs into 
common programming languages such as 
Java, Erlang, C++, OCaml, or F#. So far we use 
only Java and Erlang. 

Combining all levels of diversity we are able in 
principle to generate over 200 variants of a 
protocol in the best case.

See Constable, Bickford, van Renesse 2010



Language Diversity

Java    ML    Erlang   F#

4 protocols, 14 options in 4 languages,

offers over 200 variants



Role of the Environment

All distributed computing models must have a 
component that determines when messages between 
processes are delivered.  We call this the environment.  
It introduces uncertainty into the model and 
determines the schedule of events.



A Fundamental Theorem of about the 
Environment

The Fischer/Lynch/Paterson theorem (FLP85) 
about the computing environment says:

it is not possible to deterministically guarantee 
consensus among  two or more processes when 
one of them might fail. 

We have seen the possibility of this with the 2/3 
Protocol which could waffle between choosing 0 
or 1. The environment can act as an adversary to 
consensus by managing message delivery.



The Environment as Adversary

In the setting of synthesizing protocols, I have 
shown that the FLP result can be made 
constructive (CFLP). This means that there is 
an algorithm, env, which given a potential 
consensus protocol P and a proof pf that it is 
nonblocking can create message ordering and 
a computation based on it, env(P,pf), in which 
P runs forever, failing to achieve consensus.



Perfect Attacker

The algorithm env(P,pf) is the perfect “denial 
of service attacker” against any consensus 
protocol P that is sensible (won’t block).

Note, 2/3 will block if it waits for n replies or if 
it refuses to change votes as rounds progress.



Defending Against the Perfect Attack

One way to defend against evn(P,pf) is to 
switch to another protocol P’ if there appears 
to be an attack against P.



Definitions

P is called effectively nonblocking if from any 
reachable global state s of an execution of P and 
any subset Q of n − t non-failed processes, we can 
find an execution from s using Q and a process P 
in Q which decides a value v.

Constructively this means that we have a 
computable function, wt(s,Q) which produces an 
execution  and a state s in which a process, say P 
decides a value v.



Constructive FLP

Theorem (Constructive FLP): Given any 
deterministic effectively nonblocking 
consensus procedure P with two or more 
processes tolerating a single failure, we can 
effectively construct a non-terminating 
execution of it.



FLP as a Corollary

The proof is to use the Initialization Lemma to find a 
bivalent starting state b and then use the One Step 
Lemma to create an unbounded sequence of bivalent 
states.

Corollary (FLP): There is no single-failure responsive, 
deterministic consensus algorithm (terminating 
consensus procedure) on two or more processes.

Corollary (Strong FLP)*: Given any nonblocking 
deterministic consensus procedure on two or more 
processes, it has a non-terminating execution.



Conclusion

We initiate code generation at a very high 
level of abstraction by formally proving that 
designs are realizable. 

By starting at such a high level, we discovered 
more correct options than possible by less 
technically advanced methods. This discovery 
reveals new reasons for working formally at 
high levels of abstraction.



Development of Event Logic

Our Event Logic is an abstract account of 
distributed computing inspired by the work of 
Winskel and Plotkin in the 80’s on Petri Nets.  
It spans from the very abstract notion of Event 
Class down to formal models of protocols that 
can be compiled to Message Automata and 
from them into code in languages such as 
Java, ML, Erlang, F#, and so forth.



Safety

We almost have a proof that our design at the 
level of event classes meets the requirements.

We also need to know property P2, that two 
decided values agree even if no processes fail.

Suppose that at some Pi the 2f+1 values 
collected in L are the same and likewise at Pj 
for j not i.  Are the decided values equal?



Conclusions from Lectures

What I hope you have learned:

Propositions-as-types, Proofs-as-terms, 
Proofs-as-programs is a collection of ideas that 
relate logic, type theory, programming 
languages, and programming practice in a 
theoretically deep and practical way. 



Conclusions continued

The semantic approach to type theory is a flexible 
way to justify new types and principles of 
reasoning about them. 

Abstraction is the key to understanding 
complexity and rich type systems provide it.

There are many fundamental theoretical 
questions about type theory and its role in 
computer science and mathematics.



Conclusions

As Conor McBride says and illustrates, the 
Propositions-as-types ideas welcome you to 
freely mix proofs and types into programming
and to use whatever lens is appropriate to the 
task at hand.



Foundational Criteria

What is required for a type theory to be an 
adequate foundation for computer science?

1. Proofs-as-programs works and the theory is 
a  programming language and programming 
logic combined that can be well implemented.

2. Computational mathematics, e.g. numerical 
methods, computational geometry and 
algebra etc. is grounded in this theory.



Foundational Criteria continued

3. The theory can provide a semantics to any 
programming language.

4. All axioms and inference rules have a   
computational meaning, justified by the 
propositions-as-types principle and method.

5. The theory explains and justifies the 
principles of computing as they unfold.

6. Reasoning can well automated well.

7. The theory can be read classically as well.



Research Topics and Questions

Here are some interesting research questions and 
topics related to this lecture course.

1. Apply the per semantics to CIC, justify co-
induction and classical semantics.

2. Formalize and implement Stuart Allen’s 
approach to per semantics, possibly in CTT with 
a new axiom, say Consistent(CTT).

3. Rework the CTT framework , e.g. use big step 
semantics or start with a computation system 
based on heaps, integrate ideas from separation 
logic.



Research Topics and Questions 
continued

4. Explain the connection between logical 
relations and per semantics.

5. Give an internal definition of recursive types 
as Bickford and I did for co-recursive types, 
perhaps using constructive ordinals (the W 
type).

6. Put Coq type checking algorithm into CTT 
terms by adding optional annotations to the 
terms.



Research Topics and Questions 
continued

7. Look for new types that help organize and 
systematize the large Type Zoo of CTT.  The type 
of dependent intersection should be an 
inspiration to us all. Kopylov was motivated by 
trying to improve on Hickey’s very dependent 
function type. Try to raise the level of abstraction.

8. Read our article on the Semantics of Reflected 
Proof and use the ideas to prove key tactics 
correct and thus save “proof time”.



Research Topics and Questions 
continued

9. As you are learning from other lecturers in this 
summer school, these types theories can be 
made into real programming languages. Agda and 
Coq are examples. Use some of these ideas to 
make an implicitly typed extensional theory like 
CTT into a good programming language.

10. Specialize topic 9 to distributed computing 
based on our new process model and event logic.



THE END



Partial Functions

The concept of a partial function is an 
example of how challenging it is to include all 
computation in the object theory.  It is also 
key to including unsolvability results with a 
minimum effort; the halting problem and 
related concepts are fundamentally about 
whether computations converge, and in type 
theory this is the essence of partiality.  For 
example, we do not know that the 3x+1 
function belongs to the type N -> N.



Partial Functions

We do however know that the 3x+1 function, 
call it f in this slide, is a partial function from 
numbers to numbers, thus for any n, f(n) is a 
number if it converges (halts).

In CTT we say that a value a belongs to the bar 
type Ā provided that it belongs to A if it 
converges.  So f belongs to A → Ā for Ā = N.



Unsolvable Problems

It is remarkable that we can prove that there is no 
function in CTT that can solve the convergence 
problem for elements of basic bar types.  

We will show this for non empty type Ā with 
element ā that converges in A for basic types such 
as Z, N, list(A), etc.  We rely on the typing that if F 
maps Ā to Ā, then fix(F) is in Ā. 



Unsolvable Problems

Suppose there is a function h that decides 
halting.  Define the following element of Ā:

d = fix(λ(x. if h(x) then ↑ else ā fi))

where ↑ is a diverging element, say fix(λ(x.x)).

Now we ask for the value of h(d) and find a 
contradiction as follows: 



Generalized Halting Problem

Suppose that h(d) = t, then d converges, but 
according to its definition, the result is the 
diverging computation ↑ because by 
computing the fix term for one step, we 
reduce

d = fix(λ(x. if h(x) then ↑ else ā fi))

to d = if h(d) then ↑ else ā fi .

If hd(d) = f, then we see that d converges to ā.



Why is this result noteworthy?

First notice that the result applies to any 
purported halting function h.  In classical 
mathematics, there surely is a noncomputable 
function to decide halting. 

Moreover the standard way to present 
unsolvability constructively is to model Turing 
machines and prove that no Turing computable 
function can solve the halting problem.  But this 
result says that no function can solve it.



Definition

Attack-tolerant distributed systems change their 
protocols on-the-fly in response to apparent 
attacks from the environment; they substitute 
functionally equivalent components possibly 
more resistant to detected threats. 



Definition

A system is built from components which 
consist of processes (protocols, algorithms).

system

component

process



Definition

A system is correct-by-construction if we 
create a correctness proof for it while creating 
the code. This happens if we synthesize the 
program from a constructive proof that the 
specification is realizable.



Main Result

We have found ways to automatically produce 
many provably equivalent variants of 
components using formal synthesis. 

Variation arises from different choices made 
during  the proof and code synthesis process 
starting from formal specifications.



A Discovery

In the course of this work we also discovered 
that it is possible to create undefeatable 
attackers for deterministic fault-tolerant 
consensus protocols.

Code diversity can protect against these 
attackers as well.



Key Lemma

One Step Lemma: Given any bivalent global 
state b of an effectively nonblocking 
consensus procedure P,  and any process Pi, 
we can find a extension b’ of b which is 
bivalent via Qi.


