
A Logic of Events, Proofs-as-
Processes, and Conclusion

Robert Constable

Cornell University

Outline

Review Propositions-as-types, Proof terms, Proofs-as-Programs
Discuss new types and records

Challenges for proofs-as-processes
Logic of Events and specifications of tasks
Message automata and IO-automata

example protocol and proof of correctness
Event classes and synthesis of processes
Fault-tolerant and attack-tolerant systems

Conclusion for the course

Integer Square Root

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6

5

4

3

2

1

Proof of Root Theorem
22

22

22

2

2

2

22

1

1

0

1

0

1

1 1

1

1

allR

exis

n : . r : . r n r

n :

r : . r n r

.....

r : . r r

AtsR

Decide r

uto

.....

: , r : , r r

r : . r r

+

BY

BY

induction case.....

BY THEN

induction case.....

BY T

Nat n

N

d

HE

I

i

i

i

i

Auto

2 22

22

2 22

22

1 1 1

1

1

1

1 1 1

+

+

Case 1.....

BY THEN

Case 2.....

BY THEN

.....

: , r : , r r , r

r : . r r

Auto'

.....

: , r : , r r , r

r : . r r

existsR r

existsR Autor

i i i

i

i i i

i

Proof of Root Theorem (cont.)

Here is the extract term for this proof in ML
notation with proof terms (pf) included:

0

1

2

0 0

1

1 1

 let

 if then

 else let

 in if then

else

rec

,pf

r,pf -

r n

sqrt

s

r ,pf

r,pf'

qrti

i

i

i

i

i

The Root Program Extract

A Recursive Program for Integer Roots

0

2

0 0

0

r(n):= n= 0 0

 let r r (n-1)

 (r 1) n r 1

 r

if then

 else in

 if then

 else fi

 fi

Here is a very clean functional program

This program is close to a declarative mathematical
description of roots given by the following theorem.

A Program for Integer Roots With Assertions

2

2

2

2

2

2

 r n

(r 1) n

r : 0;
 (r 1) n

 r : r 1
 r n

r n
n (r 1)

While do

od

This program suggests the precise specification

2 2

2

Root (r, n) iff r n < (r+1)

r n i invs a a r tn ian

An Efficient Extract

2 2

0 0 0

Theorem : . : . (,)

Pf by

 Base 0 let 0

 Induction case assume : . (, / 4)

 Choose where / 4 (1)

efficient in

 note

ductio

 4

n

n r Root r n

n r

r Root r n

r r n r

2 2 2

0 0 0 0

0 0

2

0

2 2

0 0 0

 4 (1) 4 8 4

 thus 2 () 2 (1)

 if (2 1) then 2 1

 since (2) 4 8 4

 else 2 since

r n r r r

r root n r

r n r r

r r r

r r
2 2

0 0 (2) (2 1)r n r

Qed

10

Efficient Root Program

0
2

0

0

0

root(n) : n=0 0
 r = root (n/4)

(2 r +1) n
2 r +1

 2 r

 since if n 0, n/4 n

if then
else let in

if
 then
 else fi
 fi

This is an efficient recursive function, but why is it correct?

Correctness of the Recursive Program

P(0) & n: .(P(n/4) P(n)) n: .P(n)

11

Use this “efficient induction principle”.

We can implement the principle by proving with

ordinary induction that an efficient realizer (built

with the Y combinator) belongs to this type.

General Recursion in CTT

f(x) = F(f,x) is a recursive definition, also
f = λ(x.F(f,x)) is another expression of it, and the
CTT definition is:

fix(λ(f. λ(x. F(f,x)))

which reduces in one step to:

λ(x.F(fix(λ(f. λ(x. F(f,x)))),x))

by substituting the fix term for f in λ(x.F(f,x)) .

Non-terminating Computations

CTT defines all general recursive functions,
hence non-terminating ones such as this

fix(λ(x.x))

which in one reduction step reduces to itself!

This system of computation in the object
language is a simple functional programming
language.

Subtyping and Polymorphism

There is a primitive subtyping relation in CTT.

means that the elements of A are
elements of B and a=b in A implies a=b in B.
Here are some basic facts about subtyping:

A B

: | 0

(&)

(&)

(&)

x Z x Z

A A B B A B A B

A A B B A B A B

A A B B A B A B

Record Types and Inheritance

We can define algebraic structures as records. For example,
a monoid on carrier S is a record type over S with two
components, an associative operator and an identity:

Monoid = { op: S x S -> S; id: S}.

A group extends this record type on S by including an
inverse operation.

Group = { op: S x S -> S; id: S; inv:S ->S}

A Group is a subtype of a Monoid as we show next.

Group Monoid

Groups and Monoids as Records

The basic idea is that the elements of a record
type are functions from the field selectors
names, e.g. {op,id,inv} to elements of types
assigned to them by a mapping called a
signature, Sig:{op,id,inv} -> Type. Here are the
mappings for a Group over the carrier S.

Sig(op)= SxS->S, Sig(id)=S, Sig(inv)=S->S

Monoid and Group are these dependent
function spaces, Group a subtype of Monoid.

, , () : , (): op id inv Sig i i op id Sig ii

Inheritance among Algebraic
Structures

Notice that the subtyping of algebraic
structures depends on the function space
subtyping, namely

is an instance of the general relation:

(&)A A B B A B A B

, , () : , (): op id inv Sig i i op id Sig ii

Intersection and Top Types

We can build records using a binary
intersection of types,

These are the elements in both types A and B
with x=y in the intersection iff x=y in A & x=y
in B.

Top is the type of all closed terms with the
trivial equality, x=y for all x, y in Top. Note for
any type A, we have and .

A B

A Top AA Top

Building Records by Intersection

Record types can be built by intersecting
singleton records as follows. Let

Id = {x,y,z,…} and Sig: Id -> Type where

Sig(i)= Top as the default. Then

{x:A ; y:B} if x≠y

x:A П y:B =

{x:AПB} if x=y.

See Kopylov PhD thesis, 2003.

Axiomatizing Co-inductive Types

In 1988 before we added intersection types to
CTT, we axiomatized co-inductive types and
implemented them in Nuprl as primitive.

Now with intersection types and the Top type, we
can define them.

See Bickford, Constable, Gauspari 2010.

Defining Co-recursive Types in CTT

Let F be a function from types to types such as
F(T) = N x T or F(T) = St -> In -> St x T. Define
objects of the co-recursive type corec(T. F(T))
as the intersection of the iterates of F applied
to Top.

To build elements, we take the fixed point of a
function f in the following type.

:N

()n

n

F Top

:

()
T Type

T F T

Elements of Co-inductive Types

For example to build elements of the co-
recursive type for the function F(T) given by

St -> In -> St x T

we use fix(λ(t.λ(s,i.<update(s,i),t>))).

It is easy to show by induction that this
belongs to the co-recursive type. If the
function F is continuous, the type is a fixed
point of F, F(corec(T.F(T)) Ξ corec(T.F(T)).

Outline

Challenges for Proofs-as-Processes

What is the right model of processes? Can
they be modeled as terms?

How to specify distributed computing tasks?

What are the right proof rules?

Can we synthesize real code?

The Story

We started by using IOA as our internal model of
processes and a distributed database under our proof
assistant. In 2003 we modified IOA to Message
Automata and built an event logic around this model.
These MA used frame conditions to render
composition as union.

Year by year as we tackled harder protocols, we have
been forced to be more and more abstract in order to
complete the proofs and extract protocols, and we are
being forced to replicate the database.

The Story continued

Now we can create a variety of protocols from
proofs, e.g. consensus (e.g. Paxos, 2/3),
authentication, group membership, etc.

We found advantages of starting very
abstractly, e.g. we can generate many
provably correct variants at the same time,
providing attack-tolerance.

The Story continued

Our constructive proofs of consensus require
proofs of non-blocking. I discovered that FLP
can be proved constructively for effectively
non-blocking protocols.

From Constructive FLP we can build an
unbeatable adversary (attacker) against
deterministic consensus.

27

Specification for Leader Election in a Ring

Given a Ring R of Processes with Unique Identifiers (uid’s)

2

6

1

3

45

i i ,

i i,

i i

i i i

i

-1

k

 Let n() = dst(out()) the

 Let p() = n () the

 Let d(,j) = k 1. n () = j, the

next location

predecessor location

distance from to

 Note p(j) d(,p(j)) = d(,

.

j

j)-l

28

Specification, continued

Leader (R,es) == ldr: R. e@ldr. kind(e)=leader &

 i:R. e@i. kind(e)=leader i=ldr

Theorem R:List(Loc). Ring(R)

 D:Dsys(R). Feasible(D) &

 es: ES. Consistent(D,es). Leader(R,es)

29

Decomposing the Leader Election Task

Let LE(R,es) == i:R.

 1. e. kind(e)=rcv(out(i), <vote,uid(i)>)

 2. e'. kind(e)=rcv (in(i), <vote,u>)

 u>uid(i) e .kind(e)=rcv out(i),<vote,u>

 3. e . kind(e)=rcv(

.

out(i), <vote,uid(i)>)

 e. kind(e)=rcv(in(i), <vote,u>)& e < e & u> uid(i)

 4. e@i. kind(e)=rcv(in(i),uid(i)) e @i. kind(e)=leader

 5. e@i. kind(e)=leader. e@i. kind(e)=rcv in(i), <vote,uid(i)>

30

Realizing Leader Election

Theorem :

 :

 :

R List(Loc).Ring(R)

D Dsys(R).Feasible(D).

esConsistent(D,es). LE(R,es) Leader(R,es)

1

1

Proof: Let then .

 We prove that using three simple lemmas.

-

-

m max uid(i)| i R , ldr uid (m)

ldr uid (m)

31

Intuitive argument that a leader is elected
1. Every i will get a vote from predecessor for the

predecessor.

2. When a process i gets a vote u from its predecessor with u

> uid(i) it sends it on.

3. Every rcv is either vote of predecessor rcvin(i) for itself or a

vote larger than process id before.

4. If a process gets a vote for itself, it declares itself ldr.

5. If a processor declares ldr it got a vote for itself.

p(i)

i

in(i) =

out(p(i))

out(i)

n(i)

32

Lemmas

induction on distance of

Lemma 1. < >

 By .

Lemma 2. < >

to

i l

i : R. e @ i.kind(e) rcv in(i), vote, ldr

i,j : R. e @ i.kind(e) rcv in(i), vote,j .

dr

 By .

Le

induction on causal order of even

mma 3.

If , then by property 5,

ts

j ldr d(ldr,j) d(ldr,i)

i : R. e @ i. kind(e) leader i ldr

kind(e) leader v @ i.r

rcv

cv in(< >

Hence, by Lemma 2

but the right disjunct is impossible.

Finally, from property 4, it is enough to know

 < >

which follows from

i), vote,uid(i) .

i ldr d(ldr,i) d(ldr,i)

e.kind(e) rcv in(ldr), vote, uid(ldr)

Lemma 1.

QED

33

Realizing the clauses of LE(R,es)

We need to show that each clause of LE(R,es) can be

implemented by a piece of a distributed system, and then show

the pieces are compatible and feasible.

We can accomplish this very logically using these Lemmas:

Constant Lemma

Send Once Lemma

Recognizer Lemma

Trigger Lemma

34

Leader Election Message Automaton
state ; initially ()

state ; initially

state ; initially

action ; precondition

 effect =

 sends [(), ,]

action ()() ;

in(i)

me : uid i

done : B false

x : B false

vote done

done : true

msg out i vote me

rcv vote v :

sends if then [(), ,] else[]

 effect = if then else

action ; precondition

only () affects

only affects

only , () send

in(i)

in(i)

v me msg out i vote v

x : me v true x

leader x true

rcv vote x

vote done

vote rcv vote s (), out i vote

Refinements for Systems

35

1 1 1

1 1 1

2 2 2

2 2

1

1 1 1 1

2

2 2 2 2 2

1

2

System. es : ES D .

R es ext Comp ,

by Comp

.D : System G,Loc,Lnk

es : ES D R es ext

.D : System G,Loc,Lnk

es : ES D

pf pf D ,eD ,es

pf

R es

s

pf D ,esext

D ,es

∃D : ∀

Consensus is a Good Example

In modern distributed systems, e.g. the Google
file system, clouds, etc., reliability against faults
(crashes, attacks) is achieved by replication.

Consensus is used to coordinate write actions to
keep the replicas identical. It is a critical protocol
in modern systems used by IBM, Google,
Microsoft, Amazon, EMC, etc.

Requirements of Consensus Task

Use asynchronous message passing to decide
on a value.

Logical Properties of Consensus

P1: If all inputs are unanimous with value v, then any
decision must have value v.

All v:T. (If All e:E(Input). Input(e) = v then
All e:E(Decide). Decide(e) = v)

Input and Decide are event classes that effectively
partition the events and assign values to them. The
events are points in abstract space/time at which
“information flows.” More about this just below.

Logical Properties continued

P2: All decided values are input values.

All e:E(Decide). Exists e’:E(Input).

e’ < e & Decide(e) = Input(e’)

We can see that P2 will imply P1, so we take
P2 as part of the requirements.

Event Classes

If X is an event class, then E(X) are the events
in that class. Note E(X) effectively partitions all
events E into E(X) and E-E(X), its complement.

Every event in E(X) has a value of some type T
which is denoted X(e). In the case of E(Input)
the value is the typed input, and for E(Decide)
the value is the one decided.

Events

Formally the type E of events is defined
relative to the computation model which
includes a definition of processes.

The events are the points of space/time at
which information is exchanged. The
information at an event e is info(e).

Further Requirements for Consensus

The key safety property of consensus is that
all decisions agree.

P3: Any two decisions have the same value.

This is called agreement.

All e1,e2: E(Decide). Decide(e1) = Decide(e2).

Specific Approaches to Consensus

Many consensus protocols proceed in rounds,
voting on values, trying to reach agreement.
We have synthesized two families of
consensus protocols, the 2/3 Protocol and the
Paxos Protocol families.

We structure specifications around events
during the voting process, defining E(Vote)
whose values are pairs <n,v>, a ballot number,
n, and a value, v.

Properties of Voting

Suppose a group G of n processes, Pi, decide by
voting. If each Pi collects all n votes into a list L,
and applies some deterministic function f(L), such
as majority value or maximum value, etc., then
consensus is trivial in one step, and the value is
known at each process in the first round –
possibly at very different times.

The problem is much harder because of possible
failures.

Fault Tolerance

Replication is used to ensure system availability in
the presence of faults. Suppose that we assume
that up to f processes in a group G of n might fail,
then how do the processes reach consensus?

The TwoThirds method of consensus is to take n =
3f +1 and collect only 2f+1 votes on each round,
assuming that f processes might have failed.

Example for f = 1, n = 4

Here is a sample of voting in the case T = {0,1}.

0 0 1 1 inputs

0 _11 _011 001_ 00_1 collected votes

1 1 0 0 next vote

00_1 001_ 0_11 _011

0 0 1 1

where f is majority voting, first vote is input

Specifying the 2/3 Method

We can specify the fault tolerant 2/3 method
by introducing further event classes.

E(Vote), E(Collect), E(Decide)

E(Vote): the initial vote is the <0,input value>,
subsequent votes are <n,f(L)>

E(Collect): collect 2f+1 values from G into list L

E(Decide): decide v if all collected values are v

The Hard Bits

The small example shows what can go wrong
with 2/3. It can waffle forever between 0 and
1, thus never decide.

Clearly if there is are decide events, the values
agree and that unique value is an input.

Can we say anything about eventually
deciding, e.g. liveness?

Liveness

If f processes eventually fail, then our design
will work because if f have all failed by round r,
then at round r+1, all alive processes will see
the same 2f+1 values in the list L, and thus
they will all vote for v’ = f(L), so in round r+2
the values will be unanimous which will
trigger a decide event.

Example for f = 1, n = 4

Here is a sample of voting in the case T = {0,1}.

0 0 1 1 inputs

0 01_ 001_ 001_ _011 collected votes

0 0 0 1 next vote

000_ 00_1 0_01 _001

0 0 0 0

where f is majority voting, first vote is input,
round numbers omitted.

Safety Example

We can see in the f = 1 example that once a
process Pi receives 2/3 unanimous values, say
0, it is not possible for another process to over
turn the majority decision.

Indeed this is a general property of a 2/3
majority, the remaining 1/3 cannot overturn it
even if they band together on every vote.

Safety Continued

In the general case when voting is not by
majority but using f(L) and the type of values
is discrete, we know that if any process Pi sees
unanimous value v in L, then any other
process Pj seeing a unanimous value v’ will
see the same value, i.e. v = v’ because the two
lists, Li and Lj at round r must share a value,
that is they intersect.

Synthesizing the 2/3 Protocol from a
Proof of Design

We can formally prove the safety and liveness
conditions from the event logic specification
given earlier.

From this formal proof of design, pf, we can
automatically extract a protocol, first as an
abstract process, then by verified compilation,
a program in Java or Erlang.

The Synthesized 2/3 Protocol

Begin r:Nat, decided_i, vote_i: Bool,
r = 0, decided_i = false, vi = input to Pi; vote_i = vi

Until decided_i do:
1. r := r+1
2. Broadcast vote <r,vote_i> to group G
3. Collect 2f+1 round r votes in list L
4. vote_i := majority(L)
5. If unanimous(L) then decided_i := true
End

General Process Model (GPM)

M(P) == (Atom List) X (T + P)
E(P) == (Loc X M(P)) List
F(P) = M(P) (P X E(P))

It is easy to show that M and E are continuous type
functions and that F is weakly continuous. Thus for

Process == corec(P. F (P))

Msg == M(Process) and Ext == E(Process)
we conclude Process is a subtype of F(Process),
Process Msg Process X Ext

Executing Systems of Processes

The environment chooses which messages
will be delivered. A run of a system is an
unbounded sequence of pairs <sys,choice>.

From a run of a system, we can build event
structures with locations and causal order.

Event Orderings over Runs

An event ordering of a run R is a collection of
events E, a function loc giving the location of
the event, a well founded causal order < on
events, and info, the information conveyed by
an event: <E, loc, <, info>

The events are pairs <x,n> at which location x
receives a message at step n of the run.

Event Structures over Runs

Event structures include the operations

x when e and x after e

for state variable x an events e, and the axiom

not first(e) implies (x when e = x after pred(e))

Diversity

When we prove properties of a design, there are
many options at several steps, and we are able to
create multiple proofs at low additional cost. In
the process we create new designs.

For example, for the 2/3 protocol, Mark Bickford
found a variant that is faster by varying the
design proof, as mentioned in our paper – he
varies the collection method.

Diversity at the Level of Proof

Multiple formal proofs are “simultaneously”
generated. We illustrate this by viewing a
proof as a tree generated top down.

Illustrating Multiple Proofs

Illustrating Multiple Proofs

Data Structure Diversity

Assuming there are four abstract protocols
derived from the proof trees. For each of
them it is possible to implement with different
data structures, e.g. list, array, tree, set, etc.

Programming Language Diversity

We can translate abstract programs into
common programming languages such as
Java, Erlang, C++, OCaml, or F#. So far we use
only Java and Erlang.

Combining all levels of diversity we are able in
principle to generate over 200 variants of a
protocol in the best case.

See Constable, Bickford, van Renesse 2010

Language Diversity

Java ML Erlang F#

4 protocols, 14 options in 4 languages,

offers over 200 variants

Role of the Environment

All distributed computing models must have a
component that determines when messages between
processes are delivered. We call this the environment.
It introduces uncertainty into the model and
determines the schedule of events.

A Fundamental Theorem of about the
Environment

The Fischer/Lynch/Paterson theorem (FLP85)
about the computing environment says:

it is not possible to deterministically guarantee
consensus among two or more processes when
one of them might fail.

We have seen the possibility of this with the 2/3
Protocol which could waffle between choosing 0
or 1. The environment can act as an adversary to
consensus by managing message delivery.

The Environment as Adversary

In the setting of synthesizing protocols, I have
shown that the FLP result can be made
constructive (CFLP). This means that there is
an algorithm, env, which given a potential
consensus protocol P and a proof pf that it is
nonblocking can create message ordering and
a computation based on it, env(P,pf), in which
P runs forever, failing to achieve consensus.

Perfect Attacker

The algorithm env(P,pf) is the perfect “denial
of service attacker” against any consensus
protocol P that is sensible (won’t block).

Note, 2/3 will block if it waits for n replies or if
it refuses to change votes as rounds progress.

Defending Against the Perfect Attack

One way to defend against evn(P,pf) is to
switch to another protocol P’ if there appears
to be an attack against P.

Definitions

P is called effectively nonblocking if from any
reachable global state s of an execution of P and
any subset Q of n − t non-failed processes, we can
find an execution from s using Q and a process P
in Q which decides a value v.

Constructively this means that we have a
computable function, wt(s,Q) which produces an
execution and a state s in which a process, say P
decides a value v.

Constructive FLP

Theorem (Constructive FLP): Given any
deterministic effectively nonblocking
consensus procedure P with two or more
processes tolerating a single failure, we can
effectively construct a non-terminating
execution of it.

FLP as a Corollary

The proof is to use the Initialization Lemma to find a
bivalent starting state b and then use the One Step
Lemma to create an unbounded sequence of bivalent
states.

Corollary (FLP): There is no single-failure responsive,
deterministic consensus algorithm (terminating
consensus procedure) on two or more processes.

Corollary (Strong FLP)*: Given any nonblocking
deterministic consensus procedure on two or more
processes, it has a non-terminating execution.

Conclusion

We initiate code generation at a very high
level of abstraction by formally proving that
designs are realizable.

By starting at such a high level, we discovered
more correct options than possible by less
technically advanced methods. This discovery
reveals new reasons for working formally at
high levels of abstraction.

Development of Event Logic

Our Event Logic is an abstract account of
distributed computing inspired by the work of
Winskel and Plotkin in the 80’s on Petri Nets.
It spans from the very abstract notion of Event
Class down to formal models of protocols that
can be compiled to Message Automata and
from them into code in languages such as
Java, ML, Erlang, F#, and so forth.

Safety

We almost have a proof that our design at the
level of event classes meets the requirements.

We also need to know property P2, that two
decided values agree even if no processes fail.

Suppose that at some Pi the 2f+1 values
collected in L are the same and likewise at Pj
for j not i. Are the decided values equal?

Conclusions from Lectures

What I hope you have learned:

Propositions-as-types, Proofs-as-terms,
Proofs-as-programs is a collection of ideas that
relate logic, type theory, programming
languages, and programming practice in a
theoretically deep and practical way.

Conclusions continued

The semantic approach to type theory is a flexible
way to justify new types and principles of
reasoning about them.

Abstraction is the key to understanding
complexity and rich type systems provide it.

There are many fundamental theoretical
questions about type theory and its role in
computer science and mathematics.

Conclusions

As Conor McBride says and illustrates, the
Propositions-as-types ideas welcome you to
freely mix proofs and types into programming
and to use whatever lens is appropriate to the
task at hand.

Foundational Criteria

What is required for a type theory to be an
adequate foundation for computer science?

1. Proofs-as-programs works and the theory is
a programming language and programming
logic combined that can be well implemented.

2. Computational mathematics, e.g. numerical
methods, computational geometry and
algebra etc. is grounded in this theory.

Foundational Criteria continued

3. The theory can provide a semantics to any
programming language.

4. All axioms and inference rules have a
computational meaning, justified by the
propositions-as-types principle and method.

5. The theory explains and justifies the
principles of computing as they unfold.

6. Reasoning can well automated well.

7. The theory can be read classically as well.

Research Topics and Questions

Here are some interesting research questions and
topics related to this lecture course.

1. Apply the per semantics to CIC, justify co-
induction and classical semantics.

2. Formalize and implement Stuart Allen’s
approach to per semantics, possibly in CTT with
a new axiom, say Consistent(CTT).

3. Rework the CTT framework , e.g. use big step
semantics or start with a computation system
based on heaps, integrate ideas from separation
logic.

Research Topics and Questions
continued

4. Explain the connection between logical
relations and per semantics.

5. Give an internal definition of recursive types
as Bickford and I did for co-recursive types,
perhaps using constructive ordinals (the W
type).

6. Put Coq type checking algorithm into CTT
terms by adding optional annotations to the
terms.

Research Topics and Questions
continued

7. Look for new types that help organize and
systematize the large Type Zoo of CTT. The type
of dependent intersection should be an
inspiration to us all. Kopylov was motivated by
trying to improve on Hickey’s very dependent
function type. Try to raise the level of abstraction.

8. Read our article on the Semantics of Reflected
Proof and use the ideas to prove key tactics
correct and thus save “proof time”.

Research Topics and Questions
continued

9. As you are learning from other lecturers in this
summer school, these types theories can be
made into real programming languages. Agda and
Coq are examples. Use some of these ideas to
make an implicitly typed extensional theory like
CTT into a good programming language.

10. Specialize topic 9 to distributed computing
based on our new process model and event logic.

THE END

Partial Functions

The concept of a partial function is an
example of how challenging it is to include all
computation in the object theory. It is also
key to including unsolvability results with a
minimum effort; the halting problem and
related concepts are fundamentally about
whether computations converge, and in type
theory this is the essence of partiality. For
example, we do not know that the 3x+1
function belongs to the type N -> N.

Partial Functions

We do however know that the 3x+1 function,
call it f in this slide, is a partial function from
numbers to numbers, thus for any n, f(n) is a
number if it converges (halts).

In CTT we say that a value a belongs to the bar
type Ā provided that it belongs to A if it
converges. So f belongs to A → Ā for Ā = N.

Unsolvable Problems

It is remarkable that we can prove that there is no
function in CTT that can solve the convergence
problem for elements of basic bar types.

We will show this for non empty type Ā with
element ā that converges in A for basic types such
as Z, N, list(A), etc. We rely on the typing that if F
maps Ā to Ā, then fix(F) is in Ā.

Unsolvable Problems

Suppose there is a function h that decides
halting. Define the following element of Ā:

d = fix(λ(x. if h(x) then ↑ else ā fi))

where ↑ is a diverging element, say fix(λ(x.x)).

Now we ask for the value of h(d) and find a
contradiction as follows:

Generalized Halting Problem

Suppose that h(d) = t, then d converges, but
according to its definition, the result is the
diverging computation ↑ because by
computing the fix term for one step, we
reduce

d = fix(λ(x. if h(x) then ↑ else ā fi))

to d = if h(d) then ↑ else ā fi .

If hd(d) = f, then we see that d converges to ā.

Why is this result noteworthy?

First notice that the result applies to any
purported halting function h. In classical
mathematics, there surely is a noncomputable
function to decide halting.

Moreover the standard way to present
unsolvability constructively is to model Turing
machines and prove that no Turing computable
function can solve the halting problem. But this
result says that no function can solve it.

Definition

Attack-tolerant distributed systems change their
protocols on-the-fly in response to apparent
attacks from the environment; they substitute
functionally equivalent components possibly
more resistant to detected threats.

Definition

A system is built from components which
consist of processes (protocols, algorithms).

system

component

process

Definition

A system is correct-by-construction if we
create a correctness proof for it while creating
the code. This happens if we synthesize the
program from a constructive proof that the
specification is realizable.

Main Result

We have found ways to automatically produce
many provably equivalent variants of
components using formal synthesis.

Variation arises from different choices made
during the proof and code synthesis process
starting from formal specifications.

A Discovery

In the course of this work we also discovered
that it is possible to create undefeatable
attackers for deterministic fault-tolerant
consensus protocols.

Code diversity can protect against these
attackers as well.

Key Lemma

One Step Lemma: Given any bivalent global
state b of an effectively nonblocking
consensus procedure P, and any process Pi,
we can find a extension b’ of b which is
bivalent via Qi.

