Intro to Hoare Type Theory

Greg Morrisett
A pattern: Monads

As in Haskell, distinguish purity with types:

- **e : int**
 - e is equivalent to an integer *value*

- **e : ST int**
 - e is a *computation* which when run in a world w either diverges, or yields an int and some new world w'.
 - Because computations are delayed, they are pure.
 - So we can safely manipulate them within types and proofs.

- **e : ST False**
 - possible, but means e must diverge when run!
Hoare Type Theory:

By *refining* ST with predicates, we can capture the effects of an imperative computation within its type.

\[
e : ST\{P\}x: \text{int}\{Q\}
\]

When run in a world satisfying \(P\), \(e\) either

– diverges, or else

– terminates with an integer \(x\) and world satisfying \(Q\).

i.e., Hoare-logic meets Type Theory
Hoare Type Theory:

\[e : \text{ST}\{P\}x: \text{int}\{Q\} \]

Why refine the type? Why not just unroll the definition as we did in type the type-inference example?

One reason is that we want to be able extract code that actually uses a mutable store.

- if we expose the definition of ST, then you could write an ST command which, say, copies the whole heap and returns it as a value!
Defining ST in Coq?

Can try to define:

```coq
Record res(i:heap)(A:Type)(Q:post A) :=
  mkRes { res_h : heap ;
  res_v : A ;
  res_p : Q i res_v res_h }.

ST P A Q := forall (i:heap), P h -> res i A Q.
```

but then you sacrifice:

- recursive (diverging) computations
- non-deterministic computations
- code that stores computations in the heap

So we add ST and its constructors as axioms.
What about Consistency

But can we use ST to prove False?

- No equations on computations!
 - (except for monad laws)
 - no way to \textit{run} them, even in the logic.

- Trivial model: \textit{ST} = \textit{unit}.
 - silly, but ensures we haven’t broken Coq.

- Intermediate model:
 - \textit{ST} = predicate transformers
 - not big enough -- can’t store \textit{ST}’s in heap!

- Denotational (category-theoretic) model:
 - Lars Birkedal & Rasmus Peterson
 - (subset of Coq corresponding to HTT)
Operational Soundness

• For HTT subset [ESOP’07]:
 – give a fairly standard, small-step operational semantics
 – assume “heap-consistency” of logic
 • we get this with the trivial model
 – proved preservation & progress

• Not an everyday type-soundness proof.
 – not in the context of Coq
 – took advantage of hereditary substitutions
A Very Simple Example:

Definition postinc x :=
 xv <- !x ;
 x ::= (xv + 1) ;;
ret xv.
Expanding the Definition

Definition postinc x :=
 xv <- !x ;
 x ::= (xv + 1) ;;
 ret xv.

Expands into:
 Definition postinc x :=
 bind (read x) (λ xv =>
 bind (write x (xv + 1)) (λ _ =>
 ret xv)).

Primitive commands are sequenced with bind & ret.
Roadmap

\[ST(P:\text{pre})(A:\text{Type})(Q:\text{post} \ A):\text{Type} \]

- Heaps, pre- & post-conditions
- Basic monadic & state constructs
- Example: hashtable
- Modularity & separation
Modeling Heaps in Coq

\[\text{ST}(P: \text{pre})(A: \text{Type})(Q: \text{post } A): \text{Type}. \]

(* pre-conditions classify heaps, where a heap maps pointers to values. *)

Inductive dynamic : Type :=
 | Dyn : forall T, T -> dynamic.

heap := ptr -> option dynamic
pre := heap -> Prop

(* post-conditions relate a return value, the input heap and the output heap.*)

Some Primitives & Types:

(* ret just returns the value x, with no effect*)

\[
\text{ret}(x:A) : \\
\text{ST True (y:A) (} y=x \land \text{final=initial).}
\]

(* allocate and initialize a fresh location *)

\[
\text{new}(v:A) : \\
\text{ST True (y:ptr) (}) unallocated \text{ initial } y \land \\
\text{final = update initial } y \text{ v).}
\]

Note: I’m cheating and using “initial” and “final” where I should be using lambda-bound variables, as well as some math notation.
More Primitives

(* read location x, getting out an A value *)
read(x:ptr) :
 ST (∃v:A,ptsto x v initial)
 (y:A)
 (final = initial ∧ ptsto x y initial)

(* write v into location x *)
write(x:ptr)(v:A) :
 ST (∃B:Type,v:B,ptsto x v initial)
 (_:unit)
 (final = update x v initial)

ptsto x y h := h x = Some y
update x y h z := if ptr_eq_dec x z then y else h x
Bind

(* sequentially compose computations *)

bind(C₁: ST P₁ A₁ Q₁)

 (C₂: ∀x:A₁, ST (P₂ x) A₂ (Q₂ x)),

 ST (P₁ initial ∧
 (∀z h, Q₁ z initial h -> P₂ z h))

 (y:A₂)

 (∃z h, Q₁ z initial h ∧
 Q₂ z y h final)

In words:

 – The weakest pre-condition needed to run (C₁; C₂).
 – The strongest post-condition when (C₁; C₂) terminates.
Type Inference in Ynot.

The types of our combinators *compute* a principal type.

- For loop-free code, we infer a most general specification.
- So for most code, you don’t have to give specifications.
- And you can be ensured that we aren’t going to prohibit some specification.

The bad news:

- Loops require specifications.
 - But being able to factor out iterators using lambda makes this not as bad as it first sounds.
- Inferred types are ridiculous.
Recall our Example:

Definition postinc x :=
 bind (read x) (λ xv =>
 bind (write x (xv + 1)) (λ _ =>
 ret xv)).

Check postinc.
postinc(x:loc) :

\[\text{ST} \]
\[(\lambda \ i \Rightarrow (\text{ref nat } x \ i) \ /\\]
\[(\forall \ z \ m, \ m = i \ /\\]
\[(\forall \ v, \ \text{ptsto } x \ v \ i \Rightarrow \text{Val } z = \text{Val } v) \Rightarrow \]
\[(\exists A : \text{Type}, \ \text{ref } A \ x \ m) \ /\\]
\[(\forall (u : \text{unit}) \ m0, \ \text{Val } u = \text{Val } tt \ /\\]
\[\quad m0 = \text{update_loc } m \ x \ (z + 1) \Rightarrow \text{True}) \]

\[\text{nat} \]
\[(\lambda (y : \text{ans nat}) (i \ m : \text{heap}) \Rightarrow \]
\[(\text{ref nat } x \ i) \ /\\]
\[(\exists z : \text{nat}, \ \exists h : \text{heap}, \ (h = i \ /\\]
\[\quad (\forall v : \text{nat}, \ \text{ptsto } x \ v \ i \Rightarrow \text{Val } z = \text{Val } v)) \ /\\]
\[\quad (\exists A : \text{Type}, \ \text{ref } A \ x \ h) \ /\\]
\[\quad (\exists u : \text{unit}, \]
\[\quad \exists h0 : \text{heap}, \]
\[\quad (\text{Val } u = \text{Val } tt \ /\\]
\[\quad h0 = \text{update_loc } h \ x \ (z + 1)) \ /\\]
\[\quad m = h0 \ /\\]
\[\quad y = \text{Val } x0) \). \]
Semantic Type Casting

Fortunately, we can explicitly coerce when we want a different type -- it just demands a proof.

(* strengthen pre- and weaken post-condition *)

cast:
\[
\forall (C : ST \ P_1 A Q_1), \\
(\forall i, P_2 i \rightarrow P_1 i \land \\
\forall x f, Q_1 x i f \rightarrow Q_2 x i f) \rightarrow \\
ST P_2 A Q_2.
\]
With an Explicit Cast

Definition postinc x :
 ST (\exists n:A, ptsto x n initial)
 (y:nat)
 (\forall n, ptsto x n initial ->
 y = n ∧
 final = update x (n+1) initial).

refine (cast (xv <- !x ;
 x ::= (xv + 1) ;;
 ret xv)) _ ; ...
A Bigger Example: Hashtables

• Representation: array of list(key*value).
 - table := {len:nat ; arr:array len}

• Abstraction: (key*value) sets.
 – We model the hash-table as a pure set.
 – And connect the implementation with an abstract representation predicate.
 reps(S:Set(key*value))(t:table)(h:heap)
 – Holds when (k,v) is in S iff (k,v) is in the list at index (hash k mod len)

• Operations to create, destroy, insert, lookup, iterate, etc.
Type of Create:

create(n:nat) :
 ST True (y:table)
 ((* old values in memory are preserved *)
 ∀r A (v:A), ptsto r v initial ->
 ptsto r v final ∧
 (* array locations are fresh *)
 ∀j (p:j<len t),
 unallocated (vsub (arr t) j pj) i
 (* returns a table that represents {} *)
 reps {} y final).
Type of Lookup

lookup :
\[\forall (k: \text{key})(t: \text{table})(S: \text{kvset}), \]
ST (reps S t initial) (y: \text{option value})
\[(\text{memory is unchanged}) \]
final=initial \land
\[(\text{returns None when key isn’t in S}) \]
(\forall v, (k,v) \notin S \land y=\text{None} \lor
\[(\text{or else returns some v s.t. } (k,v) \in S) \]
\exists v, y=\text{Some v} \land (k,v) \in S) \]
Type of Insert:

\[
\text{insert}(k:\text{key})(v:\text{value})(t:\text{table})(S:\text{kvset}),
\]
\[
\text{ST (reps S t) (_:unit)}
\]
\[
(* \text{only changes location at (hash k) mod n} *)
\]
\[
(\forall r w, (r <> \text{vsub (arr t)((hash k) mod (len t)})) \rightarrow
\]
\[
\text{ptsto r w initial} \rightarrow \text{ptsto r w final})
\]
\[
\wedge
\]
\[
(* \text{table t now represents } \{(k,v)\}+S *)
\]
\[
\text{reps (}\{(k,v)\} \cup S) t \text{ final}).
\]
Modularity

Thus far, a “big footprint” approach.
- specify changes to *entire* heap.
- inconvenient specifications -- always have to make sure we specify what we don’t change.
- not modular -- had to leak implementation details in specification of insert.

So we define a “small footprint” approach based on separation logic.
- Simpler specifications.
- More importantly, hides abstraction details.
- Downside: proofs are harder?
 - Not any more – thanks to Adam’s separation tactics, we have an order of magnitude reduction in the size of the proof scripts.
We define:

\[\text{STsep}(P:\text{pre})(A:\text{Set})(Q: \text{ post } A) \]

to be an ST computation such that:

- If we start in a heap \((h_1 + h_2)\),
- where \(h_1\) satisfies \(P\),
- then we’ll end up with a heap \((h_1' + h_2)\),
- where \(h_1'\) satisfies \(Q\),

That is, \(\text{STsep}\) ensures we don’t modify locations outside our specification.
Reasoning about pointers…

- A long standing issue with Hoare logic is finding a modular treatment of pointers to heap-allocated data.

- The key issue is this:
 - Suppose we start in a state s such that:
 - sorted(x:linked-list) \land non-empty(y:queue)
 - Now suppose we have a dequeue operation for y:
 - e.g., dequeue : ST {non-empty(y)}x:T{true}
 - We can use the rule of consequence to forget about x and then invoke the dequeue command.
 - But then afterwards, I’ve lost the facts that I knew about y!
 - (This is the same reason you don’t want to trade subtyping for polymorphism...)
 - The key insight is that x and y are referring to distinct regions in memory.
 - But tracking pair-wise that each x and y are disjoint is a pain.
 - And how do you do this without leaking implementation details?
 - e.g., how do I know x:T is disjoint from y:U when T & U are abstract types?
Separation Logic

So separation logic introduces three key things:

- **predicates incorporate a notion of ownership.**
 - \(\text{emp} \) is only satisfied by the empty heap
 - \(x \to e \) is only satisfied by the heap that contains one location \(x \), pointing to a value \(e \).

- **connectives capture disjoint ownership.**
 - \(P \ast Q \) describes a store \(s \) that can be broken into disjoint fragments \(s_1 \) and \(s_2 \) such that \(P(s_1) \) and \(Q(s_2) \).
 - \((P_1 \ast P_2 \ast \ldots \ast P_n)\) captures that disjoint\((P_i,P_j)\) for all \(i,j\).

- **commands can only access locations they are given in their spec**
 - This ensures a frame condition on e.g., procedures
 - If \(c : \text{Cmd}\{P\}\{Q\} \) and \(s \models (P\ast R) \) then after calling \(c \) in state \(s \), I get a state that satisfies \((Q\ast R)\).

- **we defined separation-style connectives on top of the core HTT.**
Separating Interfaces:

create(n:nat) :
 STsep (emp initial)
 (t:table)
 (reps {} t final).

- The pre-condition specifies an “empty” footprint.
- But we can run it in any larger heap.
- Anything returned is automatically “fresh”
- And that all other locations remain unmodified.
Separating Type of Insert:

\[\text{insert} (k \cdot \text{key}) (v \cdot \text{value}) (t \cdot \text{table}) (S \cdot \text{kvset}), \]
\[\text{ST} \ (\text{reps} \ S \ t \ \text{initial}) \ (_\cdot \text{unit}) \]
\[\ (\text{reps} \ \{(k,v)\} \cup S) \ t \ \text{final}. \]

- The pre-condition specifies only the part of the heap that is involved in the representation of \(S \).
- So we know that no other locations are modified by insertion.
- But crucially, the set of locations that make up the representation is abstract.
- That is, no implementation details are leaked.
Abstraction

Record FinMap(key value:Type) :=
{ t : Type ;
 reps : set(key*value)->t->heap->Prop ;
 create(n:nat) : STsep emp t ... ;
 insert k v t S: STsep (reps S t) unit ...;
 fold : ...
}

We’ve built a range of implementations that meet the interface: association lists, hash-tables, splay-trees...
 – Hashtable actually dogfoods the interface.
 – The fold operation captures aggregate effects.
Roadmap

\[
\text{ST}(P:pre)(A:Set)(Q:post A) : Set
\]
✓ Heaps, pre- & post-conditions
✓ Basic monadic & state constructs
✓ Example: hashtable
✓ Modularity & separation
What about systems?

Is it feasible to build a complete system?
• not just state, but I/O & exceptions
• feasible to specify desired semantics?
• feasible to construct & maintain proofs?
Ysql [PoPL’10]

- In-core database (c.f., MySQL)
- Main components:
 - Definitions of schemas, relations, & queries
 - define meaning of queries as denotational semantics
 - define a simple cost model for queries
 - Routines for [de]serializing tables to disk
 - proof that deserialize(serialize x) = x
 - Query parser
 - uses a Packrat, memoizing parser library
 - Query optimizer
 - prove correctness w.r.t. semantics
 - prove cost preservation where possible
 - Execution engine
 - uses B+-trees for in-core representation
 - use Cmd monad for imperative operations
 - prove (partial) correctness w.r.t. query semantics
The table the SQL query denotes and the table the RDBMS returns are equal (partial correctness).
To Start With...

- We need a model of the DB to state correctness.
- We start by defining schemas, tuples, and relations.
 - many possible ways to encode these in Coq
 - I’ll show you what we did, but we want to investigate others

- We then define our query language.
 - typed abstract syntax
 - denotational semantics: map queries and input relations to an output relation.
Some Coq Definitions

Def Schema := list Type.

Def s : Scheme :=
 (string::nat::string::nil).

Fix Tuple (T: Schema) : Type :=
 match T with
 | Nil ⇒ unit
 | Cons a b ⇒ a * Tuple b
 end.

Def t : Tuple s :=
 ("Greg",(43,("PL",tt)))

Def Table (T: Schema) : :=
 FiniteSet (Tuple T).
Query Abstract Syntax

Inductive \(RAExp \) \((G: \text{Context}) : \text{Schema} \rightarrow \text{Type} \rightarrow \text{Type} \):

\[
\begin{align*}
\text{Type} & := \\
| \ Var & : \forall (v: \text{name}), RAExp \ G \ (G \ v) \\
| \ Union & : \forall (t: \text{Schema}), \\
& \quad RAExp \ G \ t \rightarrow RAExp \ G \ t \rightarrow RAExp \ G \ t \\
| \ Select & : \forall (t: \text{Schema}), \\
& \quad RAExp \ G \ t \rightarrow (\text{Tuple} \ t \rightarrow \text{bool}) \rightarrow RAExp \ G \ t \\
| \ldots \\
| \ Product & : \forall (t \ t': \text{Schema}), \\
& \quad RAExp \ G \ t \rightarrow RAExp \ G \ t' \rightarrow RAExp \ G \ (t \ ++ \ t').
\end{align*}
\]
Denotational Semantics

\[
\text{Fix denote } (G: \text{ Context}) (\text{env:Env G})
\quad (T: \text{Schema}) (q : \text{ RAexp G T}) : \text{ Table T :=}
\]

\[
\text{match q with}
\quad | \text{ Var v => env v}
\quad | \text{ Union T q1 q2 =>}
\quad \quad \quad \quad \text{ FiniteSet.union (denote G env T q1)}
\quad \quad \quad \quad \quad \quad \text{ (denote G env T q2)}
\quad | \text{ Select T q f =>}
\quad \quad \quad \quad \text{ FiniteSet.filter}
\quad \quad \quad \quad \quad \quad \quad \text{ (denote G env T q) f}
\quad | \ldots
\]
Verifying Query Optimization

Def rewrite G T : Type :=
 RAExp G T \rightarrow RAExp G T.

Def semantics_preserving G T (r: rewrite T) : Prop :=
 \forall (q: RAExp T), denote q = denote (r q).

Def optimization T : Type :=
 \{ r : rewrite T
 ; pf : semantics_preserving r \}
Some of the optimizations

- Ryan proved a whole bunch of relational algebra identities using the denotational semantics.
 - e.g., \(\text{filter } P_1 (\text{filter } P_2 R) = \text{filter } P_2 (\text{filter } P_1 R) \)
- Then he implemented a number of textbook query optimizations.
 - e.g., \(\text{select } P_2 (\text{select } P_1 Q) \rightarrow \text{select } (P_1 \text{ and } P_2) Q \)
- And constructed proofs of equivalence.
 - note, manipulating typed AST was a pain
 - See Ryan’s next talk for more on this.
One More Syntax Issue

• Need to parse queries, [de]serialize tables
• Built a packrat parsing combinator library
 – the types of the combinators tell you what grammar (really transducer) they implement.
 – packrat parsing uses memoization (i.e., refs) to avoid some backtracking
 – but that’s a whole other story…
• Allows us to validate the parser against a grammar.
• Allows us to prove a roundtrip theorem for tables: \(\text{deserialize} (\text{serialize}(T)) = T \)
The B+-trees

- An interface mediates between the query engine and the B+-trees.
- The interface captures the idea that a tree (an ADT) represents a (functional) finite-map.
 - important: we want to be able to swap alternative implementations, with alternative internal invariants.
- The operations on the tree are reflected in the pre- and post-conditions as (functional) operations on the finite-map.
- So building the query engine in terms of the interface is easy – just have to reason about finite maps.
An Imperative Finite Map ADT

Class Fmap (K V: Type) : Type := {
 handle : Type;
 model : Type := list (K*V);
 rep : handle → model → heap → Prop;
 add : ∀(m: model) (k: K) (v: V) (h: handle),
 Cmd (rep h m)
 (fun _: unit ⇒ rep h ((k,v)::m));
 lookup : ∀(m: model) (k: K) (h: handle),
 Cmd (rep h m)
 (fun vopt : option V ⇒ rep h m * [vopt = find k m]);
 ...
 iterate : ...;
...
The Implementation

- Generalized Binary Search Trees

N-way fan-out

Linked fringe for in-order traversal
The “rep” predicate

- Recall we are supposed to relate the B+-tree to some (functional) list of key-value pairs.
- Intuitively, rep t l should hold when the leaves of t are some permutation of the list l.
- But in addition to this fact, we want to capture what it means for a B+-tree to be well formed.
 - e.g., balance conditions
 - in practice, we relate the B+-tree to a functional tree without a skirt, but that’s balanced
The Challenge

- Trees are nice for separation logic
 - each sub-tree is disjoint
- But the B+-tree is really two data structures that physically share:
 - a tree and a linked list of the leaves
 - inserting a key/value wants to view things as a tree
 - but also link into the list of leaves
 - iteration wants to view things as a linked list
 - so finding an appropriate representation predicate is kind of tricky.
Part of the B+ Tree Rep

\[
\begin{align*}
\text{repTree } 0 \ r \ optr \ (p', ls) & \iff \\
[r = p'] & \land \forall ary. r \mapsto \text{mkNode } 0 \ ary \ optr \ * \\
\text{repLeaf } ary \ |ls| ls & \\
\text{repTree } (h + 1) \ r \ optr \ (p', (ls, \text{nxt})) & \iff \\
[r = p'] & \land \forall ary. r \mapsto \text{mkNode } (h + 1) \ ary \ (\text{ptrFor } \text{nxt}) \ * \\
\text{repBranch } ary \ (\text{firstPtr } \text{nxt}) \ |ls| ls & \\
\text{repTree } h \ (\text{ptrFor } \text{nxt}) \ optr \ \text{nxt} & \\
\text{repLeaf } ary \ n \ [v_1, \ldots, v_n] & \iff \\
ary[0] & \mapsto \text{Some } v_1 \ \ldots \ \ast ary[n - 1] \mapsto \text{Some } v_n \ast \\
ary[n] & \mapsto \text{None } \ast \ldots \ \ast ary[SIZE - 1] \mapsto \text{None} \\
\text{repBranch } ary \ n \ optr \ [(k_1, t_1), \ldots, (k_n, t_n)] & \iff \\
ary[0] & \mapsto \text{Some } (k_1, \text{ptrFor } t_1) \ast \\
\text{repTree } h \ (\text{ptrFor } t_1) \ (\text{firstPtr } t_2) \ t_1 & \ast \ldots \ast \\
ary[n - 2] & \mapsto \text{Some } (k_{n-1}, \text{ptrFor } t_{n-1}) \ast \\
\text{repTree } h \ (\text{ptrFor } t_{n-1}) \ (\text{firstPtr } t_n) \ t_{n-1} & \ast \\
ary[n - 1] & \mapsto \text{Some } (k_n, \text{ptrFor } t_n) \ast \\
\text{repTree } h \ (\text{ptrFor } t_n) \ optr \ t_n & \\
ary[n] & \mapsto \text{None } \ast \ldots \ \ast ary[SIZE - 1] \mapsto \text{None}
\end{align*}
\]
Theorem repTree_iff_repTrunk :
 \forall h (r : ptr) (optr : option ptr) (p : ptree h) (H : heap),
 repTree r optr p H <->
 (repTrunk r optr p *
 repLeaves (Some (firstPtr p))
 (leaves p) optr) H.
To Wrap Up

• Systems like Coq make it possible to write code and prove deep properties about it.
 – from simple types to full correctness.

• Provides a uniform, modular framework for:
 – types and specifications.
 – code, models, and proofs.
 – abstraction at all levels.

• Recent advances scale it from pure languages to effects without losing modularity.
 – monads.
 – separation logic.
But Lots to Do:

• Scaling the theory further:
 – IO, concurrency
 – liveness, information flow, ...

• More automation:
 – better inference
 – adapt good decision procedures from SMT
 – termination analyses, shape analyses, etc.

• Re-think languages & environments:
 – in particular, for discharging explicit proofs
I Remain Optimistic

These obstacles will be overcome.

We won’t develop *all* software with proofs of correctness, but I do believe that within another 10 years:

– type systems for mainstream languages will rule out language-level errors, and many library errors, and

– a lot more safety & security-critical code will be developed with machine-checked proofs of key properties.