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A pattern: Monads 
As in Haskell, distinguish purity with types: 
•  e : int 

–  e is equivalent to an integer value 

•  e : ST int 
–  e is a computation which when run in a world w 

either diverges, or yields an int and some new 
world w’. 

–  Because computations are delayed, they are pure. 
–  So we can safely manipulate them within types 

and proofs. 

•  e : ST False 
–  possible, but means e must diverge when run! 



Hoare Type Theory:   
By refining ST with predicates, we can 

capture the effects of an imperative 
computation within its type. 

e : ST{P}x:int{Q} 
 When run in a world satisfying P, e either 

– diverges, or else 
–  terminates with an integer x and world 

satisfying Q. 
i.e., Hoare-logic meets Type Theory  



Hoare Type Theory:   
e : ST{P}x:int{Q} 

Why refine the type?  Why not just unroll the 
definition as we did in type the type-inference 
example? 

One reason is that we want to be able extract 
code that actually uses a mutable store. 
–  if we expose the definition of ST, then you could 

write an ST command which, say, copies the 
whole heap and returns it as a value! 
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Defining ST in Coq? 
Can try to define: 

Record res(i:heap)(A:Type)(Q:post A) :=  
  mkRes { res_h : heap ;  
          res_v : A ; 
          res_p : Q i res_v res_h }. 

ST P A Q := forall (i:heap), P h -> res i A Q. 

but then you sacrifice: 
–  recursive (diverging) computations 
–  non-deterministic computations 
–  code that stores computations in the heap 

So we add ST and its constructors as axioms. 
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What about Consistency 
But can we use ST to prove False? 
•  No equations on computations! 

–  (except for monad laws) 
–  no way to run them, even in the logic. 

•  Trivial model:  ST = unit. 
–  silly, but ensures we haven’t broken Coq. 

•  Intermediate model:   
–  ST = predicate transformers 
–  not big enough -- can’t store ST’s in heap! 

•  Denotational (category-theoretic) model:   
–  Lars Birkedal & Rasmus Peterson 
–  (subset of Coq corresponding to HTT) 
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Operational Soundness 
•  For HTT subset [ESOP’07]: 

– give a fairly standard, small-step 
operational semantics 

– assume “heap-consistency” of logic 
• we get this with the trivial model 

– proved preservation & progress 
•  Not an everyday type-soundness proof. 

– not in the context of Coq 
–  took advantage of hereditary substitutions 



A Very Simple Example: 
Definition postinc x :=  
  xv <- !x ; 
  x ::= (xv + 1) ;; 
  ret xv. 



Expanding the Definition 
Definition postinc x :=  
  xv <- !x ; 
  x ::= (xv + 1) ;; 
  ret xv. 

Expands into: 
  Definition postinc x :=  
    bind (read x) (λ xv => 
      bind (write x (xv + 1)) (λ _ => 
        ret xv)). 

Primitive commands are sequenced with bind & ret. 



Roadmap 
ST(P:pre)(A:Type)(Q:post A):Type 

•  Heaps, pre- & post-conditions 
•  Basic monadic & state constructs 
•  Example:  hashtable 
•  Modularity & separation 



Modeling Heaps in Coq 
ST(P:pre)(A:Type)(Q:post A):Type. 

(* pre-conditions classify heaps, where 
 a heap maps pointers to values. *) 

Inductive dynamic : Type :=  
| Dyn : forall T, T -> dynamic. 

heap := ptr -> option dynamic 
pre := heap -> Prop 

(* post-conditions relate a return value, 
the input heap and the output heap.*) 

post(A:Set) := A -> heap -> heap -> Prop. 



Some Primitives & Types: 
(* ret just returns the value x, with no effect*) 

ret(x:A) :  
  ST True (y:A) (y=x ∧ final=initial). 

(* allocate and initialize a fresh location *) 

new(v:A) : 

  ST True (y:ptr)  

     (unallocated initial y ∧ 
      final = update initial y v). 

Note: I’m cheating and using “initial” and “final” where I should be 
using lambda-bound variables, as well as some math notation.  



More Primitives 
(* read location x, getting out an A value *) 
read(x:ptr) : 

       ST (∃v:A,ptsto x v initial)  

          (y:A)  

          (final = initial ∧ ptsto x y initial) 

(* write v into location x *) 
write(x:ptr)(v:A) : 
        ST (∃B:Type,v:B,ptsto x v initial)  

           (_:unit) 

           (final = update x v initial) 

ptsto x y h := h x = Some y 

update x y h z := if ptr_eq_dec x z then y else h x 



Bind 
(* sequentially compose computations *) 

bind(C1: ST P1 A1 Q1) 
    (C2: ∀x:A1, ST (P2 x) A2 (Q2 x)), 

 ST (P1 initial ∧  
      (∀z h, Q1 z initial h -> P2 z h)) 

    (y:A2) 

      (∃z h, Q1 z initial h ∧  
           Q2 z y h final)  

In words: 
–  The weakest pre-condition needed to run (C1; C2). 
–  The strongest post-condition when (C1; C2) terminates. 



Type Inference in Ynot. 
The types of our combinators compute a 

principal type. 
–  For loop-free code, we infer a most general 

specification. 
–  So for most code, you don’t have to give 

specifications. 
–  And you can be ensured that we aren’t going to 

prohibit some specification. 
The bad news: 

–  Loops require specifications. 
•  But being able to factor out iterators using lambda makes 

this not as bad as it first sounds. 
–  Inferred types are ridiculous. 



Recall our Example: 

Definition postinc x :=  
  bind (read x) (λ xv => 
    bind (write x (xv + 1)) (λ _ => 
      ret xv)). 

Check postinc. 



Argh! 
postinc(x:loc) :  
   ST 
   (λ i => (ref nat x i) /\ 
             (∀z m, m = i /\ 

               (∀v, ptsto x v i -> Val z = Val v) -> 

                 (∃A:Type, ref A x m) /\ 

                   (∀(u:unit) m0, Val u = Val tt /\ 

                     m0 = update_loc m x (z + 1) -> True)) 
   nat 
   (λ (y:ans nat) (i m:heap) =>  

    (ref nat x i) /\ 

    (∃z:nat, ∃h:heap, (h = i /\ 

          (∀v:nat, ptsto x v i -> Val z = Val v)) /\ 

       (∃A:Type, ref A x h) /\ 

       (∃u:unit, 

          ∃h0:heap, 

            (Val u = Val tt /\  

             h0 = update_loc h x (z + 1)) /\ m = h0 /\ y = Val x0)). 



Semantic Type Casting 
Fortunately, we can explicitly coerce when we want a 

different type -- it just demands a proof. 

(* strengthen pre- and weaken post-condition *) 

cast:  
  ∀(C : ST P1 A Q1), 

   (∀i, P2 i -> P1 i ∧ 
   ∀x f, Q1 x i f -> Q2 x i f) -> 

          ST P2 A Q2. 



With an Explicit Cast 

Definition postinc x : 
  ST (∃n:A,ptsto x n initial) 
     (y:nat) 
     (∀n, ptsto x n initial ->  
       y = n ∧  
      final = update x (n+1) initial). 

 refine (cast (xv <- !x ; 
               x ::= (xv + 1) ;; 
               ret xv)) _ ; … 



A Bigger Example: Hashtables 
•  Representation:  array of list(key*value). 

–  table := {len:nat ; arr:array len} 

•  Abstraction:  (key*value) sets. 
–  We model the hash-table as a pure set. 
–  And connect the implementation with an abstract 

representation predicate. 
    reps(S:Set(key*value))(t:table)(h:heap)  
–  Holds when (k,v) is in S iff (k,v) is in the list at index (hash k 

mod len) 

•  Operations to create, destroy, insert, lookup, 
iterate, etc. 



Type of Create: 
create(n:nat) : 
 ST True (y:table)  
   ((* old values in memory are preserved *) 
    ∀r A (v:A),ptsto r v initial ->  
                 ptsto r v final ∧ 
    (* array locations are fresh *) 
    ∀j (p:j<len t),  
          unallocated (vsub (arr t) j pj) i 
    (* returns a table that represents {} *) 
    reps {} y final). 



Type of Lookup 
lookup :  
  ∀(k:key)(t:table)(S:kvset), 
  ST (reps S t inital) (y:option value) 
     ((* memory is unchanged *)  
   final=initial ∧  

      (* returns None when key isn’t in S *) 
      (∀v,(k,v) ∉ S ∧ y=None ∨ 
      (* or else returns some v s.t. (k,v) ∈ S *) 
       ∃v, y=Some v ∧ (k,v) ∈ S ))   



Type of Insert: 
insert(k:key)(v:value)(t:table)(S:kvset), 
 ST (reps S t) (_:unit) 
  ((* only changes location at (hash k) mod n *) 
   (∀ r w,(r <> vsub (arr t)((hash k) mod (len t))) -> 
                 ptsto r w initial -> ptsto r w final) 

  ∧ 
   (* table t now represents {(k,v)}+S *) 

   reps ({(k,v)} ∪ S) t final).  



Modularity 
Thus far, a “big footprint” approach. 

–  specify changes to entire heap. 
–  inconvenient specifications -- always have to make sure we 

specify what we don’t change.  
–  not modular -- had to leak implementation details in 

specification of insert. 

So we define a “small footprint” approach based on 
separation logic. 
–  Simpler specifications. 
–  More importantly, hides abstraction details. 
–  Downside: proofs are harder? 

•  Not any more – thanks to Adam’s separation tactics, we have an order 
of magnitude reduction in the size of the proof scripts. 



STsep 
We define: 
   STsep(P:pre)(A:Set)(Q: post A) 

to be an ST computation such that: 
–  If we start in a heap (h1 + h2), 
– where h1 satisfies P, 
–  then we’ll end up with a heap (h1’ + h2), 
– where h1’ satisfies Q, 

That is, STsep ensures we don’t modify 
locations outside our specification. 



Reasoning about pointers… 
•  A long standing issue with Hoare logic is finding a modular 

treatment of pointers to heap-allocated data. 
•  The key issue is this: 

–  Suppose we start in a state s such that: 
•   sorted(x:linked-list) ∧ non-empty(y:queue) 

–  Now suppose we have a dequeue operation for y: 
•  e.g..,     dequeue : ST {non-empty(y)}x:T{true} 

–  We can use the rule of consequence to forget about x and then 
invoke the dequeue command. 

–  But then afterwards, I’ve lost the facts that I knew about y! 
–  (This is the same reason you don’t want to trade subtyping for 

polymorphism…) 
–  The key insight is that x and y are referring to distinct regions in 

memory. 
–  But tracking pair-wise that each x and y are disjoint is a pain. 
–  And how do you do this without leaking implementation details?   

•  e.g., how do I know x:T is disjoint from y:U when T & U are abstract types? 



Separation Logic 
So separation logic introduces three key things: 
•  predicates incorporate a notion of ownership. 

–  emp is only satisfied by the empty heap 
–  x  e is only satisfied by the heap that contains one location x, 

pointing to a value e. 
•  connectives capture disjoint ownership. 

–   P * Q describes a store s that can be broken into disjoint 
fragments s1 and s2 such that P(s1) and Q(s2). 

–  (P1 * P2 * … * Pn) captures that disjoint(Pi,Pj) for all i,j. 
•  commands can only access locations they are given in their 

spec 
–  This ensures a frame condition on e.g., procedures 
–  If   c : Cmd{P}{Q} and s |= (P*R) then after calling c in state s, I 

get a state  that satisfies (Q*R).  
•  we defined separation-style connectives on top of the core 

HTT. 



Separating Interfaces: 
create(n:nat) : 

 STsep (emp initial)  
     (t:table)  
     (reps {} t final). 

•  The pre-condition specifies an “empty” footprint. 
•  But we can run it in any larger heap. 
•  Anything returned is automatically “fresh” 
•  And that all other locations remain unmodified. 



Separating Type of Insert: 
insert(k:key)(v:value)(t:table)(S:kvset), 
  ST (reps S t initial) (_:unit) 

     (reps ({(k,v)} ∪ S) t final).  

•  The pre-condition specifies only the part of the heap 
that is involved in the representation of S. 

•  So we know that no other locations are modified by 
insertion.   

•  But crucially, the set of locations that make up the 
representation is abstract.   

•  That is, no implementation details are leaked.  



Abstraction 
Record FinMap(key value:Type) := 
 { t : Type ;  
   reps : set(key*value)->t->heap->Prop ; 
   create(n:nat) :  STsep emp t … ; 
   insert k v t S:  STsep (reps S t) unit …; 
   fold : ... 
 } 

We’ve built a range of implementations that 
meet the interface:  association lists, hash-
tables, splay-trees… 
–  Hashtable actually dogfoods the interface. 
–  The fold operation captures aggregate effects. 



Roadmap 
ST(P:pre)(A:Set)(Q:post A) : Set 
 Heaps, pre- & post-conditions 
  Basic monadic & state constructs 
  Example:  hashtable 
 Modularity & separation 



What about systems? 

Is it feasible to build a complete system? 
•  not just state, but I/O & exceptions 
•  feasible to specify desired semantics? 
•  feasible to construct & maintain proofs? 



Ysql  [PoPL’10] 
•  In-core database (c.f., MySQL) 
•  Main components: 

–  Definitions of schemas, relations, & queries 
•  define meaning of queries as denotational semantics 
•  define a simple cost model for queries 

–  Routines for [de]serializing tables to disk 
•  proof that deserialize(serialize x) = x 

–  Query parser 
•  uses a Packrat, memoizing parser library  

–  Query optimizer 
•  prove correctness w.r.t. semantics 
•  prove cost preservation where possible 

–  Execution engine 
•  uses B+-trees for in-core representation 
•  use Cmd monad for imperative operations 
•  prove (partial) correctness w.r.t. query semantics 



Our RDBMS Pipeline 

SQL 
Query 

Table / 
Relation 

The table the SQL query denotes and  
the table the RDBMS returns are equal (partial correctness). 

Execution 

Imperative 
B+ Tree 

Compilation 

Relational 
Algebra 

Optimization 

Cost 
Respecting 

Planning 

Finite Map 
Operations 

(LOC) 

Functional 1200 810 

Imperative 0 920 

Proof 1140 6880 

Proof/
Code 

≈ 1 ≈ 4 

Back-End Front-End 
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To Start With… 
•  We need a model of the DB to state 

correctness. 
•  We start by defining schemas, tuples, and 

relations. 
– many possible ways to encode these in Coq 
–  I’ll show you what we did, but we want to 

investigate others 

•  We then define our query language. 
–  typed abstract syntax 
–  denotational semantics:  map queries and 

input relations to an output relation. 



Some Coq Definitions 
Def Schema := list Type. 
Def s : Scheme := 
(string::nat::string::nil). 

Fix Tuple (T: Schema) : Type :=  
 match T with 
  | Nil ⇒ unit 
  | Cons a b ⇒ a * Tuple b 
 end. 
Def t : Tuple s :=  
(“Greg”,(43,(“PL”,tt))) 

Def Table (T: Schema) :  := 
FiniteSet (Tuple T). 



Query Abstract Syntax 
Inductive RAExp (G: Context) : Schema → Type → 

Type  := 

 | Var : ∀(v: name), RAExp G (G v)   

 | Union : ∀(t: Schema),  

     RAExp G t → RAExp G t → RAExp G t 
 | Select : ∀(t: Schema),  

     RAExp G t → (Tuple t → bool) → RAExp G t 

 | … 

 | Product : ∀(t t’: Schema),  

     RAExp G t → RAExp G t’ → RAExp G (t ++ t’). 
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Denotational Semantics 
Fix denote (G: Context) (env:Env G) 
(T:Schema) (q : RAexp G T) : Table T := 

  match q with 
| Var v => env v 
| Union T q1 q2 =>  
    FiniteSet.union (denote G env T q1) 
                    (denote G env T q2) 
| Select T q f => 
    FiniteSet.filter  
     (denote G env T q) f 
| ...  



Verifying Query Optimization 
Def rewrite G T : Type :=  
  RAExp G T → RAExp G T. 

Def semantics_preserving G T (r: 
rewrite T) : Prop :=  
∀(q: RAExp T), denote q = denote 
(r q). 

Def optimization T : Type :=  
  { r   : rewrite T 
  ; pf  : semantics_preserving r } 



Some of the optimizations 
•  Ryan proved a whole bunch of relational 

algebra identities using the denotational 
semantics. 
–  e.g., filter P1 (filter P2 R) = filter P2 (filter P1 R) 

•  Then he implemented a number of textbook 
query optimizations. 
–  e.g., select P2 (select P1 Q)  select (P1 and P2) 

Q 

•  And constructed proofs of equivalence. 
–  note, manipulating typed AST was a pain 
–  See Ryan’s next talk for more on this. 



One More Syntax Issue 
•  Need to parse queries, [de]serialize tables 
•  Built a packrat parsing combinator library 

–  the types of the combinators tell you what grammar (really 
transducer) they implement. 

–  packrat parsing uses memoization (i.e., refs) to avoid some 
backtracking 

–  but that’s a whole other story… 

•  Allows us to validate the parser against a grammar. 
•  Allows us to prove a roundtrip theorem for tables: 

  deserialize(serialize(T)) = T 



The B+-trees 
•  An interface mediates between the query 

engine and the B+-trees. 
•  The interface captures the idea that a tree (an 

ADT) represents a (functional) finite-map. 
–  important:  we want to be able to swap alternative 

implementations, with alternative internal 
invariants. 

•  The operations on the tree are reflected in the 
pre- and post-conditions as (functional) 
operations on the finite-map. 

•  So building the query engine in terms of the 
interface is easy – just have to reason about 
finite maps. 



An Imperative Finite Map ADT 

Class Fmap (K V: Type) : Type := { 

 handle : Type; 

 model  : Type := list (K*V); 

 rep    : handle → model → heap → Prop; 

 add   : ∀(m: model) (k: K) (v: V) (h: handle), 

           Cmd (rep h m )   
            (fun _: unit ⇒ rep h ((k,v)::m)); 

 lookup  : ∀(m: model) (k: K) (h: handle), 

           Cmd (rep h m )   
            (fun vopt : option V ⇒ rep h m * [vopt = 
find k m]); 

 ; 

 iterate : ... ; 

... 
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The Implementation 
•  Generalized Binary Search Trees 
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N-way fan-out 

Linked fringe for  
in-order traversal 



The “rep” predicate 
•  Recall we are supposed to relate the B+-tree to 

some (functional) list of key-value pairs. 
•  Intuitively, rep t l should hold when the leaves 

of t are some permutation of the list l. 
•  But in addition to this fact, we want to capture 

what it means for a B+-tree to be well formed. 
–  e.g., balance conditions 
–  in practice, we relate the B+-tree to a functional 

tree without a skirt, but that’s balanced 



The Challenge 
•  Trees are nice for separation logic  

–  each sub-tree is disjoint 

•  But the B+-tree is really two data structures 
that physically share: 
–  a tree and a linked list of the leaves 
–  inserting a key/value wants to view things as a 

tree 
•  but also link into the list of leaves 

–  iteration wants to view things as a linked list 
–  so finding an appropriate representation predicate 

is kind of tricky. 



Part of the B+ Tree Rep 
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Key Splitting Theorem 
Theorem repTree_iff_repTrunk :  
∀h (r : ptr) (optr : option ptr) (p : 
ptree h) (H : heap),  
  repTree r optr p H <->"

           (repTrunk r optr p *"
            repLeaves (Some (firstPtr p)) 
(leaves p) optr) H."



To Wrap Up 
•  Systems like Coq make it possible to write 

code and prove deep properties about it. 
–  from simple types to full correctness. 

•  Provides a uniform, modular framework for: 
–  types and specifications. 
–  code, models, and proofs. 
–  abstraction at all levels. 

•  Recent advances scale it from pure languages 
to effects without losing modularity. 
–  monads. 
–  separation logic. 



But Lots to Do: 
•  Scaling the theory further: 

–  IO, concurrency 
–  liveness, information flow, … 

•  More automation: 
–  better inference 
–  adapt good decision procedures from SMT 
–  termination analyses, shape analyses, etc. 

•  Re-think languages & environments: 
–  in particular, for discharging explicit proofs 



I Remain Optimistic 
These obstacles will be overcome. 

We won’t develop all software with proofs 
of correctness, but I do believe that 
within another 10 years: 
–  type systems for mainstream languages 

will rule out language-level errors, and 
many library errors, and 

– a lot more safety & security-critical code 
will be developed with machine-checked 
proofs of key properties. 


