
Intro to Hoare Type Theory

Greg Morrisett

A pattern: Monads
As in Haskell, distinguish purity with types:
•  e : int

–  e is equivalent to an integer value

•  e : ST int
–  e is a computation which when run in a world w

either diverges, or yields an int and some new
world w’.

–  Because computations are delayed, they are pure.
–  So we can safely manipulate them within types

and proofs.

•  e : ST False
–  possible, but means e must diverge when run!

Hoare Type Theory:
By refining ST with predicates, we can

capture the effects of an imperative
computation within its type.

e : ST{P}x:int{Q}
 When run in a world satisfying P, e either

– diverges, or else
–  terminates with an integer x and world

satisfying Q.
i.e., Hoare-logic meets Type Theory

Hoare Type Theory:
e : ST{P}x:int{Q}

Why refine the type? Why not just unroll the
definition as we did in type the type-inference
example?

One reason is that we want to be able extract
code that actually uses a mutable store.
–  if we expose the definition of ST, then you could

write an ST command which, say, copies the
whole heap and returns it as a value!

27 June 2007 5

Defining ST in Coq?
Can try to define:

Record res(i:heap)(A:Type)(Q:post A) :=
 mkRes { res_h : heap ;
 res_v : A ;
 res_p : Q i res_v res_h }.

ST P A Q := forall (i:heap), P h -> res i A Q.

but then you sacrifice:
–  recursive (diverging) computations
–  non-deterministic computations
–  code that stores computations in the heap

So we add ST and its constructors as axioms.

27 June 2007 6

What about Consistency
But can we use ST to prove False?
•  No equations on computations!

–  (except for monad laws)
–  no way to run them, even in the logic.

•  Trivial model: ST = unit.
–  silly, but ensures we haven’t broken Coq.

•  Intermediate model:
–  ST = predicate transformers
–  not big enough -- can’t store ST’s in heap!

•  Denotational (category-theoretic) model:
–  Lars Birkedal & Rasmus Peterson
–  (subset of Coq corresponding to HTT)

27 June 2007 7

Operational Soundness
•  For HTT subset [ESOP’07]:

– give a fairly standard, small-step
operational semantics

– assume “heap-consistency” of logic
• we get this with the trivial model

– proved preservation & progress
•  Not an everyday type-soundness proof.

– not in the context of Coq
–  took advantage of hereditary substitutions

A Very Simple Example:
Definition postinc x :=
 xv <- !x ;
 x ::= (xv + 1) ;;
 ret xv.

Expanding the Definition
Definition postinc x :=
 xv <- !x ;
 x ::= (xv + 1) ;;
 ret xv.

Expands into:
 Definition postinc x :=
 bind (read x) (λ xv =>
 bind (write x (xv + 1)) (λ _ =>
 ret xv)).

Primitive commands are sequenced with bind & ret.

Roadmap
ST(P:pre)(A:Type)(Q:post A):Type

•  Heaps, pre- & post-conditions
•  Basic monadic & state constructs
•  Example: hashtable
•  Modularity & separation

Modeling Heaps in Coq
ST(P:pre)(A:Type)(Q:post A):Type.

(* pre-conditions classify heaps, where
 a heap maps pointers to values. *)

Inductive dynamic : Type :=
| Dyn : forall T, T -> dynamic.

heap := ptr -> option dynamic
pre := heap -> Prop

(* post-conditions relate a return value,
the input heap and the output heap.*)

post(A:Set) := A -> heap -> heap -> Prop.

Some Primitives & Types:
(* ret just returns the value x, with no effect*)

ret(x:A) :
 ST True (y:A) (y=x ∧ final=initial).

(* allocate and initialize a fresh location *)

new(v:A) :

 ST True (y:ptr)

 (unallocated initial y ∧
 final = update initial y v).

Note: I’m cheating and using “initial” and “final” where I should be
using lambda-bound variables, as well as some math notation.

More Primitives
(* read location x, getting out an A value *)
read(x:ptr) :

 ST (∃v:A,ptsto x v initial)

 (y:A)

 (final = initial ∧ ptsto x y initial)

(* write v into location x *)
write(x:ptr)(v:A) :
 ST (∃B:Type,v:B,ptsto x v initial)

 (_:unit)

 (final = update x v initial)

ptsto x y h := h x = Some y

update x y h z := if ptr_eq_dec x z then y else h x

Bind
(* sequentially compose computations *)

bind(C1: ST P1 A1 Q1)
 (C2: ∀x:A1, ST (P2 x) A2 (Q2 x)),

 ST (P1 initial ∧
 (∀z h, Q1 z initial h -> P2 z h))

 (y:A2)

 (∃z h, Q1 z initial h ∧
 Q2 z y h final)

In words:
–  The weakest pre-condition needed to run (C1; C2).
–  The strongest post-condition when (C1; C2) terminates.

Type Inference in Ynot.
The types of our combinators compute a

principal type.
–  For loop-free code, we infer a most general

specification.
–  So for most code, you don’t have to give

specifications.
–  And you can be ensured that we aren’t going to

prohibit some specification.
The bad news:

–  Loops require specifications.
•  But being able to factor out iterators using lambda makes

this not as bad as it first sounds.
–  Inferred types are ridiculous.

Recall our Example:

Definition postinc x :=
 bind (read x) (λ xv =>
 bind (write x (xv + 1)) (λ _ =>
 ret xv)).

Check postinc.

Argh!
postinc(x:loc) :
 ST
 (λ i => (ref nat x i) /\
 (∀z m, m = i /\

 (∀v, ptsto x v i -> Val z = Val v) ->

 (∃A:Type, ref A x m) /\

 (∀(u:unit) m0, Val u = Val tt /\

 m0 = update_loc m x (z + 1) -> True))
 nat
 (λ (y:ans nat) (i m:heap) =>

 (ref nat x i) /\

 (∃z:nat, ∃h:heap, (h = i /\

 (∀v:nat, ptsto x v i -> Val z = Val v)) /\

 (∃A:Type, ref A x h) /\

 (∃u:unit,

 ∃h0:heap,

 (Val u = Val tt /\

 h0 = update_loc h x (z + 1)) /\ m = h0 /\ y = Val x0)).

Semantic Type Casting
Fortunately, we can explicitly coerce when we want a

different type -- it just demands a proof.

(* strengthen pre- and weaken post-condition *)

cast:
 ∀(C : ST P1 A Q1),

 (∀i, P2 i -> P1 i ∧
 ∀x f, Q1 x i f -> Q2 x i f) ->

 ST P2 A Q2.

With an Explicit Cast

Definition postinc x :
 ST (∃n:A,ptsto x n initial)
 (y:nat)
 (∀n, ptsto x n initial ->
 y = n ∧
 final = update x (n+1) initial).

 refine (cast (xv <- !x ;
 x ::= (xv + 1) ;;
 ret xv)) _ ; …

A Bigger Example: Hashtables
•  Representation: array of list(key*value).

–  table := {len:nat ; arr:array len}

•  Abstraction: (key*value) sets.
–  We model the hash-table as a pure set.
–  And connect the implementation with an abstract

representation predicate.
 reps(S:Set(key*value))(t:table)(h:heap)
–  Holds when (k,v) is in S iff (k,v) is in the list at index (hash k

mod len)

•  Operations to create, destroy, insert, lookup,
iterate, etc.

Type of Create:
create(n:nat) :
 ST True (y:table)
 ((* old values in memory are preserved *)
 ∀r A (v:A),ptsto r v initial ->
 ptsto r v final ∧
 (* array locations are fresh *)
 ∀j (p:j<len t),
 unallocated (vsub (arr t) j pj) i
 (* returns a table that represents {} *)
 reps {} y final).

Type of Lookup
lookup :
 ∀(k:key)(t:table)(S:kvset),
 ST (reps S t inital) (y:option value)
 ((* memory is unchanged *)
 final=initial ∧

 (* returns None when key isn’t in S *)
 (∀v,(k,v) ∉ S ∧ y=None ∨
 (* or else returns some v s.t. (k,v) ∈ S *)
 ∃v, y=Some v ∧ (k,v) ∈ S))

Type of Insert:
insert(k:key)(v:value)(t:table)(S:kvset),
 ST (reps S t) (_:unit)
 ((* only changes location at (hash k) mod n *)
 (∀ r w,(r <> vsub (arr t)((hash k) mod (len t))) ->
 ptsto r w initial -> ptsto r w final)

 ∧
 (* table t now represents {(k,v)}+S *)

 reps ({(k,v)} ∪ S) t final).

Modularity
Thus far, a “big footprint” approach.

–  specify changes to entire heap.
–  inconvenient specifications -- always have to make sure we

specify what we don’t change.
–  not modular -- had to leak implementation details in

specification of insert.

So we define a “small footprint” approach based on
separation logic.
–  Simpler specifications.
–  More importantly, hides abstraction details.
–  Downside: proofs are harder?

•  Not any more – thanks to Adam’s separation tactics, we have an order
of magnitude reduction in the size of the proof scripts.

STsep
We define:
 STsep(P:pre)(A:Set)(Q: post A)

to be an ST computation such that:
–  If we start in a heap (h1 + h2),
– where h1 satisfies P,
–  then we’ll end up with a heap (h1’ + h2),
– where h1’ satisfies Q,

That is, STsep ensures we don’t modify
locations outside our specification.

Reasoning about pointers…
•  A long standing issue with Hoare logic is finding a modular

treatment of pointers to heap-allocated data.
•  The key issue is this:

–  Suppose we start in a state s such that:
•  sorted(x:linked-list) ∧ non-empty(y:queue)

–  Now suppose we have a dequeue operation for y:
•  e.g.., dequeue : ST {non-empty(y)}x:T{true}

–  We can use the rule of consequence to forget about x and then
invoke the dequeue command.

–  But then afterwards, I’ve lost the facts that I knew about y!
–  (This is the same reason you don’t want to trade subtyping for

polymorphism…)
–  The key insight is that x and y are referring to distinct regions in

memory.
–  But tracking pair-wise that each x and y are disjoint is a pain.
–  And how do you do this without leaking implementation details?

•  e.g., how do I know x:T is disjoint from y:U when T & U are abstract types?

Separation Logic
So separation logic introduces three key things:
•  predicates incorporate a notion of ownership.

–  emp is only satisfied by the empty heap
–  x  e is only satisfied by the heap that contains one location x,

pointing to a value e.
•  connectives capture disjoint ownership.

–  P * Q describes a store s that can be broken into disjoint
fragments s1 and s2 such that P(s1) and Q(s2).

–  (P1 * P2 * … * Pn) captures that disjoint(Pi,Pj) for all i,j.
•  commands can only access locations they are given in their

spec
–  This ensures a frame condition on e.g., procedures
–  If c : Cmd{P}{Q} and s |= (P*R) then after calling c in state s, I

get a state that satisfies (Q*R).
•  we defined separation-style connectives on top of the core

HTT.

Separating Interfaces:
create(n:nat) :

 STsep (emp initial)
 (t:table)
 (reps {} t final).

•  The pre-condition specifies an “empty” footprint.
•  But we can run it in any larger heap.
•  Anything returned is automatically “fresh”
•  And that all other locations remain unmodified.

Separating Type of Insert:
insert(k:key)(v:value)(t:table)(S:kvset),
 ST (reps S t initial) (_:unit)

 (reps ({(k,v)} ∪ S) t final).

•  The pre-condition specifies only the part of the heap
that is involved in the representation of S.

•  So we know that no other locations are modified by
insertion.

•  But crucially, the set of locations that make up the
representation is abstract.

•  That is, no implementation details are leaked.

Abstraction
Record FinMap(key value:Type) :=
 { t : Type ;
 reps : set(key*value)->t->heap->Prop ;
 create(n:nat) : STsep emp t … ;
 insert k v t S: STsep (reps S t) unit …;
 fold : ...
 }

We’ve built a range of implementations that
meet the interface: association lists, hash-
tables, splay-trees…
–  Hashtable actually dogfoods the interface.
–  The fold operation captures aggregate effects.

Roadmap
ST(P:pre)(A:Set)(Q:post A) : Set
 Heaps, pre- & post-conditions
  Basic monadic & state constructs
  Example: hashtable
 Modularity & separation

What about systems?

Is it feasible to build a complete system?
•  not just state, but I/O & exceptions
•  feasible to specify desired semantics?
•  feasible to construct & maintain proofs?

Ysql [PoPL’10]
•  In-core database (c.f., MySQL)
•  Main components:

–  Definitions of schemas, relations, & queries
•  define meaning of queries as denotational semantics
•  define a simple cost model for queries

–  Routines for [de]serializing tables to disk
•  proof that deserialize(serialize x) = x

–  Query parser
•  uses a Packrat, memoizing parser library

–  Query optimizer
•  prove correctness w.r.t. semantics
•  prove cost preservation where possible

–  Execution engine
•  uses B+-trees for in-core representation
•  use Cmd monad for imperative operations
•  prove (partial) correctness w.r.t. query semantics

Our RDBMS Pipeline

SQL
Query

Table /
Relation

The table the SQL query denotes and
the table the RDBMS returns are equal (partial correctness).

Execution

Imperative
B+ Tree

Compilation

Relational
Algebra

Optimization

Cost
Respecting

Planning

Finite Map
Operations

(LOC)

Functional 1200 810

Imperative 0 920

Proof 1140 6880

Proof/
Code

≈ 1 ≈ 4

Back-End Front-End

34

To Start With…
•  We need a model of the DB to state

correctness.
•  We start by defining schemas, tuples, and

relations.
– many possible ways to encode these in Coq
–  I’ll show you what we did, but we want to

investigate others

•  We then define our query language.
–  typed abstract syntax
–  denotational semantics: map queries and

input relations to an output relation.

Some Coq Definitions
Def Schema := list Type.
Def s : Scheme :=
(string::nat::string::nil).

Fix Tuple (T: Schema) : Type :=
 match T with
 | Nil ⇒ unit
 | Cons a b ⇒ a * Tuple b
 end.
Def t : Tuple s :=
(“Greg”,(43,(“PL”,tt)))

Def Table (T: Schema) : :=
FiniteSet (Tuple T).

Query Abstract Syntax
Inductive RAExp (G: Context) : Schema → Type →

Type :=

 | Var : ∀(v: name), RAExp G (G v)

 | Union : ∀(t: Schema),

 RAExp G t → RAExp G t → RAExp G t
 | Select : ∀(t: Schema),

 RAExp G t → (Tuple t → bool) → RAExp G t

 | …

 | Product : ∀(t t’: Schema),

 RAExp G t → RAExp G t’ → RAExp G (t ++ t’).

37

Denotational Semantics
Fix denote (G: Context) (env:Env G)
(T:Schema) (q : RAexp G T) : Table T :=

 match q with
| Var v => env v
| Union T q1 q2 =>
 FiniteSet.union (denote G env T q1)
 (denote G env T q2)
| Select T q f =>
 FiniteSet.filter
 (denote G env T q) f
| ...

Verifying Query Optimization
Def rewrite G T : Type :=
 RAExp G T → RAExp G T.

Def semantics_preserving G T (r:
rewrite T) : Prop :=
∀(q: RAExp T), denote q = denote
(r q).

Def optimization T : Type :=
 { r : rewrite T
 ; pf : semantics_preserving r }

Some of the optimizations
•  Ryan proved a whole bunch of relational

algebra identities using the denotational
semantics.
–  e.g., filter P1 (filter P2 R) = filter P2 (filter P1 R)

•  Then he implemented a number of textbook
query optimizations.
–  e.g., select P2 (select P1 Q)  select (P1 and P2)

Q

•  And constructed proofs of equivalence.
–  note, manipulating typed AST was a pain
–  See Ryan’s next talk for more on this.

One More Syntax Issue
•  Need to parse queries, [de]serialize tables
•  Built a packrat parsing combinator library

–  the types of the combinators tell you what grammar (really
transducer) they implement.

–  packrat parsing uses memoization (i.e., refs) to avoid some
backtracking

–  but that’s a whole other story…

•  Allows us to validate the parser against a grammar.
•  Allows us to prove a roundtrip theorem for tables:

 deserialize(serialize(T)) = T

The B+-trees
•  An interface mediates between the query

engine and the B+-trees.
•  The interface captures the idea that a tree (an

ADT) represents a (functional) finite-map.
–  important: we want to be able to swap alternative

implementations, with alternative internal
invariants.

•  The operations on the tree are reflected in the
pre- and post-conditions as (functional)
operations on the finite-map.

•  So building the query engine in terms of the
interface is easy – just have to reason about
finite maps.

An Imperative Finite Map ADT

Class Fmap (K V: Type) : Type := {

 handle : Type;

 model : Type := list (K*V);

 rep : handle → model → heap → Prop;

 add : ∀(m: model) (k: K) (v: V) (h: handle),

 Cmd (rep h m)
 (fun _: unit ⇒ rep h ((k,v)::m));

 lookup : ∀(m: model) (k: K) (h: handle),

 Cmd (rep h m)
 (fun vopt : option V ⇒ rep h m * [vopt =
find k m]);

 ;

 iterate : ... ;

...
43

The Implementation
•  Generalized Binary Search Trees

44

N-way fan-out

Linked fringe for
in-order traversal

The “rep” predicate
•  Recall we are supposed to relate the B+-tree to

some (functional) list of key-value pairs.
•  Intuitively, rep t l should hold when the leaves

of t are some permutation of the list l.
•  But in addition to this fact, we want to capture

what it means for a B+-tree to be well formed.
–  e.g., balance conditions
–  in practice, we relate the B+-tree to a functional

tree without a skirt, but that’s balanced

The Challenge
•  Trees are nice for separation logic

–  each sub-tree is disjoint

•  But the B+-tree is really two data structures
that physically share:
–  a tree and a linked list of the leaves
–  inserting a key/value wants to view things as a

tree
•  but also link into the list of leaves

–  iteration wants to view things as a linked list
–  so finding an appropriate representation predicate

is kind of tricky.

Part of the B+ Tree Rep

47

Key Splitting Theorem
Theorem repTree_iff_repTrunk :  
∀h (r : ptr) (optr : option ptr) (p :
ptree h) (H : heap),  
 repTree r optr p H <->"

 (repTrunk r optr p *"
 repLeaves (Some (firstPtr p))
(leaves p) optr) H."

To Wrap Up
•  Systems like Coq make it possible to write

code and prove deep properties about it.
–  from simple types to full correctness.

•  Provides a uniform, modular framework for:
–  types and specifications.
–  code, models, and proofs.
–  abstraction at all levels.

•  Recent advances scale it from pure languages
to effects without losing modularity.
–  monads.
–  separation logic.

But Lots to Do:
•  Scaling the theory further:

–  IO, concurrency
–  liveness, information flow, …

•  More automation:
–  better inference
–  adapt good decision procedures from SMT
–  termination analyses, shape analyses, etc.

•  Re-think languages & environments:
–  in particular, for discharging explicit proofs

I Remain Optimistic
These obstacles will be overcome.

We won’t develop all software with proofs
of correctness, but I do believe that
within another 10 years:
–  type systems for mainstream languages

will rule out language-level errors, and
many library errors, and

– a lot more safety & security-critical code
will be developed with machine-checked
proofs of key properties.

