
Design Issues for Implemented Type 
Theories 

Robert Constable

Cornell University



A Logic of Computational Reality

I like this title better, but it will take the whole 
lecture to explain it.  

Is this approach to the title constructively sound, 
or is it impredicative?

I used the title in the article for the lecture:

The Triumph of Types: Creating a Logical Reality 
for Computation  on the OPLSS web site.



Footnote

The article is full of footnotes, so the lecture should 
have one as well. This is it.

To the Nuprl proof assistant, the title is fine as are 
proof goals that might not make sense until we can 
prove them. 

|- Goal  by proof

A completed proof shows that Goal is sensible. This 
lecture will show that the title is sensible.  The cool 
example contrasts Nuprl and Coq. We think like this.



A Logic of Computational Reality



Intellectual Achievement of CS

The general public is impressed by the technical 
achievements of computer science, e.g. the 
Internet, the Web, PC’s, smart phones, computer 
games, social networks, robotics, tools of 
computational science especially applied to 
health care, and so forth. Seems easy, hacking. 

Computer scientists, logicians, mathematicians, 
physicists,  and so forth also care about the 
intellectual achievements of the discipline.  What 
are some them relevant to this summer school?



Intellectual Achievements – a few 
related to the summer school

• Mathematically precise notion of computability: 
functional, sequential, concurrent, distributed, 
Turing complete, subrecursive, … 

• Concept of a programming language, their 
design, implementation, semantics, logics,…

• Concept of computational complexity, theory of 
algorithms and data structures

• Formalization of mathematical knowledge
• Automation of formal reasoning and related 

intellectual processes



Automation Examples

• Formal Proof of Four Color Theorem  – Gonthier
• Kepler Conjecture Formal Proof Attempt – Halles 

and HOL-Light team
• Prime Number Theorem – Harrison
• Solution of Girard paradox -- Howe
• Constructive Higman’s Lemma – Murthy
• Kruskal’s Theorem – Seisenberger
• POPLMark Challenge – Coq,Twelf,HOL
• Paris driverless Metro line 14 – Abrial with B-tool
• Mizar’s Journal of Formalized Mathematics



What is next?

Advances in programming languages, 
implemented foundational theories (type 
theories), automated reasoning methods with 
machine learning, assembly of large formal 
digital libraries of computational mathematics 
and theoretical computer science, etc. are 
converging toward a singularity in automating 
aspects of the programming process and 
problem solving process.  Need to see it to 
believe it. (Not so easy and a bit scary.)



Convergence to Singularity

PL Advances 

Implemented Automated

Type Theories Reasoning Methods

Formal Digital Libraries



Integrating Element

Implemented foundational theories will be a 
key integrating element, they will define the 
theoretical reality of the convergence, and it 
must match both the computational reality 
and its logical rules.

We can see a glimmer of integrating role if we 
look at Logical Programming Environments 
(LPE’s).



Logical Programming Environments

Our LPE consists of subsystems, including:

Native Logical Language (e.g. type theory)

Proof System (LCF style interactive provers)

Evaluation System (for programs)

Verified Compilers (to external languages)

Formal Digital Library (specs, code, proofs)

Structure Editor (programs, tactics, proofs)

Theory Modification Tools



Design Issues are Key

We know that for programming languages, 
the design issues are critical to success, and 
we can see that for LPE’s there are more 
“moving parts” and a new dimension, the 
logical reality of computation. 

I want to expose you to this logical dimension 
and show you how the approach I favor arose 
historically and what the options are.



The design of type theories

We will look at the structure of Computational 
Type Theory (CTT), the theory that provides the 
logical reality of computation in our LPE. It is 
closely related to the Calculus of Inductive 
Constructions, the logic of Coq and to Martin-
Löf’s early type theories, say Intuitionistic Type 
Theory (ITT).

Here is a brief comparison that will raise the 
concepts that we need to examine.



Points of Comparison

CTT CIC

grounded in semantics (OPLSS10)  grounded in proof theory
(partial equivalence relations)       (strong normalization)
implicitly typed  (polymorphic)      explicitly typed
extensional equality                         intensional equality
predicative  (universes)                    impredicative
Turing-complete and open              sub-Turing complete
proof trees  (refinement logic)       proof scripts (sequents)
recursive type (Mendler)                 inductive types
library is a database                          library is file system
processes are primitive                    processes ?



Points of Comparison

CTT CIC

grounded in semantics (OPLSS10)  grounded in proof theory
(partial equivalence relations)       (strong normalization)
implicitly typed  (polymorphic)      explicitly typed
extensional equality                         intensional equality
predicative  (universes)                    impredicative
Turing-complete and open              sub-Turing complete
proof trees  (refinement logic)       proof scripts (sequents)
recursive type (Mendler)                 inductive types
library is a database                          library is file system
processes are primitive                    processes ?



Lecture Plan

I    Introduction  -- done

II   Historical Background (my interpretation)

Evolution of design issues

III  Integrating Role of Computer Science

Semantics of Evidence

IV  Issues in Formal Digital Libraries           

Partial functions in constructive theories

Simple proof of Gödel’s Incompleteness



Historical Context

This historical context will help us understand 
the scale and scope of our enterprise.

Rutherford notwithstanding, our effort is 
more than

stamp collecting



Aside

We have the analogues of the great theoretical 
divide in physics, but ours is unifable.

Quantum Mechanics    Theory A – Algorithms

Relativity                         Theory B --Type theory



Historical Backdrop

The research that led to modern type theories 
was conducted against the backdrop of a 
“crisis” in mathematics which caused logicians 
to look at ways to be more precise about basic 
concepts. Key players were:

Frege                         Cantor

Begriffsschrift (1879)     Set Theory (1874)

Russell & Whitehead Zermelo (1908)

Principia Mathematica (PM)  (1910)                       



Historical Backdrop continued

Type Theory                Set Theory

PM 2nd Edition             Zermelo/Fraenkel (ZF)

1925                           1922 (first-order)

Gödel thought of ZF as a simplification of PM.



The Success of Set Theory

By the 1940’s set theory was well established as a 
foundation for mathematics.  Bourbaki’s famous 
Elements of Mathematics is based on set theory 
and carries out the vision of Principia.

The famous cumulative hierarchy is a simple 
model to understand, and it is possible to easily 
code the basic ideas of nearly all branches of 
mathematics in set theory, some times using a 
ninth axiom, choice.



Encoding Mathematics into Sets

There is an elegant definition of the natural 
numbers, N, as sets, e.g. ø, ,ø-, ,ø,,ø--, …. This 
von Neuman encoding can be extended to the 
ordinals, providing the spine of the cumulative 
hierarchy.

-------------

---------

-----



Encoding Mathematics into Sets

Sets can encode numbers, relations, 
functions, algebraic structures, topological 
structures, Turing machines, etc.

To define categories, one needs a richer set 
theory than ZF.  We introduce classes, and 
families, and other “large collections” as in the 

Tarski-Grothendieck set theory used in the 
Mizar proof checking system and its formal 
mathematics library (with about 50K items).



The Success of Set Theory

The success of set theory in resolving the 
foundational crisis and providing a simple 
elegant basis for mathematics is remarkable, a 
great intellectual achievement of the 20th

century. It is hard to imagine a more elegant 
solution, yet it is not an adequate foundation 
for computer science and informatics.  Type 
theory is a strong alternative, adequate for 
math and computer science. Why is this so?



Looking Back on this Period

When we look back on these results, say the 
combination of first-order logic and ZF axioms, 
we see a remarkable success in explaining the 
foundations of mathematics, reducing it to eight 
axioms in first-order logic and teaching set theory 
from grade school through college.

We’ll see in this lecture why type theory is alive 
and well in computer science and being taught in 
secondary school as part of programming, but 
that story requires a bit more history.



Why is there a type theory alternative?

To answer this question, we need to go back to 
the critical year of 1907 and look at Brouwer’s 
influence and his intuitionistic mathematics.

We will see sets (species) as one among many 
interesting types; many other types are very 
good for structuring computation, as 
computer scientists later discovered as well.



Along came Brouwer

In 1907 just as “traditional logic” seemed poised 
to solve the foundational crisis, with the 
predicate calculus (Frege) and either types
(Russell) or sets (Zermelo), L.E.J. Brouwer 
advanced a wholly different solution, a radical 
solution. 

Brouwer proposed grounding mathematics in 
computation and viewed logic as a special kind of 
very general computational mathematics.



Brouwer and Hilbert

The foundational work moved into its second 
phase by 1922 with PM second edition and first-
order ZF set theory and a new element, Hilbert 
advances in 1927 his 1904 program of 
formalization. He distinguishes between finitary
and ideal objects.

Hilbert proposed treating mathematical theories 
as pure formal games, the object theory, to be 
studied in a meta-theory used to justify ideal 
objects.



Brouwer attacks Hilbert’s Formalism

Brouwer thought that the Hilbert Program 
was misguided and could not succeed. He was 
winning converts such as his former student 
Hermann Weyl who said:

“I now give up my own attempt and join 
Brouwer.”  1920



Brouwer seems radical

Some of Brouwer’s positive results seemed very 
radical, his bar induction, Bar Theorem, Fan 
Theorem, Continuity Principle.  They led to the 
theorem that all functions on Reals are uniformly 
continuous!

E. Bishop took a less radical approach in his 
constructive mathematics, and Kleene tamed 
Brouwer in his 1965 book Foundations of 
Intuitionistic Mathematics - major impact.



Lecture Plan

I    Introduction  -- done

II   Historical Background (my interpretation)

Evolution of design issues

III  Integrating Role of Computer Science

Semantics of Evidence

IV  Issue with Formal Digital Libraries           

Partial functions in constructive theories

Simple proof of Gödel’s Incompleteness



Computer Science as Unifier

Computer scientists took bits from all three:

Ground meaning in computation – Brouwer

Formalize mathematics to automate it – Hilbert

Use types to organize the data – Russell

We will continue to refine and extend the 
convergence of these approaches.



How do these themes fit together?

How did CS manage to bring these three themes 
together when the originators did not see the 
convergence?

Type theory emerged because of programming 
languages, sets were not the whole story of 
computational data. We’ll look at this.

What is the last piece from Brouwer to fit into the 
modern view? Oddly it is one of his most 
fundamental ideas.  What is it? Why was it last?



The Last Puzzle Piece

Edt Database
?

~                                                     Rules
→

Compute                                                                
Logic

LPE



Programming Languages and Logics

From the critical historical juncture circa 1907 
there was a split in the genotype of 
mathematics:  sets vs types.

We know about sets from mathematics 
courses and about types from programming 
courses.

Types also appear in basic CS theory courses 
such as Algorithms and Data Types.



Increasing Richness of Types in 
Programming Languages

Fortran started with simple type distinctions, 
fixed and floating point numbers distinguished 
by the alphabetical range of the variable 
names, e.g. k,l,m,n versus x,y,z.

From that meager beginning we have seen a 
progressive enrichment  of type systems from 
Algol,  Pascal, Algol 68, PL1, C++, Java, ML, F#, 
etc.



Standard PL Types

The types we now expect:

Product A×B                        <a,b>  ordered pairs

Record {a1:A1;…;an:An}      maps ai into Ai

Union A+B                         inl(a), inr(b) inject

Function A→B                       λ(x.exp)  functions

Recursive μX.F(X)                    e.g. lists,trees, etc.



Type Inference Algorithms

The ML type inference algorithm of Robin Milner 
is an amazing tool for thought, widely used in 
programming courses. Given a function, e.g.

memb  = λ(x,ℓ.

if ℓ = nil then false

else if x = hd ℓ then true

else memb(x, tl ℓ) )

ML infers the type of memb as:  α × α list → bool.

The type is the range of significance of the 
function.



Is there a limit to type enrichment?

Is there some limit to this process of type 
enrichment in programming languages?

I claim that it will continue at least until the 
programming languages have the types 
needed for constructive mathematics, but it 
will go beyond that, driven by the open ended 
nature of computation.



The Last Puzzle Piece

Edt Database
?

~                                                     Rules
→

Compute                                                                
Logic

LPE



The Last Piece

The last piece to be accepted is Brouwer’s most 
fundamental insight. Logician’s call it the 
Brouwer/Heyting/Kolmogorov semantics.

Computer scientists, those great unifiers, give it a 
terrible name, the Curry-Howard Isomorphism.  
Sometimes we call it Propositions-as-Types, still 
not great. I called it proofs-as-programs, still not 
good. Scott called it constructive validity, good.



The key piece needs a good name

Brouwer’s idea is profound and revolutionary. 
Most people resist it strongly.  It needs a 
better name.  One that I tried in 1985 seems 
plausible.  I tried to tie the idea to classical 
logic as well and called it evidence semantics.

Let me try “evidence semantics” again here.



Lecture Plan

I    Introduction  -- done

II   Historical Background (my interpretation)

Evolution of design issues

III  Integrating Role of Computer Science

Semantics of Evidence

IV  Issues in Formal Digital Libraries           

Partial functions in constructive theories

Simple proof of Gödel’s Incompleteness



Semantics of Evidence

The evidence semantics for a formula A in a 
model M is the type of objects a that 
constitute evidence for A. These objects use 
elements of the universe UM along with other 
elements.

[A] = {a | a is evidence for A in M}

For example [0=0] is “axiomatic” say, {true}



Evidence Semantics

The evidence for 0 < 1 could be “axiomatic” or 
if we define x < y to mean there is a z such 
that x+z = y for

z > 0 then the evidence for 0 < 1 is

[0<1] M = {<z,pf>} where z>0 and pf in [x+z=y] M

If A is false, then [A]M is empty.



Propositional Evidence

Suppose that we have evidence types [A] for 
the atomic propositions A. Here is how to 
construct evidence for compound formulas in 
a model M.

[A & B] == [A] x [B]

[A v B] ==  [A] + [B]

[A => B] == [A] → [B]

[False] ==   φ ( the empty set )

[¬A]         ==  *A+ → φ



Evidence for Quantified Propositions

The evidence for quantified formulas requires 
dependent types over the universe UM of the 
model M:

[All x. B(x)] ==  x: UM → [B(x)]

[Exists y. B(y)] ==  y: UM x [B(y)]



Examples

What is [ A => A]?   { λ(x.x),   λ(x. <17,x>.2),…-   

What is [A & B => A]?
{λ(x.spread(x; a,b. a)), …-

What is [ A => A v B]?
{ λ(x. inl(x)),   λ(x. inl(spread(<x,17>;lft,rgt. lft)),…-

What is [(0=0) => True v (0=0)]?
{λ(x. inl(true)),   λ(x.inr(x)),…-



More Examples

For the domain UM  the natural numbers N:

What is [Exists x. (x > 0)]?

, <1,true>, <2,true>, …-

What is [All x.Exists y.(x ≤ y)+?

{λ(x.<x,true>), λ(x.<x+1,true>), λ(x.<x+2,true>),…-



Common to School Lectures

The idea has already been used extensively in 
the school lectures under the other names 
such as propositions as types.

I will teach more about the idea in tomorrow’s 
lectures and extend it further.



Evidence Semantics is Meaningful for 
Classical and Constructive Logics

For constructive (and intuitionistic) logics this 
evidence semantics is essentially the Brouwer, 
Heyting, Kolmogorov semantics (BHK) from 1907 
to 1935. 

We see that it is “applicable” to classical logics as 
well if we introduce an object that can be used as 
evidence for the law of excluded middle,

(P v ¬P).  I call that element magic(P).



Examples of magic

For the domain of propositions of level i, Propi

[All P. (P v ¬P)]  is {λ(P.magic(P)), …-

where magic(P) is an oracle computing either 
inl(p) or inr(p) for some evidence depending 
on P.  We can stipulate that the evidence p is 
hidden.



Importance of Propositions as Types

If we adopt an evidence semantics, then proof 
terms denote evidence. They can be incorporated 
into the logic as terms, and if the logic is 
constructive, these terms are part of a 
computation system, so they can be evaluated.  

This principle shows that in a sense, the 
dependent type system is a first limit or “fixed 
point” for programming languages and logics –
classical or constructive.



Proofs as Programs

For a constructive logic, all proof terms can be 
considered as programs or data that reveal the 
implicit computational content and make it 
explicit.

The proof assistants based on computational type 
theory or other constructive theories can 
evaluate these proof terms and thus extract the 
computational content. For classical logic only 
some proof terms are computable.



Relationship to Truth Semantics

We can relate the semantics provided by 
treating propositions as types to the usual 
truth semantics made precise by Tarski.

Brouwer, Bishop and others would ask 
whether this is meaningful.  You need to 
decide for yourself.  It provides a bridge, 
perhaps a one way bridge to constructivity.



Standard  Tarski Semantics

The standard semantics for a logical formula A
is that A is true about a model M if the truth 
value of A, tr(A) = true in M.  This is called the 

Tarski semantics.

For example, tr(A&B) = true  exactly when

tr(A) = true and  tr(B) = true

Also tr(A → B) is tr(¬A v B) as well as

tr( All x.B(x) ) is  tr( B(a) ) all a in M.



Footnote (Aside)

Some constructivists react badly to Tarski 
semantics, e.g. Girard, calling it meaningless, 
since it is defines formal logical truth in terms 
of logical truth.

But to others, this shows that the classical 
formal semantics is faithful, exactly right.



Relationship to Tarski Semantics

It is easy to relate evidence semantics to 
Tarski’s semantics for first-order logic and 
show that a formula A is true in a model M iff 

and only if there is evidence for A.  Moreover, 
if pf is a proof of A, then we can define an 
evidence semantics for pf, say [pf], such that:

pf |- A   iff   [pf]M ε [A]M

|= M A    iff  a ε [A]M



The Curry Howard Isomorphism

Many computer scientists like to call the “PAT” 
semantics the Curry-Howard isomorphism, even 
though it is not an isomorphism nor was it 
invented by either Curry or Howard. 

The book on this topic, Lectures on the Curry-
Howard Isomorphism by  Sørensen and Urzyczyn, 
lists 23 contributors to the principle, the main 
ones being Brouwer, Heyting, Kolmogorov, 
Kleene, deBruijn, Curry, Howard, Girard, Scott, 
Martin-Löf, starting by 1907.



Propositions as Types

In my view this principle is one of the key 
discoveries of logic and computer science. It was 
created informally by Brouwer (influenced by 
Kant?) and germinated in Principia Mathematica
which brought logic and type theory together.

This semantic principle has implications for 
philosophy and linguistics as well as informatics 
and logic.



Applications in Programming

We can use the constructive semantics to 
program with proofs.  This can be done 
efficiently, providing documentation for 
correctness of the programs.  The method is also 
called correct by construction programming (I 
think  that terminology was used first by Cordell 
Green for his company Kestrel).

This application will be a focus of the Technical 
Lectures.



Formal Mathematics as a 
Programming Environment

This connection between proofs and programs 
suggests that an implemented formal theory 
of mathematics with programs and other 
fundamental computer science concepts can 
serve as a Programming Environment.  I like 
the term Logical Programming Environment 
(LPE).



Lecture Plan

I    Introduction  -- done

II   Historical Background (my interpretation)

Evolution of design issues

III  Integrating Role of Computer Science

Semantics of Evidence

IV  Issue with Formal Digital Libraries           

Partial functions in constructive theories

Simple proof of Gödel’s Incompleteness



Formal Digital Libraries

The proof assistants are used to build large 
libraries of formalized mathematics and 
programming. The study of these libraries has 
become a research area called Mathematical 
Knowledge Management (MKM)

There are already many important results and 
problems in this young field, and the subject 
advances the goals of PM.



MKM Issues and Problems

Here are two important problems from MKM 
for which we have results.

1. How can provers based on different logics 
share results, e.g. constructive with classical?

2. How can multiple users modify a library 
without interfering with each other?



Sharing Formal Mathematics

As deBruijn’s Automath project showed, it is 
possible to build proof terms for any logic, and 
this is a design principle, proofs as terms. Thus 
there is an evidence semantics for classical logic 
as well. Most of the proof terms of classical logic 
have computational meaning. 

For non-constructive axioms such as P v ¬P, we 
use the term magic(P) as the proof term; it does 
not necessarily have computational meaning.



Gödel Translations

Gödel showed that it is possible to translate 
classical number theory, Peano Arithmetic 
(PA), into intuitionistic number theory,  
Heyting Arithmetic (HA), thereby establishing 
that if HA is consistent, so is PA. The two 
theories differ only in that PA obeys the law of 
excluded middle, i.e.

PA = HA + (P v ¬P)



Gödel Translations continued

For instance, the translation of (P v ¬P) in HA   
is just ¬(P & ¬P), which is the same as

¬¬ (P v ¬P).

In general, Gödel translates formula F of PA 
into ¬¬F and shows

(PA |- F)  implies (HA |- ¬¬F)



Embedding Classical Theories into 
Constructive 

Gödel’s results show how to embed classical 
theories such as PA and ZF into their 
constructive analogues, by defining new 
logical operators

P | Q  == ¬(¬P & ¬Q)     classical or

Ex.P(x)  == ¬(All x. ¬P(x))  classical exists



Translating Among Theories

These Gödel translation results show how to 
relate classical and constructive theories. 
Peano Arithmetic (PA) and ZF set theory factor 
as

PA  =  HA + (P v ¬P)

ZF  =   IZF + (P v ¬P)

ZFC =   IZF + Choice



Caution about Gödel Translations

As the results of Curien and Herbelin show, we 
need to rethink the embedding results when 
we use them in constructive type theories 
because the existential quantifier is stronger 
in type theory.  It is a projection, moreover in 
CTT and ITT it respects equality.



Some Theories Do not Factor

We will see an example of constructive 
domain theory which does not factor this way, 
and that fact raises interesting research 
questions about partial functions.



Exercise

Prove     ¬¬ (P v ¬P)  and produce the evidence 
term in [¬¬ (P v ¬P) ].

Recall that the elements of (P v ¬P)  have the 
form inl(p) or inr(λ(x.np)), elements of a 
disjoint union type, noting that [¬P] is the 
function space from [P] into the empty type.



Constructive Domain Theory

We consider an extension of HA to include 
partial recursive functions, say Constructive
Scott Arithmetic (CSA) based on LCF over the 
type N.

We take the basic type to be Ñ, those 
computable terms which have a natural 
number value iff they converge.



Computability in CSA

Here is how to define general recursive 
functions.  Consider the 3x+1 function with 
natural number inputs.

f(x) = if x=0 then 1 

else if even(x) then f(x/2)

else f(3x+1)

fi

fi



Using Lambda Notation

f = λ(x. if x=0 then 1 
else if even(x) then f(x/2)

else f(3x+1))

Here is a related term with function input f

λ(f. λ(x. if x=0 then 1 
else if even(x) then f(x/2)

else f(3x+1)))

The recursive function is computed using this term.



Defining General Recursive Functions 

fix(λ(f. λ(x. if x=0 then 1

else if even(x) then f(x/2)

else f(3x+1)

fi

fi))) 



Recursion in General

f(x) = F(f,x) is a recursive definition, also
f = λ(x.F(f,x))  is another expression of it, and the   
CTT definition is: 

fix(λ(f. λ(x. F(f,x))) 

which reduces in one step to:

λ(x.F(fix(λ(f. λ(x. F(f,x)))),x)) 

by substituting the fix term for f in λ(x.F(f,x)) .



Non-terminating Computations

CTT defines all general recursive functions, 
hence non-terminating ones such as this

fix(λ(x.x)) 

which in one reduction step reduces to itself!

This system of computation is a simple 
functional programming language.  



Unsolvable Problems

It is remarkable that we can prove that there is no 
function in CTT that can solve the convergence 
problem for elements of basic bar types.  

We can show this for non empty type Ā with 
element ā that converges in A for basic types such 
as Z, N, list(A), etc.  We rely on the typing that if F 
maps Ā to Ā, then fix(F) is in Ā. 



Unsolvable Problems

Suppose there is a function h that decides 
halting.  Define the following element of Ñ:

d = fix(λ(x. if h(x) then ↑ else 0 fi))

where ↑ is a diverging term, say fix(λ(x.x)).

Now we ask for the value of h(d) and find a 
contradiction as follows: 



Generalized Halting Problem

Suppose that h(d) = true, then according to h, 
d converges, but according to its definition, 
the result is the diverging term ↑ because by 
computing the fix term for one step, we 
reduce

d = fix(λ(x. if h(x) then ↑ else 0 fi))

to d = if h(d) then ↑ else 0 fi .

If h(d) = false, then d converges to 0.



Proving Undecidability

We can add the predicate Conv(n) for any n in 
Ñ, asserting that the element n converges.  

Suppose we could prove in CSA the following 
Convergence Theorem (CvT).

CvT:   All n:Ñ. [Conv(n) v ¬Conv(n)].

Then we could extract a computable function

h:  Ñ --> Bool. All n:Ñ. (h(n)=true iff Conv(n)).



Incompatibility

Thus, we cannot prove  CvT in CSA (because it 
is not true), indeed, we just proved ¬Conv.

If we try to add (P v ¬P) to CSA, we do not   
obtain a sensible classical domain theory.  
Indeed we can then prove CvT. So the two 
theories are incompatible, inconsistent.  They 
can not live in the same Formal Library.



Unsolvability and Incompatibility

Thus, we cannot prove  CvT in CSA (because it is not 
true), indeed, we just proved ¬CvT.

In a classical version of CSA, say SA, we can prove CvT
by the law of excluded middle.  So we cannot factor 

SA ≠ CSA + (P v ¬P).

The two theories are incompatible and can not live 
together in the same library of results.



Other Foundational Issues

There are many questions in the design space
for implemented formal theories, especially 
those that are implemented in proof 
assistants and used for programming.



Key Design Issues

In the paper for this lecture, I outline some of the 
most critical design issues.  They are:

1. Predicativity, orders, universes: where is 
impredicativity safe? CIC theorists know cases

2. When to use extensional versus intensional 
equality? CTT is one of the only extensional type 
theories, what are its pluses and minuses?

3. Turing completeness of the computation system 
versus subrecursive computation systems versus 
open systems (Brouwerian), how to integrate?



Key Design Issues

4. How to develop a theory of partial computable 
functions that is useful in computing, e.g. for the 
semantics of programming languages as in Karl 
Crary’s PhD thesis gaving a semantics to ML 
building on Scott Smith’s thesis on partial 
functions in CTT.

Another design goal might be to avoid 
contradicting Church’s Thesis or depending on it. 



Conclusion

Principia Mathematica and Brouwer set off a 
chain reaction of investigations and 
discoveries in type theory leading to new 
areas of logic, informatics, and mathematics. I 
see discoveries accelerating, in part because 
the PL community has widely embraced type 
theory and formal methods, and the best 
compiler writers will make these implemented 
formal theories produce good code.



THE END



Appendix

1. An example of programming by extraction in 
Heyting Arithmetic over the Integers (Z).

2. Examples of Refinement Logic Rules

3. Type theory as a foundation for mathematics,
Voevodsky efforts.



Integer Square Root

1           2             3           4            5            6            7            8             9          10        11          12         13         14          15           16

6

5

4

3

2

1



Proof of Root Theorem
22

22

22

2

2

2

22

1

1

0

1

0

1

1 1

1

1

allR

exis

n : . r : . r n r

n :

r : . r n r

.....

r : . r r

AtsR

Decide r

uto

.....

: , r : , r r

r : . r r

+

BY 

BY  

induction case.....

BY THEN 

induction case.....

BY T

Nat n

N

d

HE

I

i

i

i

i

Auto 



2 22

22

2 22

22

1 1 1

1

1

1

1 1 1

+

+

Case 1.....

BY THEN 

Case 2.....

BY THEN 

.....

: , r : , r r , r

r : . r r

Auto'

.....

: , r : , r r , r

r : . r r

existsR r

existsR Autor

i i i

i

i i i

i

Proof of Root Theorem (cont.)



Here is the extract term for this proof in ML 
notation with proof terms (pf) included:

0

1

2

0 0

1

1 1

 let   

 if  then

 else let 

 in if   then

else 

rec

,pf

r,pf -

r n

sqrt

s

r ,pf

r,pf'

qrti

i

i

i

i

i

The Root Program Extract



Example

Refining Conjunctions

            &    BY and ,

                    

                    

A B R pfa pfb

A pfa

A pfb

The evidence for  &   should

be an element of  &  pair,

,  , the meaning of the proof

term and , ( ). R pf

A B

A B

a p

p a fb

fb

f p



Refining Universal Statements

           : . R( )  BY all ( . )

          , :      ( ) BY 

x A x R x pfb

x A R x pfb



Refining Universal Statements

       : . R( )  BY all ( . )

          :      ( ) BY 

x A x R x pfb

x A R x pfb,



Constructive Semantics

Notice that the proof term corresponding to 

This should denote an element of 

namely 

In the constructive case, this function should be 

computable.  We get this result when the 

evidence sets are types.

: .   is  ( . )x A R allR x pf

: xx R

( . ).x pf



Homotopy Interpretation of 
Constructive Type Theory

Field’s medalist mathematician Vladimir 
Voevodsky is organizing meetings on the use 
of constructive type theory as a foundation for 
algebraic geometry, see Oberwolfach meeting 
Feb-March 2011.


