Modeling Denotational Semantics
and For

Axioms for Domain Theory

Part 1—

Dana S. Scott

10th Annual Oregon Programming Language Summer School
University of Oregon, Eugene

Computer Science Department
University of Oregon, Eugene
unstructured domain.

The semantics underlying our

These axioms refer to the structure of

The Axiom List

\begin{align*}
\text{Axiom I:} & \text{ Mapping} \\
\text{Axiom II:} & \text{ Patrifying} \\
\text{Axiom II:} & \text{ Towering} \\
\text{Axiom I:} & \text{ Approximating}
\end{align*}
Theorem: For \(x \in \text{Dom}(g) \), we have \(x \in \bigcup \{ \{ f \mid f \in \text{Dom}(g) \} \} \).

Definition: \(\text{Id} = \{ x \mid g \circ x = f \} \) and \(\text{Id} = \bigcup \{ \{ f \mid f \in \text{Dom}(g) \} \} \).

Least upper bound in \(\text{Dom}(g) \).

\(\text{Id} = \{ f \mid \exists x \in \text{Dom}(g) \text{ s.t. } f(x) = g(x) \} \).
$\mathbf{1} = \langle x', b \rangle \land x.d = 0 < \langle x', b \rangle \land 0 < x.d$

$\langle b \land b', d \rangle \land d = \langle b', d \rangle \land (b \land d)$

$\mathbf{1} > \langle b', d \rangle$

$\langle b \land b', d \land d \rangle = \langle b, d \rangle \land (b \land d)$

$\mathbf{1} = b \land (\mathbf{1} = d) \land \mathbf{1} = (b \land d)$

$0 = \langle 0, 0 \rangle$

$\mathbf{b} = \mathbf{d} \Leftrightarrow \mathbf{b} = \mathbf{d}$

$b \land \mathbf{d} = (b \land \mathbf{d})$

$0 = \mathbf{0} \land \mathbf{1} > \mathbf{d}$

Lowering \times Pairing
Joint function will evaluate approximated by:

\[f = (a - b) \land (b + d) = 0 < (a - b) \land 0 < (b + d) \]
\[f = (x - b) \land x + d = 0 < (x - b) \land 0 < x + d \]
\[\{ x \in \mathbb{R} \mid r \} \land s \iff (r - (b + d)x) + 1 \land s \iff (r - (b + d)x) + 1 \]
\[f = (x \in \mathbb{R} \mid r \} \land s \iff \{ r = (b - d)x \iff 1 \land \]
\[f = \{ x > d \iff \text{detrended } (b - d) \}

Mapping
A Universal Semilattice

Note: The three parts of \mathcal{U} are each

$x = 1 \lor y \lor z$

where there are many ways of determining subsemilattice.

Definition: We take \mathcal{U} as the minimal solution of:

$n = 0 \lor (n \times n) \lor (n \lor n)$.
Theorem: Some very basic properties.

Def: Homomorphism

Def: Domain Isomorphism
A Universal Domain
Continuous Functions
Function spaces

Theorem: In the theory of the structure of the universal

Definition: For continuous $f: \text{Dom}(g) \to \text{Dom}(f)$,
End of Part I
Modeling Denotational Semantics
and For Axioms For Domain Theory

Dana S. Scott
Representing Integers

Question: How to interpret $\text{dom}(\{x\})$?

Theorem: $\text{dom}(\{x\}) = \{10\} \cup \{1\} | x \in \mathbb{N}.$

Definition: $\{x\} = \{9\} \cup \{1\} | x \in \mathbb{N}.$

Theorem: For all $n, m \in \mathbb{N}$.

Definition: For $n \in \mathbb{N}$ define $\text{reverse}(n).$
Theorem: Compositions of computable mappings are computable.

A computable mapping to a computable set is a recursive mapping. The composition of two recursive mappings is a recursive mapping.

Definition: The computable mappings f \(\text{dom}(f) \rightarrow \text{dom}(g) \) are those that are continuous and where the set of those that are recursive is recursive.

Definition: The computable elements of \(\text{dom}(g) \) are those that are recursively enumerable subsets of \(\text{dom}(g) \).

Definition: The computable elements of \(S \) are those that are recursively enumerable subsets of \(S \).

Computable Domains and Mappings
A Review of Semantical Constructs
Partial recursive functions.

The computable elements of \(\text{dom}(g)\).
Least Fixed Points

Theorem: Every continuous \(f : \text{dom}(g) \to \text{dom}(g) \) has a least fixed point.
Some Domain Equations
Moreover, if ϕ is continuous and $\phi(x) \not\in \text{dom}(\chi)$, then $\phi(x) \not\in \text{dom}(\chi)$. This follows from the definition of the application and the assumption that $\phi(x) \not\in \text{dom}(\chi)$. Hence, the values of the application and the counterapplication are disjoint.

Definition: A counterapplication for continuous $\phi(x)$ is

\[
\chi(x) = \{ y \mid \exists x \in \text{dom}(\phi) : \phi(x) = y \}.
\]
A Simple Recursion

\(\text{fact}(n) = \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{fact}(n-1)\)

\(\text{plus}(x, y) = \text{if } y = 0 \text{ then } x \text{ else } \text{plus}(\text{succ}(x), y-1)\)

\(\text{read}(\{ x | x \in \mathbb{N} \}) = \text{if } \exists y \in \mathbb{N} \text{ such that } y = x \text{ and } \text{read}(\{ y | y \in \mathbb{N} \}) \text{ then } \text{read}(\{ y | y \in \mathbb{N} \}) \text{ else } \bot\)

\(\text{write}(x, y) = \text{if } \exists y \in \mathbb{N} \text{ such that } y = x \text{ and } \text{write}(y, y) \text{ then } \text{write}(y, y) \text{ else } \bot\)
Partial Equivalence Relations

Definition. For $\rho \subseteq \text{dom}(\pi)$, let

$$\{ \langle p, q \rangle \mid \rho \} = \langle p \rho q \rangle$$

where, for all elements $p, q \in \text{dom}(\pi)$,

- Relations over $\text{dom}(\pi)$ are the subsets of $\pi \times \pi$.
- $\pi \rho$ is the collection of partial equivalence relations on π.
Question: Is it possible to place an ace among

\[(g - x) \times (g - y) = (g - (g + y))\]

and

\[(g - x) \times (g - y) = (g + x) - y\]

and

\[(g - x) + y = (g - (g + y))\]

and

\[x \times y + g + x \times y = y\]

Theorem: For all

\[(a + b) \times (a - b) = a^2 - b^2\]

where

\[a = x + y\] and
\[b = y\]

Theorem: For all

\[(a + b) \times (a - b) = a^2 - b^2\]

where

\[a = g\] and
\[b = y\]
Dependent Types
Systems of Dependent Types
Identity Types